[1] Borges, L., Zouain, N., and Huespe, A., Nonlinear optimization procedure for limit analysis, European Journal of Mechanics, A/solids, Vol.15, No. 3, pp.487-512, 1996.
[2] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part I: Continuum models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.329-343, 2004.
[3] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part II: Discrete models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.345-352, 2004.
[4] Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New
York, 1988.
[5] Chen, H. F. and Shu, D. W., A numerical method for lower bound limit analysis of 3-D structures with multi-loading systems, International Journal of Pressure Vessels and Piping, Vol.76, No.2 pp.105-112, 1999.
[6] Chen, H. F., Liu, Y. H., Cen, Z. Z. and Xu, B. Y., On the solution of limit load and
reference stress of 3-D structures under multi-loading systems, Engineering Structures, Vol.21, No.6, pp.530-537, 1999.
[7] Cocchetti, G. and Maier, G., Elatic-plastic and limit-state analyses of frames with softening plastic-hinge models by mathematical programming, International Journal of Solids and Strucures, Vol.40, No.25, pp.7219-7244, 2003.
[8] Cohn, M. Z. and Maier, G., eds., Engineering Plasticity by Mathematical Programming-Proceedings of the NATO Advanced Study Institute, Pergamon Press, New York, 1977.
[9] Cohon, J. L., Multiobjective Programming and Planning, Academic Press, New York,1978.
[10] Herskovits, J., Leontiev, A., Dias, G. and Santos, G., Contact shape optimization: a
bilevel programming approach, Structural and Multidisciplinary Optimization, Vol.20,
No.3, pp.214-221, 2000.
[11] Hodge, P. G., Limit analysis with multiple load parameters, International Journal of Solids and Structures, Vol.6, No.5, pp.661-675, 1970.
[12] Jirasek, M. and Bazant, Z.P., Inelastic Analysis of Structures, Wiley, Chichester, England,2002.
[13] Kaneko, I., A parametric linear complementarity problem involving derivatives, Mathe-matical Programming, Vol.15, No.1, pp.146-154, 1978.
[14] Kaneko, I., Piecewise linear elastic-plastic analysis, International Journal for Numerical Methods in Engineering, Vol.14, No.5, pp.757-767, 1979.
[15] Kaneko, I., Complete solutions for a class of elastic-plastic structures, Computer Methods in Applied Mechanics and Engineering, Vol.21, No.2, pp.193-209, 1980.
[16] Maier, G., A quadratic programming approach for certain classes of non-linear structural problems, Meccanica, Vol.3, No.2, pp.121-130, 1968.
[17] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes, Meccanica, Vol.1, No.5, pp.54-66, 1970.
[18] Maier, G., Grierson, D.E. and Best, M.J., Mathematical programming methods for deformation analysis at plastic collapse, Computers &; Structures, Vol.7, No.5, pp.599-612,1977.
[19] Maier, G. and Munro, J., Mathematical programming methods in engineering plastic analysis, Applied Mechanics Reviews, ASME, Vol.35, No.12, pp.1631-1643, 1982.
[20] Maier, G., and Lloyd-Smith, D., Mathematical programming applications to engineering plastic analysis: update to November 1985, Applied Mechanics Update 1986, C.R. Steele and G.S. Springer eds., ASME, New York, pp.377-383, 1986.
[21] Maier, G. Giacomini, S. and Paterlini, F., Combined elastoplastic and limit analysis
via restricted basis linear programming, Computer Methods in Applied Mechanics and Engineering, Vol.19, No.1, pp.21-48, 1979.
[22] Maier, G., Garvelli, V. and Cocchetti, G., On direct methods for shakedown and limit analysis, European Journal of Mechanics - A/Solids, Vol.19, pp.79-100, 2000.
[23] Muscat, M., Mackenzie, D. and Hamilton, R., A work criterion for plastic collapse, International Journal of Pressure Vessels and Piping, Vol.80, No.1, pp.49-58, 2003.
[24] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. I: model, Journal of Engineering Mechanics, Vol.114, No.3, pp.377-386, 1988.
[25] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames. II: computations, Journal of Engineering Mechanics, Vol.114, No.3, pp.387-403, 1988.
[26] Reinicke, K. M., Ralston, T. D., Plastic limit analysis with an anisotropic, parabolic
yield function, International Journal of Rock Mechanics and Mining Sciences, Vol.14,
No.3, pp.147-154, 1977.
[27] Staat, M. and Heitzer, M., LISA - a European project for FEM-based limit and shakedown
analysis, Nuclear Engineering and Design, Vol.206, No.2-3, pp.151-166, 2001.
[28] Sewell, M. J., Maximum and Minimum Principles - a Unied Approach, with Application,Cambridge University Press, Cambridge, England, 1986.
[29] Tangaramvong, S. and Tin-Loi, F., Limit analysis of strain softening steel frames under pure bending, Journal of Constructional Steel Research, Vol.63, No.9, pp.1151-1159, 2007.
[30] Tangaramvong, S. and Tin-Loi, F., A complementarity approach for elastoplastic analysis of strain softening frames under combined bending and axial force, Engineering Structures, Vol.29, No.5, pp.742-753, 2007.
[31] Tangaramvong, S. and Tin-Loi, F., Simultaneous ultimate load and deformation analysis of strain softening frames under combined stresses, Engineering Structures, Vol.30, No.3,pp.664-674, 2008.
[32] Tangaramvong, S. and Tin-Loi, F., Limit analysis of elastoplastic frames considering 2nd-order geometric nonlinearity and displacment constraints, International Journal of Mechanical Sciences, Vol.51, No.3, pp.179-191, 2009.
[33] Tin-Loi, F., A yield surface linearization procedure in limit analysis, Mechanics Based Design of Structures and Machines , Vol.18, No.1, pp.135-149, 1990.
[34] Tin-Loi, F., and Lo, Y. F., Collapse limit surface generation for multiparametric loading, Applied Mathematical Modelling , Vol.16, pp.491-497, 1992.
[35] Tin-Loi, F. and Xia, S. H., Nonholonomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem, Computer Methods in Applied Mechanics and Engineering, Vol.190, No.35-36, pp.4551-4568, 2001.
[36] Tin-Loi, F. and Xia, S. H., Holonomic softening: Models and analysis, Mechanics Based Design of Structures and Machines, Vol.29, No.1, pp.65-84, 2001.
[37] 宋信彰, 軟化彈塑性桁架的崩塌載重, 國立台灣大學土木工程學系碩士論文, 2007.
[38] 郭建呈, 彈塑姓結構載重空間崩塌面探討, 國立台灣大學土木工程學系碩士論文, 2010.[39] 吳昱霆, 硬軟化桁架崩塌面分析, 國立台灣大學土木工程學系碩士論文, 2012.