(3.238.235.155) 您好!臺灣時間:2021/05/11 02:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳奕維
研究生(外文):Yi-Wei Chen
論文名稱:由河川陡峭度指標探討台灣中央山脈東翼之構造活動特性
論文名稱(外文):Tectonic activities along the eastern &;#64258;ank of the Central Range in the active Taiwan orogen inferred from river steepness index
指導教授:徐澔德徐澔德引用關係
口試委員:張中白胡植慶顏君毅賴光胤
口試日期:2013-12-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:144
中文關鍵詞:河川陡峭度指標遷急點中央山脈東翼河川下蝕抬升速率
外文關鍵詞:river steepness indexknick pointeastern Central Rangefluvial incisionuplift
相關次數:
  • 被引用被引用:4
  • 點閱點閱:639
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
台灣造山帶的構造活動性研究,在短時間尺度(年至數十年)以及長時間尺度(百萬年)均有豐碩的成果,但在中時間尺度(千年至萬年)的資料控制則相對較少,尤其是在造山帶核心的山區。近來的研究指出,河流系統可以有效且快速的反應造山帶的構造活動,而河川陡峭度指標(River Steepness Index, ksn)更可以指示抬升速率的相對關係。因此本研究嘗試以河川陡峭度指標,以及河流遷急點(knick point)的分布作為工具,探討台灣造山帶核心構造活動的特性。
本文分析中央山脈東翼的20個水系。每一個水系選取一條垂直主要岩層與構造走向,且發源於中央山脈主稜的河流作為主流,並進行河川陡峭度指標分析。根據遷急點分布以及河川陡峭度指標的特性,本研究將20條主流分為六組。第一組與第六組位於本研究區域之南北兩端,其陡峭度指標是各組中最低的,且大多數河流已達均夷,部分具有遷急點的河流,其遷急點也多受控於岩性。陡峭度指標隨著往造山帶中部靠近而增加。第三組與第五組分別位在造山帶的中部兩側,其陡峭度指標比起其他四組高,然而控制兩者之抬升機制可能並不相同。在南邊的第三組具有較多的遷急點,由於其分布與中央山脈斷層的斷層跡相當一致,因此本文推測該組應受到中央山脈斷層活動的直接影響。而在北邊的第五組由於遷急點少,陡峭度指標相近,因此推測應受到一穩定抬升的作用影響,但確切的機制則尚不明瞭。值得注意的是,位在本研究區域中段的第四組河流,具有特殊的&;#65378;遷緩點&;#65379;,本研究認為這是構造抬升速率減慢的結果。
河川陡峭度指標的分佈與台灣造山帶的大地架構相當吻合,因此本研究相信中央山脈東翼構造活動的差異,才是影響河川陡峭度指標的主因。本研究的成果,不僅有助於更精確的區分出台灣造山帶核心山區碰撞領域的邊界,透過與三角測量資料的對比,本研究還可定量獲得千萬年尺度下,中央山脈東翼抬升的可能速率。


The tectonic activity of the Taiwan orogenic belt has been well studied by different methods in various time scales, such as long-term (> 1 Ma) thermochronologic data and short-term (yearly to decadal) geodetic analysis. However, constrains on millennial-scale tectonic characteristics is limited, especially in the mountainous core of the island. Recent studies show the channel networks in active orogens re&;#64258;ect the pace at which landscapes respond to tectonic processes and provide a record of relative changes in rock uplift. Therefore, the purpose of this study is to figure out the millennial-scale tectonic characteristics in the mountainous core of Taiwan by using river steepness index (ksn), combining with knick point distributions.
This study analyzed 20 rivers along the eastern flank of the Central Range (ECR), and all of the rivers are the main trunk of each river system, defined as the major branch originated at the ridgeline of the Central Range and flowing perpendicular to the main structures and the strata. On the basis of the characteristics of knick point distributions and ksn, this study devides the rivers into 6 distinctive groups. At the northern and southern ends of ECR, group 1 and group 6 show graded river profiles with low ksn, and the ksn increases gradually toward the center of the orogen. Two groups with high ksn, i.e., high uplift rate, but with different uplift mechanisms are recognized: group 3 is influenced by the Central Range fault, the only major active fault in ECR, and group 5 is dominated by a steady uplifting process. It is noteworthy that the rivers of group 4 show ‘anti-knick points’, which are believed to be the results of the lowering of uplift rates.
