跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程弘錡
研究生(外文):Hung-Chi Cheng,
論文名稱:基於高階模糊派翠網路之國語卡拉OK歌詞自動校準系統
論文名稱(外文):An Automatic Calibration System for Chinese Karaoke Lyrics Based on a High-Level Fuzzy Petri Net
指導教授:沈榮麟沈榮麟引用關係
指導教授(外文):Victor R. L. Shen
口試委員:陳澤雄賴飛羆楊政穎鐘玉芳沈榮麟
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:90
中文關鍵詞:卡拉OK音樂系統家庭娛樂高階模糊派翠網路
外文關鍵詞:KaraokeMusicHome entertainmentHigh-level fuzzy Petri net
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
  在數位家庭娛樂中,卡拉OK是一個能夠讓大人、小孩、不分任何年齡同樂的休閒活動之一,只需跟著歌詞就可以唱出一首歌曲,這簡單且有趣的優點讓卡拉OK逐漸盛行,但在傳統的卡拉OK系統中,還是利用最原始的方式來製作卡拉OK歌曲,這需要花費大量人力來一句句的同步化音樂與歌詞,相當沒有效率,讓卡拉OK歌曲的製作成本居高不下,也讓家庭式歌唱機器的價格難以被一般家庭所接受。近年來資訊科技日新月異不斷地進步,在數位音樂研究盛行的同時,我們為促使這整個過程更有效率,利用C#程式語言來做自動化程式的編寫,其中使用音樂分割技術中最知名的調性音樂生成理論(A Generative Theory of Tonal Music)來對國語流行音樂作分析,讓音樂自動分割成一句句的音樂樂句,再利用模糊技術的高階模糊派翠網路 (High-Level Fuzzy Petri Net)來判斷,對國語流行音樂以及歌詞分析,並完成音樂切割及卡拉OK歌詞校準,最後我們利用50首國語流行音樂實驗可以證明,此系統可以提供一個良好的精準度,藉此以自動化歌詞校正系統來提升卡拉OK製作,更能幫助使用者簡單的自製卡拉OK音樂,也可以讓家庭式卡拉OK更為方便、更加普及;本研究的結果可以使用在家庭娛樂或其他相關領域之中。
  In the home entertainment system, a very important leisure facility in the modern life is karaoke, which is a popular activity, enjoyed by the elderly and the young people. With karaoke systems and microphones, users can sing along with lyrics based on recordings of pop songs that have the singer’s voice removed. While a lot of karaoke software or apparatuses display lyrics automatically, they traditionally require the lyrics to be input manually, and need to be synchronized step-by-step with the tonal music, which requires a significant amount of time.
  With advances in computer technology, music albums have gradually been replaced by digital music purchased on-line. Nowadays digital music researches suggest that automatically calibrating karaoke lyrics may be possible. First, musical phrase segmentation is required. One of the most famous musical phrase segmentation theories is a generative theory of tonal music, and we use C# programming language to implement and design the karaoke system. The system can automatically segment music phrases and according to a high-level fuzzy Petri net to analyze and calibrate pop songs with lyrics, and then an automatic calibration system for Chinese karaoke lyrics is complete. Finally, 50 Chinese pop songs are used to test, and the experimental results show that the final precision is better. As a result, we propose a practical system to enhance the convenience of karaoke, and the result of this study may be used in the fields of home entertainment or other relevant systems.

Acknowledgements I
Abstract (Chinese) II
Abstract (English) III
Table of Contents V
List of Figures VIII
List of Tables X

Chapter 1 Introduction 1
1-1 Motivation and Purposes 1
1-2 Thesis Organization 3

Chapter 2 Literature Review 4
2-1 Generative Theory of Tonal Music (GTTM) 4
2-2 An MP3 Phrase Detection System 9
2-3 Onset Detection 10
2-4 High-Level Fuzzy Petri Net (HLFPN) 12
2-4-1 Definitions 12
2-4-2 Fuzzy Reasoning 15
2-4-3 Fuzzy Reasoning Algorithm 18
2-5 IEEE1599 21
2-6 Related Work 24


Chapter 3 System Architecture 26
3-1 Data Preprocess System 27
3-1-1 Loading System 29
3-1-2 Grouping Preference Rule of GTTM 30
3-1-3 MusicXML 31
3-2 HLFPN Based on GTTM 33
3-2-1 Definition of Membership Degrees 34
3-2-2 Fuzzy Reasoning and Building HLFPN 37
3-3 Final Results 41
3-3-1 Implementation of IEEE 1599 42
3-4 Implementation 47

Chapter 4 Experimental Results 51
4-1 Example of HLFPN in Fuzzy Reasoning 51
4-2 Main Results 55

Chapter 5 Conclusion and Future Work 60

References 62

Appendix – A 66
Publication 66

Appendix – B 67
Database of Chinese Pop Songs 67

Appendix - C 70
Sub-Program Code for IEEE1599 70
Sub-Program Code for Music Segmentations Decision (Steps of HLFPN) 76
Sub-Program Code for Showing Results (Showing Score) 88

