(3.237.97.64) 您好!臺灣時間:2021/03/04 11:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林冠宇
研究生(外文):Kuan-Yu Lin
論文名稱:軟化桁架結構組成律、崩塌面與安全載重空間之探討
論文名稱(外文):Study of Constitutive Law, Collapse Surfaces and Safe Load Domain for Trusses with Softening
指導教授:洪宏基洪宏基引用關係
指導教授(外文):Hong-Ki Hong
口試委員:張國鎮呂學育江達雲
口試委員(外文):Guo-Jen JangShiue-Yu LiuDa-Ren Jiang
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:極限分析組成律熱力學定律軟化崩塌載重安全載重空間
外文關鍵詞:limit analysisconstiturive lawlaws of thermodynamicssofteningcollapse loadsafe load domain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在塑性力學的領域中,極限分析是一個很重要的主題。塑性反應是路徑相關的,但極限分析的最大好處是,對於塑性結構可以在不給定路徑的情況下,直接快速地求得崩塌載重。在過去,最常見的作法即是結合數學規劃法,列出最佳化問題來求解彈塑性結構的崩塌載重。

而最近,有人透過片段線性多降伏面模型描述彈塑性材料的組成律,並且透過降伏式與崩塌平衡機構的關係,發展了一套方法去求解結構物的崩塌面,並且建立出其在外力空間的安全載重區域。但是對於軟化材料,如何正確地去描述組成律,還有軟化結構物的安全載重空間分析,有過於保守的問題需要改進和研究。

在本文裡面,我們使用元件的並聯描述軟化桿件的組成律,並且使其中一個並聯元件具有耗散非正的特性。然後我們將軟化桿件視為一個封閉系統仍然會遵守熱力學定律。透過這樣的觀念,我們可以透過不同的機械模型像是雙線性模型或是完全彈塑性模型來描述軟化桿件的組成律。

對於軟化結構物的安全載重空間分析,我們認為使用軟化桿件的殘餘應力強度去計算崩塌面是過於保守的,而且透過結構設計,整體結構物會發生互制的行為。基於上面兩點的考量,本文加入了相對應的位移空間,當無限制變形(塑流平台)發生,對應到的即是載重空間的崩塌面去重新定義軟化結構物的崩塌載重。最後去找到正確的崩塌機構並且擴大了軟化結構物可使用的安全載重空間。



In the eld of theory of plasticity, limit analysis is an important topic. Plastic responses
are known to be path-dependent. The greatest advantage of limit analysis is that we can obtain plastic collapse loads directly without prescribing loading paths. In the past, the most common approach is applying mathematical programming to calculating the collapse loads of elastoplastic structures.
Recently, some people use the piecewise linear model to describe the constitutive law of elastoplastic materials, and develop a method via the relationship of evolving yielding surface and collapse mechanism in equilibrium to calculate the collapse surfaces of structures and
to construct the safe domain in load space. But for softening materials, the di cuties of how to describe the constitutive law correctly and the analysis of safe load domain being too conservative are two major problems which need to be improved and studied.
In this thesis, we use a parallel connection of components to describe the constitutive law of a softening member of truss. We make one of the components with the characterisation of negative dissipation, and regard the softening member as a closed system, which still follows the
laws of thermodynamics. With this concept, we can formulate the constitutive law with various mechanical models such as bilinear model of ealstoplasticity or model of perfect elastoplasticity.
For the analysis of safe load domain for a softening structure, we deem using the residual strengthes of softening members to calculate the collapse surface to be too conservative, and there will exist structural interactions between structural members in states of stresses higher than residual strengthes. With these two viewpoints, we use the corresponding displacement space to rede ne the collapse load of a softening structure when unrestricted deformation (plastic ow plateau) takes place, and we nd correct collapse modes and thus expand the safe load domain for softening structures.