The results show that the patterns of ksn are quite consistent with the patterns of tectonic evolution in Taiwan, where in the southern part the orogen is growing, but in the northern part the active collision and mountain-building have waned and the orogen is collapsing. Furthermore, the results not only enabled us to better identify the transition area between each collisional domain in the mountainous area of Taiwan, but also provide information to quantify relative rock uplift rates in the millennial time scale in the mountainous core of the island after calibrating with the results of triangulation measurements.


口試委員會審定書 II
誌謝 III
中文摘要 V
英文摘要 VI
一、前言 1
1.1 研究動機與目的 1
1.2 研究區域 4
1.3 區域地質概況 9
1.3.1 台灣的大地構造 9
1.3.2 中央山脈東翼的地層架構 10
1.3.3 中央山脈東翼的構造 11
二、造山帶的活動性研究 14
2.1造山帶之抬升與侵蝕速率 14
2.1.1 不同時間尺度下的抬升與侵蝕速率 14
2.1.2 侵蝕地形指標 18
2.2 河川水力下切模型 20
2.2.1 河川水力下切模型公式推導過程 20
2.2.2 河川彎曲度指標的驗證 22
2.2.3 河川陡峭度指標的驗證 25
2.2.4 均夷剖面與暫時性剖面 26
2.2.5 遷急點的種類與特性 27
三、研究方法 31
3.1數值地形高程模型 31
3.1.1四十米數值地形高程模型 32
3.1.2 五米數值地形高程模型 32
3.2 河川水系之建立 36
3.2.1 河流水系的產生原理 36
3.2.2 不同方法產生之水系差異 37
3.3.主流河段之選取 40
3.3.1 主流與支流選取 40
3.3.2 分析河段選取 40
3.4 Stream Profiler 45
3.4.1 河川剖面平滑化處理 45
3.4.2 重新取樣與坡度計算 49
3.4.3 回歸SA圖 51
四、研究結果 52
4.1中央山脈東翼之河川遷急點特性 52
4.2中央山脈東翼之河川彎曲度指標 56
4.3中央山脈東翼之河川陡峭度指標 58
五、討論 64
5.1 河川水力下切模型於中央山脈東翼河流分析之適用性 64
5.1.1 河流底荷(bedload)侵蝕對中央山脈東翼河川之影響 64
5.1.2 側蝕對中央山脈東翼河川之影響 65
5.1.3 流量與河寬之經驗公式於中央山脈東翼之適用性 68
5.1.4 侵蝕抬升達平衡的假設於中央山脈東翼之適用性 71
5.2 遷急點產生的機制與影響陡峭度指標的因子 72
5.2.1 岩性差異的影響 72
5.2.2 氣候變化的影響 78
5.2.3 侵蝕基準面變化的影響 79
5.2.4 構造活動的影響 81
5.3陡峭度指標與中央山脈東翼不同時間尺度下的抬升比較 93
5.3.1 百萬年尺度的抬升速率 93
5.3.2 千至萬年尺度的抬升速率 96
5.3.3 年尺度的抬升速率 101
六、結論 107
參考文獻 109
附錄 各條河川詳細資料 117


Ahnert, F. (1970), Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins, American Journal of Science, 268, 243-263.
Baldwin, J. A., K. X. Whipple, and G. E. Tucker (2003), Implications of the shear stress river incision model for the timescale of postorogenic decay of topography, Journal of Geophysical Research: Solid Earth, 108, 2158, doi: 10.1029/2001jb000550.
Berlin, M. M., and R. S. Anderson (2007), Modeling of knickpoint retreat on the Roan Plateau, western Colorado, Journal of Geophysical Research: Earth Surface, 112, F03S06, doi: 10.1029/2006jf000553.
Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y.-G., Chan, Y.-C., and Goff&;#233;, B. (2007), Late Cenozoic metamorphic evolution and exhumation of Taiwan, Tectonics, 26, TC6001, doi: 10.1029/2006tc002064.
Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K.-H. Chen, R.-J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, Journal Geophysical Research, 116, B08406, doi: 10.1029/2011jb008242.
Crespi, J. M., Y.-C. Chan, and M. S. Swaim (1996), Synorogenic extension and exhumation of the Taiwan hinterland, Geology, 24, 247-250.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D. and Lin, J.-C. (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648-651.
Dunne, T., and L. B. Leopold (1978), Water in Environmental Planning, W. H. Freeman, 818 pp..
Duvall, A., E. Kirby, and D. Burbank (2004), Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California, Journal Geophys. Research, 109, F03002, doi: 10.1029/2003jf000086.
