跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳仕昇
研究生(外文):Chen, Shih-Sheng
論文名稱:以水溶液合成奈米石墨稀/氧化銦鎵鋅複合物之高效能寬波段非晶氧化銦鎵鋅/二氧化矽/矽異質接面光檢測器
論文名稱(外文):Efficient Broadband a-IGZO/SiO2/Si Heterojunction Photodetectors Based on a-IGZO/Graphene Nano-flakes Composites Prepared by Solution Process
指導教授:林泰源林泰源引用關係
指導教授(外文):Tai-Yuan Lin
口試委員:林泰源沈志霖李亞儒
口試委員(外文):Tai-Yuan LinShen, Ji-LinYa-Ju Lee
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:寬波段光檢測器氧化銦鎵鋅石墨烯奈米片
外文關鍵詞:broadband photodetectorsindium gallium zinc oxide (IGZO)graphene nanoflakes (GNFs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以氧化銦鎵鋅(indium gallium zinc oxide,IGZO)摻入石墨烯奈米片(Graphene Nano-flakes)複合物與二氧化矽/矽基板製作異質接面結構寬波段光檢測器。實驗結果發現氧化銦鎵隨著摻入石墨烯奈米片水溶液體積濃度的增加(0.1~0.9 vol%),其薄膜導電性會從原來的0.027 S/m增加到0.749 S/m,增加了27.7倍。複合物與二氧化矽/矽基板製作之光檢測器其電流-電壓關係為二極體P-N接面形式。光檢測器光響應範圍分為氧化銦鎵鋅紫外光吸收與矽基板可見光近紅外吸收範圍。在偏壓-3伏特之逆向偏壓下,單純氧化銦鎵鋅二氧化矽/矽基板於照光波長350 nm和500 nm其光電流值分別為8.81 10 A和1.04 10 A,而氧化銦鎵鋅摻入石墨烯奈米片水溶液(0.6 vol%)/二氧化矽/矽基板照光波長350 nm和500 nm其光電流值分別為4.39 10 A和4.90 10 A。 兩者相比可知氧化銦鎵鋅摻雜石墨烯奈米片複合物可提升照光產生的光電流,其350 nm、500 nm光響應率分別從0.109 A/W、0.164 A/W提升至0.146 A/W、0.216 A/W。此外,單純氧化銦鎵鋅/二氧化矽/矽基板與氧化銦鎵鋅摻入石墨烯奈米片水溶液(0.6 vol%)/二氧化矽/矽基板之響應時間(response Time)兩者相比,上升時間從8.95 ms變快為8.05 ms、下降時間從5.83 ms變快為 5.48 ms,結果顯示摻雜石墨烯響應時間變快。本研究成功製作出高效率氧化銦鎵鋅摻入石墨烯之複合物與二氧化矽/矽異質接面光檢測器。
This thesis studies the fabrication of hetero-structured broadband photodetectors fabricated by the composite consisted of indium gallium zinc oxide (IGZO) incorporated with the graphene nanoflakes (GNFs) and silicon oxide (SiO2)/silicon substrate. It was found that IGZO:GNFs film along with the increase in volume concentration (0.1 ~ 0.9 vol%), the conductivity of film increases from 0.027 S / m to 0.749 S / m, which is an increase of 27.7 times. The current-voltage relation of the IGZO:GNFs/SiO2/Si devices exhibited the p-n junction characteristics. The photoresponse range comprises the UV absorption of IGZO and visible near-infrared absorption of silicon. Under negative bias of -3 V, and the illumination of light with wavelength of 350 nm (500 nm), the photocurrent of pure IGZO/ SiO2/Si diode were found to be 8.81 10 A (1.04 10 A), while the illumination of light with wavelength of 350 nm (500 nm), the photocurrent of IGZO:GNFs (0.6 vol%)/SiO2/Si diode were found to be 4.39 10 A (4.90 10 A). The corresponding responsivity for IGZO/SiO2/Si and IGZO:GNFs (0.6 vol%)/SiO2/Si were found to be 0.109 A/W (0.164 A/W) and 0.146 A/W (0.216 A/W), respectively, for illumination of 350 nm (500 nm) light. Besides, the rising times for IGZO/SiO2/Si and IGZO:GNFS/SiO2/Si devices were found to be 8.95 ms and 8.05 ms, respectively. And the the decay times for IGZO/SiO2/Si and IGZO:GNFS/SiO2/Si devices were found to be 5.83 ms and 5.48 ms, respectively. The results showed that the response times of IGZO:GNS/SiO2/Si devices become better than that of IGZO/SiO2/Si devcies. Thus, we have successfully fabricated the IGZO:GNFs/SiO2/Si hetero-structured broadband photodetectors.
目錄
中文摘要
英文摘要
致謝
目錄
圖目錄
表目錄