口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
Chapter 1 導論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究內容與本文架構 3
1.4 符號說明與假設 5
1.4.1 符號說明 5
1.4.2 假設 6
Chapter 2 軟化彈塑姓組成模式 7
2.1 彈塑性組成模式 7
2.1.1 片段線性多降伏平面模式 7
2.1.2 元件並聯模式 9
2.2 軟化桿件儲存耗散的新解 12
2.2.1 桿件模式的熱力學定律 12
2.2.2 耗散非負的問題 13
2.2.3 建立軟化桿件的能量模型 14
2.3 數值運算例一、軟化彈塑性模型組成律關係 16
2.3.1 數值運算例一之一、片段雙線性彈塑模式 16
2.3.2 數值運算例一之二、完全彈塑性模式 17
2.4 軟化結構層次模式 17
2.5 小節 20
Chapter 軟化桁架的崩塌面與安全載重空間 21
3.1 崩塌載重 21
3.1.1 傳統極限分析的崩塌載重 21
3.1.2 崩塌載重的定義探討 21
3.1.3 軟化結構的崩塌載重 21
3.2 軟化桁架崩塌面之求解 24
3.2.1 降伏面與崩塌面的關係 24
3.2.2 定義桁架崩塌面模式 25
3.2.3 桿件前處理 26
3.2.4 模態向量與崩塌模態式的定義 28
3.2.5 模態向量的條件式與求解 29
3.3 數值運算例二、軟化桁架崩塌面求解 27
3.3.1 數值運算例二之一、二桿桁架 32
3.3.2 數值運算例二之二、三桿桁架 33
3.3.3 數值運算例二之三、橋型桁架 36
3.4 軟化桿件的安全載重空間 37
3.3.1 軟化結構物安全載重空間的考量一 37
3.3.2 軟化結構物安全載重空間的考量二 38
3.3.3 重新定義軟化結構物的崩塌面與安全載重空間 39
3.5 數值運算例三、軟化桁架安全載重空間探討 40
3.5.1 數值運算例三之一、五桿桁架 40
3.5.2 數值運算例三之二、九桿桁架 42
3.6 小節 45
Chapter 4 結論與未來展望 46
4.1 結論 46
4.2 未來展望 47
參考文獻 49
附錄A、元件並聯模式推導 90
附錄B、桿件能量模式 94