Fuller, C. W., S. D. Willett, D. Fisher, and C. Y. Lu (2006), A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry, Tectonophysics, 425, 1-24, doi: 10.1016/j.tecto.2006.05.018.
Hack, J. T. (1973), Stream-profile analysis and stream-gradient index, U.S. Geological Survey Journal Research, 1, 421-429.
Harkins, N., E. Kirby, A. Heimsath, R. Robinson, and U. Reiser (2007), Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China, Journal Geophysical Research, 112, F03S04, doi: 10.1029/2006jf000570.
Hartshorn, K., N. Hovius, W. B. Dade, and R. L. Slingerland (2002), Climate-Driven Bedrock Incision in an Active Mountain Belt, Science, 297, 2036-2038.
Ho, C. S. (1988), An introduction to the geology of Taiwan: explanatory text of the geological map of Taiwan, Geological Survey and Ministry of Economic Affairs, 192 pp..
Howard, A. D., and G. Kerby (1983), Channel changes in badlands, Geological Society of America Bulletin, 94, 739-752.
Hsieh, M.-L., P.-M. Liew, and M.-Y. Hsu (2004), Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Quaternary International, 115–116, 47-70.
Hsu, Y.-C., and C.-P. Chang (2012), Relationship between the landslide distribution and the drainage basin morphology: Case from Typhoon Morakot, Western Pacific Earth Sciences, 12, 39-66.
Hsu, Y.-J., S.-B. Yu, M. Simons, L.-C. Kuo, and H.-Y. Chen (2009), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.
Hu, J.-C., et al. (2007), Coseismic deformation revealed by inversion of strong motion and GPS data: The 2003 Chengkung earthquake in eastern Taiwan, Geophysical Journal International, 169, 667-674.
Huang, C.-Y., P. B. Yuan, and S.-J. Tsao (2006), Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis, Geological Society of America Bulletin, 118, 274-288.
Kirby, E., and K. Whipple (2001), Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29, 415-418.
Kirby, E., and K. X. Whipple (2012), Expression of active tectonics in erosional landscapes, Journal of Structural Geology, 44, 54-75.
Kirby, E., K. X. Whipple, W. Tang, and Z. Chen (2003), Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, Journal of Geophysical Research, 108, 2217, doi: 10.1029/2001JB000861.
Kirchner, J. W., R. C. Finkel, C. S. Riebe, D. E. Granger, J. L. Clayton, J. G. King, and W. F. Megahan (2001), Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29, 591-594.
Kondolf, G. M. (1997), Profile: hungry water: effects of dams and gravel mining on river channels, Environmental management, 21, 533-551.
Kuo-Chen, H., Y.-M. Wu, Y.-G. Chen, and R.-Y. Chen (2007), 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures, Journal of Asian Earth Sciences, 31, 332-339.
Kuo&;#8208;Chen, H., F. T. Wu, and S. W. Roecker (2012), Three&;#8208;dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets, Journal of Geophysical Research: Solid Earth (1978–2012), 117, doi: 10.1029/2011JB009108.
Lin, C.-H. (2000), Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189-201.
Liu, T.-K. (1982), Tectonic Implication Of Fission Track Ages From The Central Range, Taiwan, Proceedings of the Geological Society of China, 25, 22-37.
Mu, C.-H., J. Angelier, J.-C. Lee, H.-T. Chu, and J.-J. Dong (2011), Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan), Journal of Structural Geology, 33, 743-755.
Niemann, J. D., N. M. Gasparini, G. E. Tucker, and R. L. Bras (2001), A quantitative evaluation of Playfair''s law and its use in testing long-term stream erosion models, Earth Surface Processes and Landforms, 26, 1317-1332.
Ouimet, W. B., K. X. Whipple, and D. E. Granger (2009), Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges, Geology, 37, 579-582.
Pritchard, D., G. G. Roberts, N. J. White, and C. N. Richardson (2009), Uplift histories from river profiles, Geophysical Research Letters, 36, L24301, doi: 10.1029/2009gl040928.
Ramsey, L. A., R. T. Walker, and J. Jackson (2007), Geomorphic constraints on the active tectonics of southern Taiwan, Geophysical Journal International, 170, 1357-1372.
Royden, L., and T. J. Perron (2013), Solutions of the stream power equation and application to the evolution of river longitudinal profiles, Journal of Geophysical Research: Earth Surface, 118, 497-518.