[1]A. Klapuri, “Sound onset detection by applying psychoacoustic knowledge,” Processing of IEEE International Conference on Acoustics, Speech and Signal, Phoenix, pp. 115-118, 1999.
[2]A. Klapuri, A.J. Eronen, and J.T. Astola, “Analysis of the meter of acoustic musical signals,” IEEE Transaction on Audio, Speech, and Language Processing, vol.14, no.1, pp.342-355, 2006.
[3]B.W. Frankland and A.J. Cohen, “Parsing of melody: quantification and testing of the local grouping rules of Lerdahl and Jackendoff’s a generative theory of tonal music,” Music Perception, vol. 21, no. 4, pp. 499-543, 2004.
[4]C.-C. Liu, “Automatic phrase segmentation of MP3 songs based on the technique of breath sound detection,” Processing of IEEE 7th International Conference on Information Technology and Applications, pp. 285-290, 2011.
[5]D. L. Baggi, “An IEEE standard for symbolic music,” IEEE Computer, pp.100-102, 2005.
[6]D. L. Baggi and G. M. Haus, “The new standard IEEE 1599, introduction and examples,” Journal of Multimedia, vol. 4, no. 1, pp. 3-8, 2009.
[7]D. Temperley, The cognition of basic musical structures, MIT Press, Cambridge, MA, 2001.
[8]E. Cheng and E. Chew, “A local maximum phrase detection method for analysis phrasing strategies in expressive performances,” Proceedings of the First International Conference of the Society of Mathematics and Computation in Music, 2007.
[9]E. Cheng and E. Chew, “Quantitative analysis of phrasing strategies in expressive performance: computational methods and analysis of performances of unaccompanied Bach for solo violin,” Journal of New Music Research, vol.37, no.4, pp.325-338, 2008.
[10]E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic synthesis," IEEE Transactions on Computers, vol. 26, no. 12, pp. 1182-1191, 1977.
[11]F. Lerdahl and R. Jackendoff, A generative theory of tonal music, MIT Press, MA, 1983.
[12]G. Haus and L.A. Ludovico, Music segmentation: an XML-oriented approach, Lecture Note in Computer Science, vol. 3310, pp. 330-346, 2005.
[13]G. Haus and M. Longari,“Time-based music description approach based on XML,” Computer Music Journal, vol. 29, no. 1, pp. 70-85, 2005.
[14]L. A. Zedeh, "Knowledge representation in fuzzy logic," IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 1, pp. 89-100, 1989.
[15]M. A. Casey, R. Veltkamp, M. Goto, M. Leman and more authors “Content-based music information retrieval: current directions and future challenges,” Proceedings of the IEEE, vol. 96, no. 4, pp. 668-696, 2008.
[16]M. Doumpos, C. Zopounidis and V. Golfinopoulou, "Additive support vector machines for pattern classification," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 3, pp. 540-550, 2007.
[17]M. Goto, “A chorus-section detecting method for musical audio signal and its application to a music listening station,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 5, pp. 1783-1794, 2006.
[18]R. Robidoux, H. P. Xu, L. D. Xing and M. C. Zhou, "Automated modeling of dynamic reliability block diagrams using colored Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 2, pp. 337-351, 2010.
[19]S. M. Chen, "Weighted fuzzy reasoning using weighted fuzzy Petri nets," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 2, pp. 386-397, 2002.
[20]T. Murata, "Petri nets: properties, analysis and applications," Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.
[21]V. R. L. Shen, "Knowledge representation using high-level fuzzy Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 36, no. 6, pp. 1220-1227, 2006.
[22]V. R. L. Shen, "Reinforcement learning for high-level fuzzy Petri nets," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33, no. 2, pp. 351-362, 2003.
[23]V. R. L. Shen, W. C. Li and J. T. Jeng, "Application of support vector regression and fuzzy theory to exchange rate from new Taiwan dollars to U.S. dollars," IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 3, pp. 327-331, 2011.
[24]V. R. L. Shen, "Correctness in hierarchical knowledge-based requirements," IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, vol. 30, no. 4, pp. 625-631, 2000.
[25]V. R. L. Shen, Y. S. Chang and T. T. Y. Juang, "Supervised and unsupervised learning by using Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 2, pp. 363-375, 2010.
[26]W. H. Tsai and H. -C. Lee, “Automatic evaluation of karaoke singing based on pitch, volume, and rhythm features,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 4, pp. 1233-1243, 2012.
[27]W. Meier, eXist: An open source native XML database, Lecture Notes in Computer Science, vol. 2593, pp 169-183, 2003.
[28]Y. Y. Du, C. J. Jiang and M. C. Zhou, "A Petri-net-based correctness analysis of internet stock trading systems," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 1, pp. 93-99, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top