|
[1] V. N. Vapnik, in: The nature of statistical learning theory. springer- verlag, New York, 1995. [2] C. Corts, V. N. Vapnik, Support vecter networks, Machine Learning, Vol.20, PP.273-297(1995). [3] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, 2(2):121–167, 1998. [4] Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998). [5] Fan, Rong-En, Pai-Hsuen Chen, and Chih-Jen Lin. "Working set selection using second order information for training support vector machines." The Journal of Machine Learning Research 6 (2005): 1889-1918. [6] Bottou, Léon, and Chih-Jen Lin. "Support vector machine solvers." Large scale kernel machines (2007): 301-320. [7] B. Schölkopf, A. J. Smola, Learning with kernels, MIT press Cambridge, MA, 2002. [8] Smola, Alex J., and Bernhard Schölkopf. "A tutorial on support vector regression." Statistics and computing 14.3 (2004): 199-222. [9] Shevade, Shirish Krishnaj, et al. "Improvements to the SMO algorithm for SVM regression." Neural Networks, IEEE Transactions on 11.5 (2000): 1188-1193. [10] Barbero, Álvaro, and José R. Dorronsoro. "A simple maximum gain algorithm for support vector regression." Bio-Inspired Systems: Computational and Ambient Intelligence. Springer Berlin Heidelberg, 2009. 73-80.
|