(3.232.129.123) 您好!臺灣時間:2021/03/06 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林珮涓
研究生(外文):Pei-Chuan Lin
論文名稱:應用子空間識別法於長期結構物之地震反應解析
論文名稱(外文):Application of Subspace Identification Technique to Long Term Seismic Response Monitoring of Structures
指導教授:羅俊雄羅俊雄引用關係
指導教授(外文):Chin-Hsiung Loh
口試委員:張國鎮林其璋
口試委員(外文):Kuo-Chun Chang
口試日期:2014-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:117
中文關鍵詞:隨機子空間識別子空間識別系統識別中央氣象局結構物強震監測網中間層隔震系統
外文關鍵詞:Stochastic Subspace IdentificationSubspace IdentificationSystem IdentificationCentral Weather Bureau Structure Strong Earthquake Monitoring SystemMid-isolation system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:474
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於探討子空間識別法(Subspace Identification)於結構物之系統識別,配合中央氣象局對結構物地震反應所進行之強地動觀測計畫,選擇七棟建築物及一座核電廠圍阻體縮尺模型,針對所收集到之地震反應進行分析,探討及比較不同地震反應下該結構物動態特性之差異,並根據實際的分析結果來發展適合用於國內之耐震設計規範。首先,根據使用資料的類型將子空間識別法分為兩種並介紹各自的理論推導:(1)單獨以輸出資料為基礎進行系統識別的隨機子空間識別法(Stochastic Subspace Identification, SSI),其分析時所使用的資料為微震資料;(2)以輸入及輸出資料為基礎的子空間識別法(Subspace Identification, SI),其使用資料為地震時所記錄到的地表加速度歷時與結構反應。本文依據不同樓層高度及結構特性,選擇六棟已安裝強震儀之一般建築物、一棟含中間層隔震系統的特殊建築及一座核電廠圍主體縮尺模型,利用子空間識別法分析地震記錄,探討子空間識別法參數的設定及探討結構物在地震作用下的動態特性。並於最後將分析結果的第一個自然震動頻率與國內耐震規範中所建議的經驗公式相比,期望提供一條更接近真實結構物的建議公式。另外,對於含中間層隔震系統的特殊建築,將探討隔震層在地震下對結構的影響及其作用行為。

This study applies the subspace identification to system identification. Base on the Central Weather Bureau Taiwan Strong Motion Instrumentation Program (TSMIP) seven instrumented buildings and one 1/4 scale-down nuclear plant containment structure as the target structures for the analysis. Based on the collected seismic response data during the past, each event data will be analyzed to identify the dynamic characteristics of the structure during earthquake excitation. The result of analyses are in order to develop the proper earthquake-proof design norms for architectural structures in Taiwan. First, according to the use of the collection data two theoretical derivations are introduced:(1)the stochastic subspace identification(SSI) using output-only data, or the ambient vibration data for continuous monitoring;and (2)the subspace identification (SI) using input/output data, or the seismic responses. In this study, there are six normal steel or reinforced concrete buildings with different height, one mid-story isolation building, and a 1/4 scale-down nuclear plant containment structure are analyzed by using Subspace Identification. In order to study the parameters used in the analyses and discuss the change of structural properties during earthquake excitation. In the end, comparing the first natural frequencies from the system identification with the values which are suggested in internal earthquake-proof design norms. Hope to propose a new regression line that can have the best estimation between the height and the first natural frequencies. Furthermore, the effect of the isolation system and the dynamic characteristics will also be discussed in this study.

口試委員審定書
誌謝 I
摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 X
第一章 導論 1
1.1 研究動機與目的 1
1.2 理論發展 2
1.3 研究架構與內容 3
第二章 子空間識別法理論 5
2.1 隨機子空間識別法 5
2.1.1 狀態空間模型 5
2.1.2 訊號重組 7
2.1.3 協方差型隨機子空間識別法 (SSI-COV) 9
2.2 子空間識別法 12
2.2.1 狀態空間模型 12
2.2.2 訊號重組 13
2.2.3 資料型子空間識別法 (SI-DATA) 15
2.3 系統特性之萃取 17
2.4 SSI-COV及SI-DATA方法重要參數討論 19
第三章 應用子空間識別法於結構物之識別 21
3.1 中央氣象局強地動觀測計畫 21
3.2 應用子空間識別法於結構物之識別分析與討論 22
3.2.1 台灣大學新生大樓 23
3.2.2 中興大學土木環工大樓 24
3.2.3 台科大營建系館 26
3.2.4 交通大學公教宿舍 27
3.2.5 桃園縣市政中心 29
3.2.6 台電大樓 30
3.3 識別結果整理 32
第四章 結構含中間層隔震系統之識別 35
4.1 台灣大學土木新建研究大樓簡述及強震儀配置 35
4.2 應用子空間識別法於結構物之識別分析與討論 36
4.2.1 應用隨機子空間識別法(SSI-COV)識別系統參數 37
4.2.2 應用子空間識別法(SI-DATA)識別系統參數 38
4.2.3 系統識別考慮土壤-結構互制效應 41
4.2.4 隔震層之行為探討 42
第五章 核電廠圍阻體縮尺模型之系統識別 45
5.1 簡述三維強震儀陣列(LSST陣列) 45
5.2 應用子空間識別法於圍阻體之識別分析與討論 45
第六章 結論與未來展望 49
6.1 結論 49
6.2 未來展望 51
參考文獻 53


