(3.230.143.40) 您好!臺灣時間:2021/04/21 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁巧芬
研究生(外文):WENG CHIAO-FEN
論文名稱:應用van Hiele 幾何思考層次理論於幼兒幾何圖形教學桌上遊戲設計之開發
論文名稱(外文):A Study of Applying van Hiele Geometric Thinking Level Theory to Developing the Board Game of Plane Geometry Concepts for Young Children
指導教授:王學武博士
指導教授(外文):Hsueh-Wu Wang, Ph. D.
口試委員:范丙林章耀勳
口試委員(外文):FAN PING-LINCHANG YAO-HSUN
口試日期:2014-07-07
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:數位科技設計學系(含玩具與遊戲設計碩士班)
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:桌上遊戲幾何圖形幾何思考層次理論幼兒
外文關鍵詞:Board GameGeometry ShapesYoung ChildrenGeometry Thinking Level Theory
相關次數:
  • 被引用被引用:21
  • 點閱點閱:661
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:8
本研究是以 van Hiele幾何思考層次理論為基礎,設計一款給幼兒園幼童學習基本幾何概念的桌上遊戲,取名為「形狀花園」。形狀花園在設計上是以教學系統設計ADDIE的方式來進行開發,以建立一個完整的教學系統,同時參考瀑布模式將每一階段串接在一起並反覆修正。
形狀花園的設計目標不但是提供給幼童在探索物體的外形、辨識與命名物體的形狀等認知領域的學習,同時也能協助教學現場教師配合相關課程進行教學活動。研究對象以3位幼兒園合格專任教師,作為教師專家群,遊戲檢測對象為10位幼兒園大班幼兒,分成5組進行。專家群教師依現場經驗反覆檢視及修正後,於正式實驗過程中幼兒實際試玩之狀況與反應,研究結果顯示幼兒對幾何圖形的學習充滿樂趣,透過實際操作,明顯提供學習上的幫助。同時形狀花園的遊戲規則只需要短時間講解與反覆練習,符合教學現場教師應用於相關課程之需求。期望本研究在開發形狀花園桌上遊戲的設計流程與教學經驗可提供給未來有興趣的研究者當參考也可做為幼兒園老師的教學輔具。
This study is to design a board game, the Garden of Shapes, for preschoolers to develop basic geometric concepts. Based on van Hiele geometry thinking level theory, the teaching system of the board game by ADDIE method with the waterfall model was developed. This self-design game can be used as teaching materials for teachers to provide geometric learning of preschooler, such as identifying and naming shapes of objects.
Three preschool teachers were consulted as experts to revise. Ten senior-grade preschoolers were included to test the game. The process of teaching and playing game and children’s reaction were observed.
The results showed that children had an interested in playing the game and learning effect was improved through playing process. Furthermore, it takes little time to familiar due to the simple rules; hence, assisted teachers are able to apply the Garden of Shapes easily. It was suggested that the Garden of Shapes can be used as teaching material in the preschool curriculum, and the process of the game design could provide a model for other researchers as a reference.