Schaller, M., N. Hovius, S. D. Willett, S. Ivy-Ochs, H. A. Synal, and M. C. Chen (2005), Fluvial bedrock incision in the active mountain belt of Taiwan from in situ-produced cosmogenic nuclides, Earth Surface Processes and Landforms, 30, 955-971.
Schoenbohm, L. M., K. X. Whipple, B. C. Burchfiel, and L. Chen (2004), Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China, Geological Society of America Bulletin, 116, 895-909.
Shyu, J. B. H., K. Sieh, and Y.-G. Chen (2005a), Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements, Earth and Planetary Science Letters, 233, 167-177.
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005b), Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research: Solid Earth, 110, B08402, doi: 10.1029/2004jb003251.
Shyu, J. B. H., K. Sieh, J.-P. Avouac, W.-S. Chen, and Y.-G. Chen (2006a), Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan, Journal Geophysical Research, 111, B08403, doi: 10.1029/2005jb003971.
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and L.-H. Chung (2006b), Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, Geological Society of America Bulletin, 118, 1447-1462.
Shyu, J. B. H., Y.-M. Wu, C.-H. Chang, and H.-H. Huang (2011), Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan, Journal of Asian Earth Sciences, 42, 415-422.
Sieh, K., D. H. Natawidjaja, A. J. Meltzner, C.-C. Shen, H. Cheng, K.-S. Li, B. W. Suwargadi, J. Galetzka, B. Philibosian, and R. L. Edwards (2008), Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra, Science, 322, 1674-1678.
Sklar, L. S., and W. E. Dietrich (2001), Sediment and rock strength controls on river incision into bedrock, Geology, 29, 1087-1090.
Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts (2000), Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California, Geological Society of America Bulletin, 112, 1250-1263.
Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts (2003), Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem, Journal Geophysical Research, 108, 2117, doi: 10.1029/2001JB001655.
Stark, C. P., J. R. Barbour, Y. S. Hayakawa, T. Hattanji, N. Hovius, H. Chen, C.-W. Lin, M.-J. Horng, K.-Q. Xu, and Y. Fukahata (2010), The Climatic Signature of Incised River Meanders, Science, 327, 1497-1501.
Stock, J., and W. E. Dietrich (2003), Valley incision by debris flows: Evidence of a topographic signature, Water Resources Research, 39, 1089, doi: 10.1029/2001wr001057.
Stolar, D. B., S. D. Willett, and D. R. Montgomery (2007), Characterization of topographic steady state in Taiwan, Earth and Planetary Science Letters, 261, 421-431.
Suppe, J. (1981), Mechanics of mountain building and metamorphism in Taiwan, Memoir of the Geological Society of China, 4, 67-89.
Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76.
Teng, L. S. (1996), Extensional collapse of the northern Taiwan mountain belt, Geology, 24, 949-952.
Teng, L. S., C. T. Lee, Y. B. Tsai, and L.-Y. Hsiao (2000), Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 28, 155-158.
Ustaszewski, K., Y.-M. Wu, J. Suppe, H.-H. Huang, C.-H. Chang, and S. Carena (2012), Crust–mantle boundaries in the Taiwan–Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal, Tectonophysics, 578, 31-49.
Wang, K.-L., S.-L. Chung, C.-H. Chen, R. Shinjo, T. F. Yang, and C.-H. Chen (1999), Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough, Tectonophysics, 308, 363-376.
Wang, K.-L., S.-L. Chung, S. Y. O''REILLY, S.-S. Sun, R. Shinjo, and C.-H. Chen (2004), Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region, Journal of Petrology, 45, 975-1011.
Whipple, K. X. (2004), Bedrock rivers and the geomorphology of active orogens, Annual Review of Earth and Planetary Sciences, 32, 151-185.
Whipple, K. X., and G. E. Tucker (1999), Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research: Solid Earth, 104, 17661-17674.
Whipple, K. X., E. Kirby, and S. H. Brocklehurst (1999), Geomorphic limits to climate-induced increases in topographic relief, Nature, 401, 39-43.
Whipple, K. X., G. S. Hancock, and R. S. Anderson (2000), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112, 490-503.
Whipple, K., C. Wobus, B. Crosby, E. Kirby, and D. Sheehan (2007), New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream Profiles from Digital Topographic Data GSA Annual Meeting.
Wobus, C., K. X. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. Crosby, and D. Sheehan (2006a), Tectonics from topography: Procedures, promise, and pitfalls, Geological Society of America Special Papers, 398, 55-74.
Wobus, C. W., B. T. Crosby, and K. X. Whipple (2006b), Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution, Journal of Geophysical Research: Earth Surface, 111, F02017, doi: 10.1029/2005jf000406.
