|
第一章
1.施敏,伍國鈺著,張鼎張,劉柏村, 半導體元件物理學第三版(下冊).2009. 國立交通大學. 2.Saran, R., et al., Facile Fabrication of PbS Nanocrystal:C60Fullerite Broadband Photodetectors with High Detectivity. Advanced Functional Materials, (2013). 23(33):p. 4149-4155. 3.Karunasiri, G., et al., Normal incident InGaAs/GaAs multiple quantum well infrared detector using electron intersubband transitions. Applied Physics Letters, 1995. 67(18):p. 2600-2602. 4.People, R., et al., Broadband (8–14 μm), normal incidence, pseudomorphic GexSi1−x/Si strained-layer infrared photodetector operating between 20 and 77 K. Applied Physics Letters, 1992. 61(9):p. 1122-1124. 5.Novoselov, K.S., et al., A roadmap for grapheme. NATURE, 2012. 490(11):p. 192-200. 6.MANGA, K.K, et al., High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids. Advanced Materials, 2012, 24.(13):p. 1697-1702. 7.Dai, M.-K., et al., High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. Journal of Materials Chemistry C, 2013. 1(33):p. 5064-5071. 8.Srivastava, S., et al., Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology, 2012. 23(20):p. 205501-205507. 9.Kim, Y.H., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2012. 489(6):p. 128-133. 10.Wang, Y., et al., Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. Journal of Sol-Gel Science and Technology, 2010. 55(3):p. 322-327. 11.Fung, T.-C., et al., Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. Journal of Applied Physics, 2009. 106(8):p. 084511. 12.Shin, J.H., et al., Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering. Journal of the Korean Physical Society, 2008. 53(4):p 2019-2023. 13.Kim, Y. H., et al., Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012. 489(7414):p. 128-132. 14.Hwang, S., et al., Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films,2011. 519(15):p. 5146-5149. 15.Park, M. S., et al., Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process. Molecular Crystals and Liquid Crystals, 2010. 529(1):p. 137-146. 16.Kim, S. J., et al., InGaZnO thin-film transistors with YHfZnO gate insulator by solution process. physica status solidi, 2010. 207(7):p. 1668-1671. 17.Chiu, C. J., et al., A Deep UV Sensitive Ta2O5/a-IGZO TFT. IEEE SENSORS JOURNAL, 2011. 11(11):p. 2902-2905.
第二章
1.Kasap, S.O.原著,黃俊達,陳金嘉,楊奇達,楊國輝,雷伯勛編譯,光電半導體元件.2011.臺灣培生教育出版股份有限公司. 2.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632. 3.Xie, Z.-Y., et al., Energy band alignment of InGaZnO4/Si heterojunction determined by x-ray photoelectron spectroscopy. Applied Physics Letters, 2012. 101(25):p. 2521111-2521114. 4.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632. 5.Shin, J.H., et al., Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering. Journal of the Korean Physical Society, 2008. 53(4):p 2019-2023. 6.Liu, K., et al., ZnO-based ultraviolet photodetectors. Sensors Basel, 2010. 10(9): p.8604-8634. 7.Razeghi, M. and A. Rogalski, Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996. 79(10):p. 7433-7473. 8.Gao, W., et al., In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts. Applied Physics Letters, 1994. 65(15):p. 1930-1932. 9.Su,Y.K., et al., GaN and InGaN Metal-Semiconductor-Metal Photodetectors with Different Schottky Contact Metals. The Japan Society of Applied Physics, 2001. 40(2001):p.2996-2999 10.Nakano, M., et al., Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO. Applied Physics Letters, 2008. 93(12): p.1233091-1233093. 11.Lopatiuk-Tirpak, O., et al., Influence of electron injection on the temporal response of ZnO homojunction photodiodes. Applied Physics Letters , 2007. 91(4): p.0421151-0421153. 12.Ryu, Y. R., et al., ZnO devices: Photodiodes and p-type field-effect transistors. Applied Physics Letters , 2005. 87(15): p.1535041-1535043. 13.Hazra, P., et al., Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer. JSTS:Journal of Semiconductor Technology and Science, 2014. 14(1):p. 117-123. 14.Manna, S., et al., High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates. The Journal of Physical Chemistry C, 2012. 116(12):p. 7126-7133. 15.Shao, D., et al., Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate. Appl Phys Lett, 2012. 101(21): p. 2111031-2111034. 16.Dali, S., et al., High Responsivity, Bandpass Near-UV Photodetector Fabricated From PVA-In2O3 Nanoparticles on a GaN Substrate. IEEE Photonics Journal, 2012. 4(3):p. 715-720. 17.Hwang, S., et al., Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films, 2011. 519(15): p. 5146-5149. 18.Lu, H.H., et al., 76.3: 32-inch LCD Panel Using Amorphous Indium-Gallium-Zinc-Oxide TFTs. SID Symposium Digest of Technical Papers, 2010. 41(1):p. 1136-1138. 19.Hosono, H.,et al., Factors controlling electron transport properties in transparent amorphous oxide semiconductors. Journal of Non-Crystalline Solids, 2008. 354(19-25):p. 2796-2800. 20.Chiang, H. Q., et al., High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Applied Physics Letters, 2005. 86(1): p. 0135031-0135033. 