目錄
摘要………………………………………………………………………………………i
Abstract…………………………………………………………………………………ii
目錄………………………………………………………………………………………iii
表目錄……………………………………………………………………………………v
圖目錄……………………………………………………………………………………vi
第一章 緒論………………………………………………………………………………1
第一節 研究背景與研究動機……………………………………………………………1
第二節 研究目的與待答問題……………………………………………………………3
第三節 名詞釋義…………………………………………………………………………4
第四節 研究範圍與限制…………………………………………………………………6
第二章 文獻探討…………………………………………………………………………7
第一節 幾何思考層次理論………………………………………………………………7
第二節 現行幼兒園課程模式……………………………………………………………22
第三節 桌上遊戲相關分析………………………………………………………………27
第四節 小結………………………………………………………………………………37
第三章 研究設計…………………………………………………………………………39
第一節 研究對象…………………………………………………………………………39
第二節 研究工具…………………………………………………………………………40
第三節 實驗設計與實施…………………………………………………………………41
第四節 發展教材雛形……………………………………………………………………43
第四章 桌上遊戲設計實作………………………………………………………………49
第一節 自製桌上遊戲測施與評估………………………………………………………49
第二節 課程規劃評估……………………………………………………………………52
第三節 預試及正式測試…………………………………………………………………54
第五章 研究結果…………………………………………………………………………59
第一節 桌上遊戲「形狀花園」…………………………………………………………59
第二節 課程規劃及設計…………………………………………………………………62
第三節 幼兒學習表現……………………………………………………………………63
第六章 結論與建議………………………………………………………………………65
第一節 結論………………………………………………………………………………65
第二節 未來建議…………………………………………………………………………68
參考文獻……………………………………………………………………………………69
附錄…………………………………………………………………………………………77
附錄一、遊戲設計修正建議表……………………………………………………………77
附錄二、家長同意書………………………………………………………………………78
附錄三、作息時間表………………………………………………………………………79
附錄四、自行研發桌遊:「形狀花園」…………………………………………………80
附錄五、正式實驗情形……………………………………………………………………82
附錄六、幼兒圖形蒐集卡…………………………………………………………………84

表目錄
表2- 1兒童各層次行為特徵………………………………………………………………11
表2- 2國內外相關兒童幾何形體概念之研究……………………………………………18
表2- 3六大領域能力………………………………………………………………………22
表2- 4認知能力的運用……………………………………………………………………23
表2- 5認知領域課程目標…………………………………………………………………24
表2- 6 Board Game Geek網站上 51種桌遊遊戲機制…………………………………27
表2- 7桌遊分類……………………………………………………………………………29
表2- 8臺灣近年來桌遊概況表……………………………………………………………32
表2- 9臺灣版大富翁遊戲說明……………………………………………………………33
表2- 10「uno」牌說明……………………………………………………………………34
表3- 1幼兒階段幾何圖形的思考層次對應關係…………………………………………43
表3- 2紙牌相關圖形樣式特徵說明………………………………………………………45
表3- 3「形狀花園」各回合間的關聯性:…………………………………………………48
表4- 1「形狀花園」幼兒行為能力及與van Hiele的幾何思考層次理論對應關係……56

圖目錄
圖2- 1幼兒幾何形體發展概念架構圖……………………………………………………15
圖2- 2遊戲課程架構圖……………………………………………………………………26
圖2- 3大富翁臺灣版(2010版本)…………………………………………………………33
圖2- 4 uno牌………………………………………………………………………………34
圖3-1設計桌上遊戲以ADDIE教學模式系統………………………………………………42
圖3- 2平面幾何圖形六種紙牌……………………………………………………………46