第一章 緒論
1-1 前言
1-2 本研究組織架構
1-3 參考文獻

第二章 工作原理與文獻回顧
2-1 光檢測器的工作原理與文獻回顧
2-1-1 半導體材料對光的吸收係數與能隙
2-1-2 光檢測器類型之文獻回顧
2-1-3 光檢測器之重要特性參數
2-2 氧化銦鎵鋅材料特性之文獻回顧
2-3 石墨烯之文獻回顧
2-3-1 石墨烯材料特性
2-3-2 石墨烯製作方式
2-3-3 石墨烯拉曼散射光譜介紹
2-4 寬波段光檢測器之文獻回顧
2-5 參考文獻

第三章 實驗方法與步驟
3-1 整體製程介紹
3-2 IGZO Solution製作方式
3-3 Graphene Flakes Solution 製作方式
3-4 IGZO:Graphene Solution 製作方式
3-5 檢測器的製作流程
3-6 元件材料物性分析
3-7 元件材料電性分析
3-8 參考文獻

第四 章結果與討論
4-1 掃描式電子顯微鏡和原子力顯微鏡之結果
4-2 拉曼分析
4-3 穿透-吸收光譜與能隙分析
4-4 四點探針電性分析
4-5 X射線光電子能譜分析(XPS)
4-6 穿透式電子顯微鏡(TEM)
4-7 光檢測器之暗電流與光電流結果分析
4-8 二極體理想因子(diode ideality factor)特性分析
4-9 光檢測器EQE結果分析
4-10 光檢測器之光響應度
4-11 光檢測器響應時間與恢復時間
4-12 參考文獻

第五章 總結
5-1 結論












第一章

1.施敏,伍國鈺著,張鼎張,劉柏村, 半導體元件物理學第三版(下冊).2009.
國立交通大學.
2.Saran, R., et al., Facile Fabrication of PbS Nanocrystal:C60Fullerite Broadband Photodetectors with High Detectivity. Advanced Functional Materials, (2013). 23(33):p. 4149-4155.
3.Karunasiri, G., et al., Normal incident InGaAs/GaAs multiple quantum well infrared detector using electron intersubband transitions. Applied Physics Letters, 1995. 67(18):p. 2600-2602.
4.People, R., et al., Broadband (8–14 μm), normal incidence, pseudomorphic GexSi1−x/Si strained-layer infrared photodetector operating between 20 and 77 K. Applied Physics Letters, 1992. 61(9):p. 1122-1124.
5.Novoselov, K.S., et al., A roadmap for grapheme. NATURE, 2012. 490(11):p. 192-200.
6.MANGA, K.K, et al., High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids. Advanced Materials, 2012, 24.(13):p. 1697-1702.
7.Dai, M.-K., et al., High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. Journal of Materials Chemistry C, 2013. 1(33):p. 5064-5071.
8.Srivastava, S., et al., Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology, 2012. 23(20):p. 205501-205507.
9.Kim, Y.H., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2012. 489(6):p. 128-133.
10.Wang, Y., et al., Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. Journal of Sol-Gel Science and Technology, 2010. 55(3):p. 322-327.
11.Fung, T.-C., et al., Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. Journal of Applied Physics, 2009. 106(8):p. 084511.
12.Shin, J.H., et al., Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering. Journal of the Korean Physical Society, 2008. 53(4):p 2019-2023.
13.Kim, Y. H., et al., Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature, 2012. 489(7414):p. 128-132.
14.Hwang, S., et al., Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films,2011. 519(15):p. 5146-5149.
15.Park, M. S., et al., Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process. Molecular Crystals and Liquid Crystals, 2010. 529(1):p. 137-146.
16.Kim, S. J., et al., InGaZnO thin-film transistors with YHfZnO gate insulator by solution process. physica status solidi, 2010. 207(7):p. 1668-1671.
17.Chiu, C. J., et al., A Deep UV Sensitive Ta2O5/a-IGZO TFT. IEEE SENSORS JOURNAL, 2011. 11(11):p. 2902-2905.


