1. 交通部運輸研究所(2010),99-TDB001 車路整合系統發展趨勢與ITS 節能減碳關聯之研究。
2. 何旺宗(2010),「資料融合技術結合類神經網路對高速公路事件延遲時間預測
之研究」,國立成功大學交通管理科學系碩士論文。
3. 吳欣潔(2004),「熵應用於交通資料融合之研究」,國立交通大學運輸科技與管理學系碩士論文。4. 吳金杰(2005),「融合偵測器與探測車資料預測高速公路旅時時間之研究」,國立中央大學碩士論文。5. 吳瑞豐(2006),「最佳權重法應用於交通資料融合」,國立交通大學運輸科技與管理學系碩士論文。6. 李穎(2002),「類神經網路運用於國道客運班車旅行時間預測模式之研究」,國立成功大學交通管理科學系碩士論文。7. 林士傑(2001),「高速公路旅行時間預測模式之研究-類神經網路之應用」,國立成功大學碩士論文。8. 邱孟佑(2010),「以車流狀態為基礎之高速公路旅行時間預測模式」,國立交通大學交通運輸研究所博士論文。9. 洪偉勛(2013),「高速公路旅行時間推估模式之開發與應用-以國道五號為
例」,國立成功大學交通管理科學系碩士論文。
10. 張佳雯(2007),「資料融合於異質性資料推估路段行駛速率之研究」,國立台灣土木工程學系碩士論文。11. 許政憲(2006),「資料融合技術應用於事故影響下高速公路旅行時間預測之研究」,國立成功大學交通管理科學系碩士論文。
12. 郭中天(2002),「公車到站時間暨複合路線旅行時間預估模式之研究」,國立台灣土木工程學系碩士論文。13. 陳寶如(2006),「市區路段動態旅行時間預測之研究」,國立台灣土木工程學系碩士論文。14. 曾志維(2004),「Dempster-Shafer 理論於交通資料整合之應用」,國立交通大學運輸科技與管理學系碩士論文。
15. 蔡繼光(2009),「高速公路旅行時間預測-以k-NN 法及分群方法探討」,國立交通大學運輸科技與管理學系碩士論文。16. 魏健宏、陳奕志(2001),「類神經網路模式在國內交通運輸研究之成果分析」,運輸計畫季刊第30 卷第2 期,pp.323-348。
17. 羅至浩(2008),「以加入準確度之團隊共識法進行交通資料融合」,國立交通大學運輸科技與管理學系碩士論文。18. Bachmann, C., Abdulhai, B., Roorda, M. J., &; Moshiri, B. (2013), "A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling", Transportation Research Part C,
Vol.26, pp.33-48.
19. Billings, D., &; Yang, J. S. (2006), "Application of the ARIMA models to urban roadway travel time prediction-a case study". IEEE International Conference on Systems, Man and Cybernetics, Vol. 3, pp.2529-2534.
20. Chen, M., &; Chien, S. I. J. (2001), "Dynamic Freeway Travel Time Prediction Using Probe Vehicle Data: Link-based vs. Path-based", Transportation Research Record: Journal of the Transportation Research Board, Vol.1768, pp.157-161.
21. Cheu, R. L., Lee, D. H., &; Xie, C. (2001), "An Arterial Speed Estimation Model Fusing Data from Stationary and Mobile Sensors", IEEE Intelligent Transportation
Systems Conference, pp.573-578.
22. Chien, S. I., Liu, X., &; Ozbay, K. (2003), "Predicting Travel Times for the South Jersey Real-Time Motorist Information System", Transportation Research Record:
Journal of the Transportation Research Board, Vo1.1855, pp.32-40.
23. Dailey, D. J., Harn, P., &; Lin, P. J. (1996), "ITS Data Fusion", No. WA-RD 410.1, Washington State Department of Transportation.
24. Dia, H. (2001), "An object-oriented neural network approach to short-term traffic forecasting" , European Jurnal of Operation Research, Vol.131, pp.253-261.
25. Hall, D. L., &; McMullen, S. A. (2004), "Mathematical Techniques in Multisensor Data Fusion", Artech House, Inc. Norwood, MA.
26. Klein, L. A. (2001), "Sensor Technologies and Data Requirements for ITS", Artech House.
27. Kuchipudi, C. M., &; Chien, S. I. (2003), "Development of a Hybrid Model for Dynamic Travel Time Prediction", Transportation Research Record: Journal of the Transportation Research Board, Vo1.1855, pp.22-31.
28. Linn, R. J., Hall, D. L., &; Llinas, J. (1991), "Survey of Multisensor Data Fusion Systems", Proceedings of the SPIE-The International Society for Optical Engineering, Vol. 1470, pp.13-29.
29. Liu, X., Chien, S. I., &; Chen, M. (2012), "An adaptive model for highway travel time prediction", Journal of Advanced Transportation.
30. Makridakis, S., Hibon, M., &; Moser, C. (1979), "Accuracy of forecasting: An empirical investigation", Journal of the Royal Statistical Society. Series A (General), pp.97-145.
31. Makridakis, Spyros, et al., (1982), "The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting Competition", Journal of Forecasting, Vol.1,
pp.111-153.
32. Makridakis, Spyros, et al., (1993), "The M2-Competition: A real-time judgmentally based forecasting study", International Journal of Forecasting, Vol.9, No.4, pp.5-22.
33. Makridakis, S., &; Hibon, M. (2000), "The M3-Competition: results, conclusions and implications", International Journal of Forecasting, Vol.16, No.4, pp.451-476.
34. Rice, J., &; Van Zwet, E. (2004), "A Simple and Effective Method for Predicting Travel Times on Freeways", IEEE Transactions on Intelligent Transportation Systems, Vol.5, No.3, pp.200-207.
35. Robinson, S., &; Polak, J. W. (2005), "Modeling Urban Link Travel Time with Inductive Loop Detector Data by Using the k-NN Method", Transportation Research Record: Journal of the Transportation Research Board, Vol.1935, pp.47-56.
36. Sarma, V. V. S., &; Raju, S. (1991), "Multisensor Data Fusion and Decision Support for Airborne Target Identification", IEEE Transactions on Systems, Man and
Cybernetics, Sept.-Oct.
37. Smith, B. L., &; Demetsky, M. J. (1997), "Traffic Flow Forecasting: Comparison of Modeling Approaches", Journal of Transportation Engineering, Vol.123, No.4, pp.261-266.
38. van Lint, J. W. C., Hoogendoorn, S. P., &; van Zuylen, H. J. (2005), "Accurate freeway travel time prediction with state-space neural networks under missing data",
Transportation Research Part C, Vol.13, pp.347-369.
39. van Lint, J. W. C., Hoogendoorn, S. P., &; van Zuylen, H. J. (2002), "Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks", Transportation Research Record: Journal of the Transportation Research Board, Vol.1811, pp.30-39.
40. Wu, C. H., Ho, J. M., &; Lee, D. T. (2004), "Travel time prediction with support vector regression", IEEE Transactions on Intelligent Transportation Systems, Vol.5,
No.4, pp.276-281.
41. Wu, H., Siegel, M., &; Ablay, S. (2003), "Sensor Fusion Using Dempster-Shafer Theory II: Static Weighting and Kalman Filter-like Dynamic Weighting", IEEE Instrumentation and Measurement Technology Conference.
42. Wu, H., Siegel, M., Stiefelhagen, R., &; Yang, J. (2002), "Sensor Fusion Using Dempster-Shafer Theory", IEEE Instrumentation and Measurement Technology Conference.