[1] Borges, L., Zouain, N., and Huespe, A., Nonlinear optimization procedure for limit analysis, European Journal of Mechanics, A/solids, Vol.15, No. 3, pp.487-512, 1996.
[2] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part I: Continuum models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.329-343, 2004.
[3] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part II: Discrete models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.345-352, 2004.
[4] Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New
York, 1988.
[5] Chen, H. F. and Shu, D. W., A numerical method for lower bound limit analysis of 3-D structures with multi-loading systems, International Journal of Pressure Vessels and Piping, Vol.76, No.2 pp.105-112, 1999.
[6] Chen, H. F., Liu, Y. H., Cen, Z. Z. and Xu, B. Y., On the solution of limit load and
reference stress of 3-D structures under multi-loading systems, Engineering Structures, Vol.21, No.6, pp.530-537, 1999.
[7] Cocchetti, G. and Maier, G., Elatic-plastic and limit-state analyses of frames with softening plastic-hinge models by mathematical programming, International Journal of Solids and Strucures, Vol.40, No.25, pp.7219-7244, 2003.
[8] Cohn, M. Z. and Maier, G., eds., Engineering Plasticity by Mathematical Programming-Proceedings of the NATO Advanced Study Institute, Pergamon Press, New York, 1977.
[9] Cohon, J. L., Multiobjective Programming and Planning, Academic Press, New York,1978.
[10] Herskovits, J., Leontiev, A., Dias, G. and Santos, G., Contact shape optimization: a
bilevel programming approach, Structural and Multidisciplinary Optimization, Vol.20,
No.3, pp.214-221, 2000.
[11] Hodge, P. G., Limit analysis with multiple load parameters, International Journal of Solids and Structures, Vol.6, No.5, pp.661-675, 1970.
[12] Jirasek, M. and Bazant, Z.P., Inelastic Analysis of Structures, Wiley, Chichester, England,2002.
[13] Kaneko, I., A parametric linear complementarity problem involving derivatives, Mathe-matical Programming, Vol.15, No.1, pp.146-154, 1978.
[14] Kaneko, I., Piecewise linear elastic-plastic analysis, International Journal for Numerical Methods in Engineering, Vol.14, No.5, pp.757-767, 1979.
[15] Kaneko, I., Complete solutions for a class of elastic-plastic structures, Computer Methods in Applied Mechanics and Engineering, Vol.21, No.2, pp.193-209, 1980.
[16] Maier, G., A quadratic programming approach for certain classes of non-linear structural problems, Meccanica, Vol.3, No.2, pp.121-130, 1968.
[17] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, Vol.1, No.5, pp.54-66, 1970.
[18] Maier, G., Grierson, D.E. and Best, M.J., Mathematical programming methods for deformation analysis at plastic collapse, Computers &; Structures, Vol.7, No.5, pp.599-612,1977.
[19] Maier, G. and Munro, J., Mathematical programming methods in engineering plastic analysis, Applied Mechanics Reviews, ASME, Vol.35, No.12, pp.1631-1643, 1982.
[20] Maier, G., and Lloyd-Smith, D., Mathematical programming applications to engineering plastic analysis: update to November 1985, Applied Mechanics Update 1986, C.R. Steele and G.S. Springer eds., ASME, New York, pp.377-383, 1986.
[21] Maier, G. Giacomini, S. and Paterlini, F., Combined elastoplastic and limit analysis
via restricted basis linear programming, Computer Methods in Applied Mechanics and Engineering, Vol.19, No.1, pp.21-48, 1979.
[22] Maier, G., Garvelli, V. and Cocchetti, G., On direct methods for shakedown and limit analysis, European Journal of Mechanics - A/Solids, Vol.19, pp.79-100, 2000.
[23] Muscat, M., Mackenzie, D. and Hamilton, R., A work criterion for plastic collapse, International Journal of Pressure Vessels and Piping, Vol.80, No.1, pp.49-58, 2003.
[24] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. I: model, Journal of Engineering Mechanics, Vol.114, No.3, pp.377-386, 1988.
[25] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. II: computations, Journal of Engineering Mechanics, Vol.114, No.3, pp.387-403, 1988.
[26] Reinicke, K. M., Ralston, T. D., Plastic limit analysis with an anisotropic, parabolic
yield function, International Journal of Rock Mechanics and Mining Sciences, Vol.14,
No.3, pp.147-154, 1977.
[27] Staat, M. and Heitzer, M., LISA - a European project for FEM-based limit and shakedown
analysis, Nuclear Engineering and Design, Vol.206, No.2-3, pp.151-166, 2001.
[28] Sewell, M. J., Maximum and Minimum Principles - a Unied Approach, with Application,Cambridge University Press, Cambridge, England, 1986.
[29] Tangaramvong, S. and Tin-Loi, F., Limit analysis of strain softening steel frames under pure bending, Journal of Constructional Steel Research, Vol.63, No.9, pp.1151-1159, 2007.
[30] Tangaramvong, S. and Tin-Loi, F., A complementarity approach for elastoplastic analysis of strain softening frames under combined bending and axial force, Engineering Structures, Vol.29, No.5, pp.742-753, 2007.
[31] Tangaramvong, S. and Tin-Loi, F., Simultaneous ultimate load and deformation analysis of strain softening frames under combined stresses, Engineering Structures, Vol.30, No.3,pp.664-674, 2008.
[32] Tangaramvong, S. and Tin-Loi, F., Limit analysis of elastoplastic frames considering 2nd-order geometric nonlinearity and displacment constraints, International Journal of Mechanical Sciences, Vol.51, No.3, pp.179-191, 2009.
[33] Tin-Loi, F., A yield surface linearization procedure in limit analysis, Mechanics Based Design of Structures and Machines , Vol.18, No.1, pp.135-149, 1990.
[34] Tin-Loi, F., and Lo, Y. F., Collapse limit surface generation for multiparametric loading, Applied Mathematical Modelling , Vol.16, pp.491-497, 1992.
[35] Tin-Loi, F. and Xia, S. H., Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem, Computer Methods in Applied Mechanics and Engineering, Vol.190, No.35-36, pp.4551-4568, 2001.
[36] Tin-Loi, F. and Xia, S. H., Holonomic softening: Models and analysis, Mechanics Based Design of Structures and Machines, Vol.29, No.1, pp.65-84, 2001.
[37] 宋信彰, 軟化彈塑性桁架的崩塌載重, 國立台灣大學土木工程學系碩士論文, 2007.
[38] 郭建呈, 彈塑姓結構載重空間崩塌面探討, 國立台灣大學土木工程學系碩士論文, 2010.
[39] 吳昱霆, 硬軟化桁架崩塌面分析, 國立台灣大學土木工程學系碩士論文, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