第二章

1.Kasap, S.O.原著,黃俊達,陳金嘉,楊奇達,楊國輝,雷伯勛編譯,光電半導體元件.2011.臺灣培生教育出版股份有限公司.
2.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632.
3.Xie, Z.-Y., et al., Energy band alignment of InGaZnO4/Si heterojunction determined by x-ray photoelectron spectroscopy. Applied Physics Letters, 2012.
101(25):p. 2521111-2521114.
4.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632.
5.Shin, J.H., et al., Effect of Oxygen on the Optical and the Electrical Properties of
Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering. Journal
of the Korean Physical Society, 2008. 53(4):p 2019-2023.
6.Liu, K., et al., ZnO-based ultraviolet photodetectors. Sensors Basel, 2010. 10(9): p.8604-8634.
7.Razeghi, M. and A. Rogalski, Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996. 79(10):p. 7433-7473.
8.Gao, W., et al., In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts. Applied Physics Letters, 1994. 65(15):p. 1930-1932.
9.Su,Y.K., et al., GaN and InGaN Metal-Semiconductor-Metal Photodetectors with
Different Schottky Contact Metals. The Japan Society of Applied Physics, 2001. 40(2001):p.2996-2999
10.Nakano, M., et al., Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO. Applied Physics Letters, 2008. 93(12): p.1233091-1233093.
11.Lopatiuk-Tirpak, O., et al., Influence of electron injection on the temporal response of ZnO homojunction photodiodes. Applied Physics Letters , 2007. 91(4): p.0421151-0421153.
12.Ryu, Y. R., et al., ZnO devices: Photodiodes and p-type field-effect transistors. Applied Physics Letters , 2005. 87(15): p.1535041-1535043.
13.Hazra, P., et al., Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer. JSTS:Journal of Semiconductor Technology and Science, 2014. 14(1):p. 117-123.
14.Manna, S., et al., High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates. The Journal of Physical Chemistry C, 2012. 116(12):p. 7126-7133.
15.Shao, D., et al., Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate. Appl Phys Lett, 2012. 101(21): p. 2111031-2111034.
16.Dali, S., et al., High Responsivity, Bandpass Near-UV Photodetector Fabricated From PVA-In2O3 Nanoparticles on a GaN Substrate. IEEE Photonics Journal, 2012. 4(3):p. 715-720.
17.Hwang, S., et al., Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films, 2011. 519(15): p. 5146-5149.
18.Lu, H.H., et al., 76.3: 32-inch LCD Panel Using Amorphous Indium-Gallium-Zinc-Oxide TFTs. SID Symposium Digest of Technical Papers, 2010. 41(1):p. 1136-1138.
19.Hosono, H.,et al., Factors controlling electron transport properties in transparent amorphous oxide semiconductors. Journal of Non-Crystalline Solids, 2008. 354(19-25):p. 2796-2800.
20.Chiang, H. Q., et al., High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Applied Physics Letters, 2005. 86(1): p. 0135031-0135033.
21.Kamiya, T. and H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2010. 2(1):p. 15-22.
22.Kim, Y.H., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2012. 489(6):p. 128-133.
23.Nomura, K., et al., Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Japanese Journal of Applied Physics, 2006. 45(5B):p. 4303-4308.
24.Barquinha, P., et al., Performance and Stability of Low Temperature Transparent Thin-Film Transistors Using Amorphous Multicomponent Dielectrics. Journal of The Electrochemical Society, 2009. 156(11): H824-H831.
25.Navamathavan, R., et al., Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering. Journal of Alloys and Compounds, 2009.475(1-2):p. 889-892.
26.Ji, Z., et al., Gallium oxide films for filter and solar-blind UV detector. Optical Materials, 2006.28(4):p. 415-417.
27.Benamar E.,et al., Optical, structural,and electrical properties of indium oxide thin films prepared by the sol-gel method. Solar Energy Materials and Solar Cells, 1998.56(1999):p. 125-139.
28.Geim, A. K. and Novoselov, K. S., The rise of grapheme. Nature Materials, 2007.6:p. 183-191.
29.Geim, A. K., Graphene: status and prospects. Science, 2009. 324(5934):p. 1530-1534.
30.Novoselov, K. S., et al., A roadmap for graphene. Nature, 2012. 490(7419):p. 192-200.
31.Nair, R.R.,et al., Fine Structure Constant Defines Visual Transparency of Graphene. SCIENCE, 2008. 320:p. 1308.
32.Novoselov, K. S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696):p. 666-669.
33.Park, S.,et al., Chemical methods for the production of graphenes. nature Nanotechnology, 2009. 29:p. 1-8.
34.Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9):p. 538-542.
35.Hernandez, Y., et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008.3(9):p. 563-568.
36.Berger, C., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777):p. 1191-1196.
37.Alfonso, R., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008, 9.(1):p. 30-35.
38.Obraztsov, A. N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10):p. 2017-2021.
39.FERRARI, Andrea C.; BASKO, Denis M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 2013. 8.(4):p. 235-246.
40.Gong, X., et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009. 325(5948):p. 1665-1667.
41.Matthew Menke, S., et al., Tandem organic photodetectors with tunable, broadband response. Applied Physics Letters, 2012. 101(22):p. 223301.
42.Wang, D. Y., et al., Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection. Adv Mater, 2012. 24(25):p. 3415-3420.
43.Alkis, S., et al., UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes. Journal of Optics, 2013. 15(10):p. 105002.
44.Manna, S., et al., High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates. The Journal of Physical Chemistry C, 2012. 116(12):p. 7126-7133.
45.Choi, W., et al., High-detectivity multilayer MoS(2) phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012. 24(43):p. 5832-5836.
46.Buscema, M., et al., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014. 14(6):p. 3347-3352.
47.Manga, K. K., et al., High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids. Adv Mater, 2012. 24(13):p. 1697-1702.
48.Huang, C.-Y., et al., p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Applied Physics Letters, 2010. 97(1):p. 013503.