21.Kamiya, T. and H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2010. 2(1):p. 15-22. 22.Kim, Y.H., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2012. 489(6):p. 128-133. 23.Nomura, K., et al., Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Japanese Journal of Applied Physics, 2006. 45(5B):p. 4303-4308. 24.Barquinha, P., et al., Performance and Stability of Low Temperature Transparent Thin-Film Transistors Using Amorphous Multicomponent Dielectrics. Journal of The Electrochemical Society, 2009. 156(11): H824-H831. 25.Navamathavan, R., et al., Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering. Journal of Alloys and Compounds, 2009.475(1-2):p. 889-892. 26.Ji, Z., et al., Gallium oxide films for filter and solar-blind UV detector. Optical Materials, 2006.28(4):p. 415-417. 27.Benamar E.,et al., Optical, structural,and electrical properties of indium oxide thin films prepared by the sol-gel method. Solar Energy Materials and Solar Cells, 1998.56(1999):p. 125-139. 28.Geim, A. K. and Novoselov, K. S., The rise of grapheme. Nature Materials, 2007.6:p. 183-191. 29.Geim, A. K., Graphene: status and prospects. Science, 2009. 324(5934):p. 1530-1534. 30.Novoselov, K. S., et al., A roadmap for graphene. Nature, 2012. 490(7419):p. 192-200. 31.Nair, R.R.,et al., Fine Structure Constant Defines Visual Transparency of Graphene. SCIENCE, 2008. 320:p. 1308. 32.Novoselov, K. S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696):p. 666-669. 33.Park, S.,et al., Chemical methods for the production of graphenes. nature Nanotechnology, 2009. 29:p. 1-8. 34.Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9):p. 538-542. 35.Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008.3(9):p. 563-568. 36.Berger, C., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777):p. 1191-1196. 37.Alfonso, R., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008, 9.(1):p. 30-35. 38.Obraztsov, A. N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10):p. 2017-2021. 39.FERRARI, Andrea C.; BASKO, Denis M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 2013. 8.(4):p. 235-246. 40.Gong, X., et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009. 325(5948):p. 1665-1667. 41.Matthew Menke, S., et al., Tandem organic photodetectors with tunable, broadband response. Applied Physics Letters, 2012. 101(22):p. 223301. 42.Wang, D. Y., et al., Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater, 2012. 24(25):p. 3415-3420. 43.Alkis, S., et al., UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes. Journal of Optics, 2013. 15(10):p. 105002. 44.Manna, S., et al., High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates. The Journal of Physical Chemistry C, 2012. 116(12):p. 7126-7133. 45.Choi, W., et al., High-detectivity multilayer MoS(2) phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012. 24(43):p. 5832-5836. 46.Buscema, M., et al., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014. 14(6):p. 3347-3352. 47.Manga, K. K., et al., High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids. Adv Mater, 2012. 24(13):p. 1697-1702. 48.Huang, C.-Y., et al., p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Applied Physics Letters, 2010. 97(1):p. 013503.
第三章
1.PARK, M.S, et al., Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process. Molecular Crystals and Liquid Crystals, 2010, 529.(1):p. 137-146. 2.LOTYA, M, et al., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131.(10): p. 3611-3620. 3.MANGA, K.K, et al. High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids. Advanced Materials, 2012, 24.(13):p. 1697-1702.
第四章
1.LOTYA, Mustafa, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131.(10):p. 3611-3620. 2.FERRARI, Andrea C.; BASKO, Denis M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 2013, 8.(4):p. 235-246. 3.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632. 4.KAMIYA, Toshio; HOSONO, Hideo. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2010,2.(1): p.15-22. 5.SUN, Z, et al., Growth of graphene from solid carbon sources. Nature, 2010, 468.(7323):p. 549-552. 6.DAI, Min-Kun, et al., High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. Journal of Materials Chemistry C, 2013, 1.(33):p. 5064-5071. 7.Yang, S.-H., et al. Low resistance ohmic contacts to amorphous IGZO thin films by hydrogen plasma treatment. Surface and Coatings Technology, 2012,206. (24):p. 5067-5071. 8.Kim, G. H., et al., Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration. physica status solidi, 2010. 207(7):p. 1677-1679. 9.YOO, E., et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8.(8):p. 2277-2282. 10.MCALLISTER, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007, 19.(18):p. 4396-4404. 11.FUNG, T.C, et al., Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. Journal of Applied Physics, 2009, 106.(8):p. 084511. 12.HUANG, C.Y., et al., p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Applied Physics Letters, 2010, 97.(1):p. 3503.
|