(3.238.174.50) 您好!臺灣時間:2021/04/16 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖芳妤
研究生(外文):Liao, Fang-Yu
論文名稱:一個具雙重連結於雲端無線接取網路中之改良式頻寬適應機制
論文名稱(外文):An Improved Bandwidth Adaptation Mechanism for Cloud Radio Access Networks with Dual Connectivity
指導教授:陳裕賢陳裕賢引用關係
指導教授(外文):Chen, Yuh-Shyan
口試委員:張志勇莊東穎陳宗禧許智舜陳裕賢
口試委員(外文):Chang, Chih-YungChuang, Tung-YinChen, Tzung-ShiHsu, Chih-ShunChen, Yuh-Shyan
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:雲端無線接取網路雙重連結頻寬適應機制呼叫允諾控制換手
外文關鍵詞:C-RANdual connectivitybandwidth adaptationcall admission controlhandoff
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著雲端無線接取網路(C-RAN)的問世,基帶處理單元(BBU)能夠提供動態的頻寬分配功能,也可以集中管理遠端無線接頭(RRH)傳輸的承載,使得在C-RAN上能夠取得更多資源以建立新的承載,或在壅塞時維持換手承載的所需資源,因此頻寬調變機制(Bandwidth Adaptation)浮上檯面,成為在C-RAN上最被看好解決壅塞情況資源管理之最佳方案。以往關於應用BA管理擁塞的探討都只侷限於LTE系統,並未有適用C-RAN的研究。為了達成此目標,本論文利用雙重連結的優勢達成承載分裂功能,再由正在服務的RRHs合作提供所需資源,並同時增加移動強健性和產量表現。本篇的主要貢獻是應用雙重連結和集中式的概念,提出一種適用於C-RAN的改良版BA機制。更精確地來說,本篇設計的「降級指數」額外引進了兩個集中式的參數:RRH的通道品質以及BBU的週期受歡迎程度,來決定被挑選的承載構的群組中,每個承載應貢獻的資源比例。因此,在該群組中每個使用中的承載都只需要根據降級指數提供部份資源,總合之後即可達成所需要資源數量。最後,模擬的結果顯示,本論文所提出的方法在C-RAN中結合雙重連結有效減少換手乘載之丟棄率,也減少了新的乘載之阻斷率。
With the advent of Cloud Radio Access Networks (C-RAN) where base band units(BBU) have the ability to dynamically support the bandwidth allocation and centrally manage the bearers transmitted from the remote radio heads (RRH), bandwidth adaptation (BA) mechanism emerges as a promising solution to provide the required resources for C-RAN to establish a new bearer or maintain the rate of a handoff bearer during congestion. Existing studies use BA mechanism on congestion management only for LTE system but rarely for C-RAN. To achieve this goal, this thesis takes the advantage of dual connectivity with the ability of bearer split to cooperatively provide resources by the serving RRHs, at the same time the mobility robustness and the throughput performance can be improved. The main contribution of this work is to propose an improved BA mechanism for C-RAN with dual connectivity in a centralized concept. More specifically, this work designs a "downgrading index" includes two additional centralized contribution attributes, i.e., RRH channel quality and BBU period popularity, to decide the proportional resource contribution of the bearers which are transmitted by the chosen RRHs and are grouped to assist the serving RRHs. Therefore, each active bearer from the group only need to contribute partially resources according to the designed downgrading index to cooperatively provide the requested resources. Finally, simulation results illustrate the proposed BA mechanism for C-RAN with dual connectivity significantly reduces the probabilities of the handoff bearer dropping and the bearer blocking.

1 Introduction 1
2 Related Works 6
2.1 Related works 6
2.2 Motivation 9
3 Preliminaries 10
3.1 System architecture 10
3.2 Problem formulation 17
3.3 Basic idea 18
4 An Improved Bandwidth Adaptation Mechanism for Cloud Radio Access
Networks with Dual Connectivity 19
4.1 Group discovery phase 20
4.2 Centralized CAC phase 23
4.3 Centralized BA phase 27
5 Performance Analysis 33
6 Simulation Results 42
6.1 Probability of bearer request blocking (PBRB) 44
6.2 Probability of handoff bearer dropping (PHBD) 45
6.3 Total bandwidth resource utilization (TBRU) 47
6.4 Total response time (TRT) 49
7 Conclusions 51
8 Acknowledgments 52
[1] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, 5G on the Horizon: Key Challenges for the Radio-Access Network," IEEE Vehicular Technology Magazineg, vol. 8, no. 3, pp. 47-53, Sept. 2013.
[2] 3GPP TR 32.835 V1.0.0, Technical Speci cation Group Services and System Aspects;Telecommunication management; Study of Heterogeneous Networks Management (Release 12)," 3rd Generation Partnership Project (3GPP), Spet. 2013.
[3] White Paper Version 2.5, C-RAN The Road Towards Green RAN," China Mobile Research Institute, Jun. 2014.
[4] The METIS 2020 Project-Laying the foundation of 5G , https://www.metis2020.com/.
[5] M. Hadzialic, B. Dosenovic, M. Dzaferagic, and J. Musovic, Cloud-RAN: Innovative Radio Access Network Architecture," in Proceedings of International Symposium ELMAR(ELMARI 2013), pp. 115-120, Zadar, Croatia, Sept. 2013.
[6] S. Sesia, I. Tou k, and M. Baker, LTE the Umts Long Term Evolution from Theory to Practice (Second Edition)," Wiley, USA, Aug. 2011.
[7] 3GPP TS 23.203 V8.9.0, Technical Speci cation Group Services and System Aspects; Policy and Charging Control Architecture (Release 8)," 3rd Generation Partnership Project (3GPP), Mar. 2010.