第三章

1.PARK, M.S, et al., Fabrication of Indium Gallium Zinc Oxide (IGZO) TFTs Using a Solution-Based Process. Molecular Crystals and Liquid Crystals, 2010, 529.(1):p. 137-146.
2.LOTYA, M, et al., Liquid phase production of graphene by exfoliation of graphite
in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131.(10): p. 3611-3620.
3.MANGA, K.K, et al. High‐Performance Broadband Photodetector Using Solution‐Processible PbSe–TiO2–Graphene Hybrids. Advanced Materials, 2012, 24.(13):p. 1697-1702.

第四章

1.LOTYA, Mustafa, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 2009, 131.(10):p. 3611-3620.
2.FERRARI, Andrea C.; BASKO, Denis M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 2013, 8.(4):p. 235-246.
3.Alias, A. N., et al., Optical Characterization of Luminescence Polymer Blends Using Tauc/Davis-Mott Model. Advanced Materials Research, 2012. 488(489):p. 628-632.
4.KAMIYA, Toshio; HOSONO, Hideo. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2010,2.(1): p.15-22.
5.SUN, Z, et al., Growth of graphene from solid carbon sources. Nature, 2010, 468.(7323):p. 549-552.
6.DAI, Min-Kun, et al., High-performance transparent and flexible inorganic thin film transistors: a facile integration of graphene nanosheets and amorphous InGaZnO. Journal of Materials Chemistry C, 2013, 1.(33):p. 5064-5071.
7.Yang, S.-H., et al. Low resistance ohmic contacts to amorphous IGZO thin films by hydrogen plasma treatment. Surface and Coatings Technology, 2012,206. (24):p. 5067-5071.
8.Kim, G. H., et al., Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration. physica status solidi, 2010. 207(7):p. 1677-1679.
9.YOO, E., et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8.(8):p. 2277-2282.
10.MCALLISTER, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007, 19.(18):p. 4396-4404.
11.FUNG, T.C, et al., Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. Journal of Applied Physics, 2009, 106.(8):p. 084511.
12.HUANG, C.Y., et al., p-Si nanowires/SiO2/n-ZnO heterojunction photodiodes. Applied Physics Letters, 2010, 97.(1):p. 3503.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top