圖4- 1圖形蒐集卡塗色版…………………………………………………………………51
圖4- 2圖形蒐集卡虛線版…………………………………………………………………51
圖4- 3繪本「跟著線條走,一起去旅行」故事頁面……………………………………53


中文文獻
王文科(譯)(1992)。兒童的認知發展導論(原作者:卜拉絲姬)。臺北市:文景。
李文貞(2004)。幼兒幾何形體概念發展研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
呂季霏(2001)。花蓮縣國小低年級泰雅族學生平面幾何概念之詮釋性研究(未出版之碩士論文)。國立花蓮師範學院。花蓮縣。
沈珮芳(2002)。國小高年級學童平面幾何概念之探究(未出版之碩士論文)。國立台北師範學院,臺北市。
林美珍(1996)。兒童認知發展。臺北市:心理。
吳貞祥(1990)。幼兒的量與空間概念發展。國教月刊,37(1),1-10。
吳幸玲(2011)。兒童遊戲與發展。新北市:揚智。
吳德邦(1995)。范析理模式對我國師範學院學生在非歐幾何學的學習成就與幾何思考層次之研究。臺中師院學報,9,443-474。
吳德邦(2004)。Van Hiele的近況及其理論的簡介。國教輔導,44(1),21-25。
吳德邦、馬秀蘭、 陳姿良 、許天維(2010)臺灣中部地區國小高年級學生幾何推理層次的分布情形。測驗統計年刊,19,51。
周淑惠(1995)。幼兒數學新論-教材教法。臺北市:心理。
周淑惠(1996)。當前幼兒數學研究及其教育意涵。國民教育研究學報,2,255-284。
洪勁亭(2010)。七巧板遊戲─幼兒之形狀組合表現(未出版之碩士論文)。國立台南大學,臺南市。
洪蘭(譯)(1997)。心理學上/下(原作者:Henry Gl etiman)。臺北市:遠流。
范丙林(2011)。國立臺北教育大學發展學校重點特色計畫案成果報告書-桌上遊戲應用於環境教育之研究。國立台北教育大學,臺北市。
徐玉軒(2012)。探究低成就學童的數學加法遊戲之圖像式思考歷程(未出版之碩士論文)。國立新竹教育大學,新竹市。
郭靜晃(譯)(1992)兒童遊戲--遊戲發展的理論與實務(原作者:J.E.JOHNSON,T.D.YAWKEY)。臺北市:揚智。
郭春在,卓素慧(2008)。從認知發展觀點探討幼兒教具設計原則之研究。南華大學應用藝術與設計學報,3,27-36。
郭春在,鄭雅瀞(2009)。幾何圖形介面教學對於增進幼兒推理思考能力之研究。南華大學應用藝術與設計學報,4,73-83。
高耀琮(2002)。兒童平面幾何圖形概念之探討(未出版之碩士論文)。國立台北師範學院,臺北市。
馬筱鳳(譯)(2012)。跟著線條走,一起去旅行(原作者: Laura Ljungkvist)。臺北市:小典藏。
陳介宇(2010)。從現代桌上遊戲的特點探討其運用於兒童學習的可行性。國教新知,57(4),40-45。
陶英琪譯(2002)。小遊戲、大學問:教師在幼兒遊戲中的角色(原作者: E.Jones、G.Reynolds)。臺北市:心理。
教育部(2013)。幼兒園教保活動課程暫行大綱。臺北市:教育部。
張英傑(1993)。兒童幾何形體認知概念之發展【I】。行政院國家科學委員會研究計劃(WSC82-0111-S-152-003),未出版。
張英傑(2001)。兒童幾何形體認知概念之初步探究。 國立台北師範學院學報,14,492-528。
張世宗(1998):幼兒遊戲性數學概念學習教材之發展與研究-遊戲性數學學習教材的規劃與設計 (II)。行政院國家科學委員會研究計(NSC87-2511-S152-006),未出版。
張春興(2000)。現代心理學。臺北市:東華。
黃瑞琴(2001)。幼兒遊戲課程。臺北市:心理。
黃瑞琴(1994)當遊戲遇見幼兒課程。教育研究與發展期刊,5(2),17-2。
楊文貴(譯)(2003)。強化兒童的心智-以終生學習為導向的遊戲本位課程(原作者:Carol Dale Shiplay著)。臺北市,洪葉。
黑豬(2012)就是愛玩桌遊:精選全球最暢銷35種桌上遊戲規則‧贏家祕技‧必備知識。臺北市,高寶。
劉好(1995)。國小數學新課程「立體圖形」之教材教法設計理念。國教輔導,35(1),5-12。
蔡佳玲(2013)。應用van Hiele 幾何思考層次理論於國小平面幾何圖形概念桌上遊戲開發之研究(未出版之碩士論文)。國立台北教育大學,臺北市。
蔡其蓁(2003)。國家介入教育的合理基礎。南師學報,37(1),117-127。
賴蕙慈(2010)。應用Van Hiele 幾何思考層次理論於國小學童體積概念數位教材開發之研究(未出版之碩士論文)。國立台北教育大學,臺北市。
謝貞秀(2002)。國小中年級學童平面幾何概念之探究(未出版之碩士論文)。國立台北師範學院,臺北市。
薛建成(2003)。依據Van Hiele幾何思考理論─探究臺灣中部地區國小學童幾何概念發展之研究。臺中師範學院(未出版之論文),臺中市。
羅文興、張惠美(2003)。「紙牌遊戲」在低年級數學領域的應用。教學活水集,1,27-33。
蘇英奇(1972)。圖形概念的調查分析。台中師專學報,2,262-299。
蘇昱暘(2013)。設計桌上遊戲做為國小自然科教學輔助工具之研究—以「昆蟲的一生」單元為例(未出版之碩士論文)。國立台北教育大學,臺北市。

Alessi, S. M., & Trollip, S. R. (2001). Multimedia for Learning: Methods and
Development (3 ed.). Boston: Allyn and Bacon.