[1] Beltrami, E. (1873). Sulle Funzioni Bilineari, Giornale di Mathematiche, Battagline, G. and Fergola, E. (editors), 11, 98-106
[2] Gram, J. P. (1883). Uber die Entwickelung reeler Functionen in Reihen mittelst der Methode der kleinsten Quadrate, Journal fur die reine und angewandte Mathematik, 94, 41-73.
[3] Schmidt, E. (1907). Zur Theorie der linearen und nichtlinearen Integralgleich-ungen. I Tiel. Entqicklung willkurlichen Funktionen nach System vorgeschriebener, Mathematische Annalen, 63, 433-476.
[4] Dickinson, B., Kailagth, T. and Morf, M. (1974). Canonical Matrix fraction and state space descriptions for deterministic and stochastic linear systems, IEEE Transactions on Automatic Control, AC-19 656-667.
[5] Kung, S. Y. (1978). A new identification method and model reduction algorithm via singular value decomposition, 12th Asilomar Conf. on Circuits, System and Comp, Asilomar, CA, 705-714.
[6] Moore, B.C. (1981). Principal component analysis in linear systems: Controllability, Observability and Model Reduction, IEEE Transaction on Automatic Control, AC-26(1), 17-32.
[7] Budin, M. (1971). Minimal realization of discrete linear systems from input-output observations, IEEE Transaction on Automatic Control, AC-16(5), 395-401.
[8] Willems, J. (1987). From time series to linear systems, Automatica, Part I: 22(5), 561-580, 1986; Part Ⅱ: 22(6), 675-694, 1986; Part Ⅲ: 23(1), 87-115, 1987.
[9] Akaike, H. (1975). Markovian representation of stochastic processes by canonical variables, Siam J. Control, 13(1) 162-173.
[10] Larimore, W. E. (1990). Canonical variate analysis in identification, filtering and adaptive control, Proc. Of 29th Conference on Decision and Control, Hawaii, USA, 596-604.
[11] Verhaegen, M. &; Deqilde, P. (1992). Subspace model identification, Part Ⅰ: The output-error state space model identification class of algorithms, International J. of Control, 56, 1187-1210.
[12] Rao, B., Arun, K. S. (1992). Model Based Progressing of Signals: A State Space Approach, Proc. of the IEEE, 80(2), 283-309.
[13] Van Der Veen, A., Deprettere, E. F., Swindlehurst, A. L. (1993). Subspace-Based Signal Analysis Using Singular Value Decomposition, Proc. of the IEEE, 81(9), 1277-1308.
[14] Viberg, M. (1994). Subspace Methods in System Identification, Proc. of SYSID’94, 4-6 July, Copenhagen, Denmark, 1, 1-12.
[15] Van Overschee, P., De Moor B. (1991). Subspace Algorithm for the Stochastic Identification Problem. In Proceedings of the 30th IEEE Conference on Decision and Control, 1321-1326.
[16] Liu, Y.C. (2011). Application of Covariance Driven Stochastic Subspace Identification Method. Master Thesis, National Taiwan University, Taiwan.
[17] Chen, M. C. (2012). Application of Stochastic Subspace Identification in Bridge Structural Health Monitoring. Master Thesis, National Taiwan University, Taiwan.
[18] Van Overschee, P., De Moor B. (1996). Subspace Identification for Linear Systems: Theory-Implementation-Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.
[19] Weng, J. H. (2010). Application of Subspace Identification in System Identification and Structural Damage Detection. Ph. D. Dissertation, National Taiwan University, Taiwan.
[20] Goethals, I; Mevel, L.; Benvensite, A.; and De Moor, B. (2004). Recursive output only subspace identification for in-flight flutter monitoring. Proc. of the 22nd International Modal Analysis Conference, Dearborn, Michigan.
[21] Loh, C. H., Chao, S. H., Weng, J. H. (2014). Application of Subspace Identification Technique to Long-Term Seismic Response Monitoring of Structures. (Submitted to EESD,2014)
[22] Loh, C. H., Chao, S. H., Weng, J. H., Lu, K. C. (2013). System identification of mid-story isolation building using both ambient and earthquake response data. Structural Control and Health Monitoring, 20(2), 139-155.
[23] 中央氣象局地球物理資料管理系統
[24] 中華民國建築物耐震設計規範及解說



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