Wu, Y.-M., Y.-G. Chen, C.-H. Chang, L.-H. Chung, T.-L. Teng, F. T. Wu, and C.-F. Wu (2006), Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake, Geophysical Research Letters, 33, 1-5.
Wu, Y.-M., C.-H. Chang, L. Zhao, T.-L. Teng, and M. Nakamura (2008), A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bulletin of the Seismological Society of America, 98, 1471-1481.
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Yui, T.-F., and H.-T. Chu (2000), ‘Overturned’marble layers: evidence for upward extrusion of the Backbone Range of Taiwan, Earth and Planetary Science Letters, 179, 351-361.
內政部國土測繪中心 (1994) 臺灣地區二萬五千分之一經建版地形圖(第二版)。臺北市中正區: 內政部地政司。
王源、楊昭男與陳文山 (1992) 臺灣地質圖幅說明書,第四十八號玉里地質圖幅。新北市:經濟部中央地質調查所出版。
何恭睿 (2008) 中央山脈萬榮地區地質構造研究。成功大學地球科學系碩士論文。共121頁。
林啟文、林偉雄與高銘健 (1993) 臺灣地質圖幅說明書,第二十二號南澳地質圖幅。新北市:經濟部中央地質調查所出版。
林啟文與高銘健 (2009) 臺灣地質圖幅說明書,第十六號蘇澳地質圖幅。新北市:經濟部中央地質調查所出版。
林偉雄、林啟文與高銘健 (1993) 臺灣地質圖幅說明書,第六十八號大武地質圖幅。新北市:經濟部中央地質調查所出版。
林偉雄、林啟文、劉彥求與陳柏村 (2008) 臺灣地質圖幅說明書,第五十八號、六十四號台東、知本地質圖幅。新北市:經濟部中央地質調查所出版。
吳承穎 (2009) 台灣大濁水片麻岩磷灰石核飛跡年代與其地質意義。臺灣大學地質科學研究所碩士論文,共70頁。
李準勝 (2009) 中台灣造山運動帶河流縱剖面構造地形指標之量化分析。國立中央大學地球物理研究所碩士論文,共120頁。
高嘉鈴 (2010) 應用河流縱剖面分析研究台灣中央山脈東翼構造活動。國立東華大學地球科學研究所碩士論文,共133頁。
崔之久、楊健夫、劉耕年、宋國城與王鑫 (2000) 季風發展與冰川的消失—從臺灣高山末次冰期冰川發育特徵說起。冰川凍土,第22期,第 7-14頁。
陳于高 (1993) 晚更新世以來南台灣地區海水面變化與新構造運動研究。國立台灣大學地質研究所博士論文,共158頁。
陳彥傑 (2004) 台灣山脈的構造地形指標特性--以面積高度積分、地形碎形參數與 河流坡降指標為依據。成功大學地球科學系博士論文,共129頁。
陳惠芬 (1984) 從三角點檢測成果見到的臺灣的地盤升降。經濟部中央地質調查所特刊,第3號,第127-140頁。
陳文山、王源、楊昭男與楊志成 (2010) 臺灣地質圖幅說明書,第三十五號花蓮地質圖幅。新北市:經濟部中央地質調查所出版。
黃信樺 (2007) 台灣東北地區的地震構造:由碰撞末期轉變為隱沒拉張之構造特性。國立臺灣大學地質科學研究所,共110頁。
楊萬慧 (2007) 應用地形分析方法研究台灣中央山脈東翼地表抬升。國立中央大學地球物理研究所碩士論文,共106頁。
劉志學 (1989) 立霧溪河階之沈積學&;#30799;究與對比。國立台灣大學地質科學系碩士論文,共212頁。
鄧屬予 (2002) 台灣新生代大地構造。台灣大地構造 (黃奇瑜主編),第49-93頁。
謝孟龍 (2005) 台灣山區五條河流現今岩盤下切速率的監測。行政院國家科學委員會專題研究計畫 (編號:NSC93-2116-M-002-007: 45)。
羅偉 (1993) 臺灣地質圖幅說明書,第二十七號大禹嶺地質圖幅。新北市:經濟部中央地質調查所出版。
羅偉 (2008) 臺灣地質圖幅說明書,第二十八號新城地質圖幅。新北市:經濟部中央地質調查所出版。
經濟部中央地質調查所 (2000) 臺灣地質圖 (1:500,000)。新北市:經濟部中央地質調查所出版。

&;#8195;


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