Adams, E. (2006). Fundamentals of Game Design (Game Design and Development
Series). Prentice Hall.
Board Game Mechanics(2013). Board Game Geek[Board Game Mechanics]. Retrieved from: http://boardgamegeek.com/browse/boardgamemechanic
Board_game (2013,December 4).WikiPedia[Board game]. Retrieved from http://en.wikipedia.org/wiki/Board_game
Berk, L. E. (1994). Child development (3 ed.). Needham Heights, MA: Allyn & Bacon.
Chang, K. E., Sung, Y. T., Clin, P. S. Y.(2007).Developing geometry thinking through multimedia learning activities.Computers in Human Behavior, 23, 2212-2229.
Crowley, M. L. (1987). The Van Hiele model of the development of geometric thought. In M. M. Lindqist (Eds.), Learning and teaching geometry K-12 (pp. 1-16). VA: National council of teacher of mathematics.
Clements, D. H. & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20, 450-467.
Clements, D. H. & Battista , M. T. (1990). The effects of Logo on children’s conceptualizations of angle and polygons . Journal for Research in Mathematics Education , 21, 356-371.
Clements, D. H., Swaminthan, S., Hannibal, M.A.Z.,& Sarama, J.(1999).Young children’s concepts of shape. Journal for Research in Mathematics Education, 20(2),192-212.
Dick, W., & Carey, L. (1996). The Systematic Design of Instruction, (4th Ed.). New York: Haper Collins College Publishers.

Elizabeth. W.(1995) Facility with Plane Shapes: A Multifaceted Skill.
Educational Studies in Mathematics, 28(4),3654 -383.
Flammer, A. (1995). Developmental analysis of control belief. In A. Bandura (ED.), Self-efficacy in changing society (pp. 69-113). New York: Cambridge University Press.
Fuys, D. (1985). Van Hiele levels of thinking in geometry. Education and Urban Society, 17(4), 447-462.
Fuys,D.,Geddes,D.,&Tischler,R.(1998).The van hiele model of thingking in geometry among adolescents.Reston,VA:The National Council of Teachers of Mathematics,Ine.
Fantz, R. L.(1963).Pattern vision in newborn infants Science , 140 ,296-297.
Fantz, R. L.(1964).Visual experience in infants:Decreased attention
to familiar patterns relative to novel ones. Science,146, 668-670.
Fantz, R. L.(1965).Visual perception from birth as shown by pattern selectivity. In H. E. Whipple (ED), New issues in infant development. Annals of the New York Academy of Science, 118,793-814.
Fantz, R. L., Fagen, J., & Miranda, S. B.(1975). Early visual selectivity. In L. Cohen & P. Salpatek(Eds), Infant perception:From sensation to cognition vol. I. Basic visual processes(pp.249-341).New York:Academic.
Fantz, R. L., & Nevis, S.(1967).Pattern preferences and perceptual-cognitive development in early infancy. Merrill-Palmer Quarterly, 13,77-108.
Fuson, K., & Murray, C. (1978). The haptic-visual perception construction and drawing of geometric shapes by children aged two five: A Piagetian extension. In Recent Research Conerning the Development of Spatial and Geometric concepts . ERIC, Ohio, USA.
Hanniba M.A.l(1999).Young Children’s developing understanding of Geometric Shapes Teaching Children Mathematics,5(6),353-357.
Hoffer, A. (1983). Van Hiele-based research. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp.205-227). New York: Academic Press.
Hanson, Jeff. (2011). THR GAME OF SENET. Senet - Voted Best New Game of 3,500 BC. Retrieved from: http://senetgame.com/
Lappan, G. (1999 December, 3). Geometry: The forgotten strand. NCTM News Bulletin
MatthewF. (2008). Board Game Designers Forum 〔Design Process〕. Retrieved from : http://www.bgdf.com/node/148
Mary A. H.,(1999). Young Children’s Developing Understanding of Geometric Shapes. Teaching Children Mathematics,5(6),353-357.