[8] 3GPP TR 36.842 V1.0.0, Evolved Universal Terrestrial Radio Access (E-UTRA); Study on Small Cell Enhancements for E-UTRA and E-UTRAN Higher Layer Aspects (Release 12)," 3rd Generation Partnership Project (3GPP), Nov. 2013.
[9] A. Zakrzewska, S. Ruepp, and M. S. Berger, Towards Converged 5G Mobile Networks Challenges and Current Trends," in Proceedings of ITU Kaleidoscope Academic Conference : Living in a Converged World Impossible Without Standards? (ITU 2014), pp. 39-45, St. Petersburg, USA, Jun. 2014.
[10] 3GPP R2-131056, Mobility Statistics for Macro and Small Cell Dual-Connectivity Cases," 3rd Generation Partnership Project (3GPP), Apr. 2013.
[11] 3GPP R2-130124, User Data Rate Enhancements with Inter-Site CA," 3rd Generation Partnership Project (3GPP), Feb. 2013.
[12] D. Zhu and M. Lei, Trac and Interference-Aware Dynamic BBU-RRU Mapping in C-RAN TDD with Cross-Subframe Coordinated Scheduling/Beamforming," in Proceedings of IEEE International Conference on Communications Workshops (ICC 2013), pp. 884-889, Budapest, Hungary, Jun. 2013.
[13] J. Cao, D. Zhu, and M. Lei, Uplink-Downlink Interference Alignment in TDD-Based Cellular Networks," in Proceedings of Personal Indoor and Mobile Radio Communications(PIMRC 2013), pp. 353-357, London, United Kingdom, Sept. 2013.
[14] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G. K. Chang, The Case for Re-Con gurable Backhaul in Cloud-RAN Based Small Cell Networks," in Proceedings of IEEE International Conference on Computer Communications (INFOCOM 2013), pp. 1124-1132, Turin, Italy, Apr. 2013.
[15] Z. Ghebretensae, K. Laraqui, S. Dahlfort, J. Chen, Y. Li, J. Hansryd, F. Ponzini, L. Giorgi, S. Stracca, and A. R. Pratt, Transmission Solutions and Architectures for Heterogeneous Networks Built as C-RANs," in Proceedings of International ICST Conference on Communications and Networking in China (CHINACOM 2012), pp. 748-752, Kunming, China, Aug. 2012.
[16] N. Lu, J. Bigham, and N. Nasser, An Intra-Class and Inter-Class Utility-Fair Bandwidth Adaptation Algorithm for Multi-Class Trac in Wireless Networks," in Proceedings of Asia-Paci c Conference on Communications (APCC 2006), pp. 1-5, Busan ,Korea, Aug. 2006.
[17] T. Guo and K. Moessner, Optimal Strategy for QoS Provision under Spectrum Mobility in Cognitive Radio Networks," in Proceedings of IEEE Vehicular Technology Conference (VTC Fall 2012), pp. 1-5, Quebec, Canada, Sept. 2012.
[18] O. E. Falowo, Selective Call-Dropping and Bandwidth Adaptation for Reducing Multiple-Call Handoff Dropping," in Proceedings of IEEE Globecom Workshops (GC Wkshps 2013), pp. 958-962, Atlanta, USA, Dec. 2013.
[19] A. M. Rashwan, A. E. M. Taha, and H. S. Hassanein, Considerations for Bandwidth Adaptation Mechanisms in Wireless Networks," in Proceedings of Biennial Symposium on Communication (QBSC 2008), pp. 43-47, Kingston, USA, Jun. 2008.
[20] A. Klein, C. Lottermann, C. Mannweiler, J. Schneider, P. Mudalige, and H. Schotten, A Novel Approach for Combined Joint Call Admission Control and Dynamic Bandwidth Adaptation in Heterogeneous Wireless Networks," in Proceedings of EURO-NGI Conference on Next Generation Internet (NGI 2011), pp. 1-8, Kaiserslautern, Germany, Jun. 2011.
[21] M. Khabazian, O. Kubbar, and H. Hassanein, A Fairness-Based Preemption Algorithm for LTE-Advanced," in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM 2012), pp. 5320-5325, Anaheim, America, Dec. 2012.
[22] M. Khabazian, O. Kubbar, and H. Hassanein, An Advanced Bandwidth Adaptation Mechanism for LTE Systems," in Proceedings of IEEE International Conference on Communications (ICC 2013), pp. 6189-6193, Budapest, Hungary, Jun. 2013.
[23] H. Ishii, Y. Kishiyama, and H. Takahashi, A Novel Architecture for LTE-B : C-plane/U-plane Split and Phantom Cell Concept," in Proceedings of IEEE Globecom Workshops (GC Wkshps 2012), pp. 624-630, Anaheim, California, Dec. 2012.
[24] 3GPP TS-36.211 v12.1.0, Technical Speci cation Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation," 3rd Generation Partnership Project (3GPP), Mar. 2014.
[25] D. Bertsekas and R. Gallagar, Data Networks," rentice Hall, 1992.
[26] Y. Yang, P. Li, X. Chen, and W. Wang, A High-Efcient Algorithm of Mobile Load Balancing in LTE System," in Proceedings of IEEE Vehicular Technology Conference (VTC Fall 2012), pp. 1-5, Quebec, Canada, Sept. 2012.
[27] R. B. Nielsen, M. B. G. M., and K. Hjgaard-Hansen, Physical Layer Measurements in 3GPP LTE," Aaloborg University, Feb. 2012.
[28] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband: LTE/LTE-Advanced for Mobile Broadband," Busrlington, USA, Mar. 2011.
[29] R. B. Cooper, Introduction to Queueing Theory (2nd edition)," North Holland, 1981.
[30] The Network Simulator NS-2 , http://www.isi.edu/nsnam/ns/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