|
[1] Beltrami, E. (1873). Sulle Funzioni Bilineari, Giornale di Mathematiche, Battagline, G. and Fergola, E. (editors), 11, 98-106 [2] Gram, J. P. (1883). Uber die Entwickelung reeler Functionen in Reihen mittelst der Methode der kleinsten Quadrate, Journal fur die reine und angewandte Mathematik, 94, 41-73. [3] Schmidt, E. (1907). Zur Theorie der linearen und nichtlinearen Integralgleich-ungen. I Tiel. Entqicklung willkurlichen Funktionen nach System vorgeschriebener, Mathematische Annalen, 63, 433-476. [4] Dickinson, B., Kailagth, T. and Morf, M. (1974). Canonical Matrix fraction and state space descriptions for deterministic and stochastic linear systems, IEEE Transactions on Automatic Control, AC-19 656-667. [5] Kung, S. Y. (1978). A new identification method and model reduction algorithm via singular value decomposition, 12th Asilomar Conf. on Circuits, System and Comp, Asilomar, CA, 705-714. [6] Moore, B.C. (1981). Principal component analysis in linear systems: Controllability, Observability and Model Reduction, IEEE Transaction on Automatic Control, AC-26(1), 17-32. [7] Budin, M. (1971). Minimal realization of discrete linear systems from input-output observations, IEEE Transaction on Automatic Control, AC-16(5), 395-401. [8] Willems, J. (1987). From time series to linear systems, Automatica, Part I: 22(5), 561-580, 1986; Part Ⅱ: 22(6), 675-694, 1986; Part Ⅲ: 23(1), 87-115, 1987. [9] Akaike, H. (1975). Markovian representation of stochastic processes by canonical variables, Siam J. Control, 13(1) 162-173. [10] Larimore, W. E. (1990). Canonical variate analysis in identification, filtering and adaptive control, Proc. Of 29th Conference on Decision and Control, Hawaii, USA, 596-604. [11] Verhaegen, M. &; Deqilde, P. (1992). Subspace model identification, Part Ⅰ: The output-error state space model identification class of algorithms, International J. of Control, 56, 1187-1210. [12] Rao, B., Arun, K. S. (1992). Model Based Progressing of Signals: A State Space Approach, Proc. of the IEEE, 80(2), 283-309. [13] Van Der Veen, A., Deprettere, E. F., Swindlehurst, A. L. (1993). Subspace-Based Signal Analysis Using Singular Value Decomposition, Proc. of the IEEE, 81(9), 1277-1308. [14] Viberg, M. (1994). Subspace Methods in System Identification, Proc. of SYSID’94, 4-6 July, Copenhagen, Denmark, 1, 1-12. [15] Van Overschee, P., De Moor B. (1991). Subspace Algorithm for the Stochastic Identification Problem. In Proceedings of the 30th IEEE Conference on Decision and Control, 1321-1326. [16] Liu, Y.C. (2011). Application of Covariance Driven Stochastic Subspace Identification Method. Master Thesis, National Taiwan University, Taiwan. [17] Chen, M. C. (2012). Application of Stochastic Subspace Identification in Bridge Structural Health Monitoring. Master Thesis, National Taiwan University, Taiwan. [18] Van Overschee, P., De Moor B. (1996). Subspace Identification for Linear Systems: Theory-Implementation-Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands. [19] Weng, J. H. (2010). Application of Subspace Identification in System Identification and Structural Damage Detection. Ph. D. Dissertation, National Taiwan University, Taiwan. [20] Goethals, I; Mevel, L.; Benvensite, A.; and De Moor, B. (2004). Recursive output only subspace identification for in-flight flutter monitoring. Proc. of the 22nd International Modal Analysis Conference, Dearborn, Michigan. [21] Loh, C. H., Chao, S. H., Weng, J. H. (2014). Application of Subspace Identification Technique to Long-Term Seismic Response Monitoring of Structures. (Submitted to EESD,2014) [22] Loh, C. H., Chao, S. H., Weng, J. H., Lu, K. C. (2013). System identification of mid-story isolation building using both ambient and earthquake response data. Structural Control and Health Monitoring, 20(2), 139-155. [23] 中央氣象局地球物理資料管理系統 [24] 中華民國建築物耐震設計規範及解說
|