Piaget, J. (1962). Play, dreams and imitation in childhood. NY: W.W. Norton & Company.
Prensky, M. (2001). Digital Game-Based Learning. New York: McGraw-Hill.
Rogers, C. R., & Freiberg, H. J. (1994). Freedom to learn (3nd ed.). Columbus, OH: Charles E. Merrill.
Senk, S. L. (1989). van Hiele levels and Achievement in writinggeometry proofs. Journal for Research in Mathematics Education,20,(3), 309-321.
Silvern, S. B, & Williamson, P. A.(1987). The effects of video game play on young children's aggression, fantasy, and prosocial behavior. Journal of Applied Developmental Psychology, 8, 453-462.
Thatcher, C.D.(1990).Promoting learning through games and simulations.Simulations & Gaming, 24, 262-273.
Trawick-Smith, J. (2001). The play frame and the “Fictional Dream:” The bi-directional relationship between metaplay and story writing. Advances in Early Education and Day Care, 11, 337-353.
Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry (Final Report of the Cognitive Development and Achievement in Secondary School Geometry Project). Chicago, IL: University of Chicago, Department of Education (ERIC Document Reproduction Service No. ED220288).
van Hiele, M.P.(1986). Structure and insight: A theory of mathematics education. Orlando, FL: Academic Press.
van Hiele, P. M.(1984). A child's thought and geometry. In Fuys, D., Geddes, D. & Tischler, R. (Eds. & Trans.), English translations of selected writings of Dina van Hiele Geldorf and Pierre M. van Hiele (pp. 243 252). Columbus, OH: ERIC Information Analysis Center for Science, Mathematics, and Environmental Education.(ERIC Document Reproduction Service No. ED 287 697)
van Hiele, P. M. (1999). Developing geometric thinking through activities that begin with play. Teaching Children Mathematics, 5 (6), 310-316.
van Hiele-Geldof, D., 1957, De didaktick van de Meetkunde in deerste klass van het V. H. M. O.Summary of unpublished doctoral dissertation with English summary, University of Utrecht, Netherlands.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳貞祥(1990)。幼兒的量與空間概念發展。國教月刊,37(1),1-10。
2. 吳貞祥(1990)。幼兒的量與空間概念發展。國教月刊,37(1),1-10。
3. 吳德邦(2004)。Van Hiele的近況及其理論的簡介。國教輔導,44(1),21-25。
4. 吳德邦(2004)。Van Hiele的近況及其理論的簡介。國教輔導,44(1),21-25。
5. 周淑惠(1996)。當前幼兒數學研究及其教育意涵。國民教育研究學報,2,255-284。
6. 周淑惠(1996)。當前幼兒數學研究及其教育意涵。國民教育研究學報,2,255-284。
7. 郭春在,卓素慧(2008)。從認知發展觀點探討幼兒教具設計原則之研究。南華大學應用藝術與設計學報,3,27-36。
8. 郭春在,卓素慧(2008)。從認知發展觀點探討幼兒教具設計原則之研究。南華大學應用藝術與設計學報,3,27-36。
9. 郭春在,鄭雅瀞(2009)。幾何圖形介面教學對於增進幼兒推理思考能力之研究。南華大學應用藝術與設計學報,4,73-83。
10. 郭春在,鄭雅瀞(2009)。幾何圖形介面教學對於增進幼兒推理思考能力之研究。南華大學應用藝術與設計學報,4,73-83。
11. 陳介宇(2010)。從現代桌上遊戲的特點探討其運用於兒童學習的可行性。國教新知,57(4),40-45。
12. 陳介宇(2010)。從現代桌上遊戲的特點探討其運用於兒童學習的可行性。國教新知,57(4),40-45。
13. 黃瑞琴(1994)當遊戲遇見幼兒課程。教育研究與發展期刊,5(2),17-2。
14. 黃瑞琴(1994)當遊戲遇見幼兒課程。教育研究與發展期刊,5(2),17-2。
15. 劉好(1995)。國小數學新課程「立體圖形」之教材教法設計理念。國教輔導,35(1),5-12。
 
系統版面圖檔 系統版面圖檔