(3.237.97.64) 您好!臺灣時間:2021/03/03 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾芸琦
研究生(外文):Yun-Qi Zeng
論文名稱:埤塘型濕地之追蹤劑試驗及水力效率改善研究
論文名稱(外文):Tracer test and hydraulic efficiency improvement of farm-pond wetlands
指導教授:李鴻源李鴻源引用關係
口試委員:施上粟方偉達胡通哲
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:人工溼地水力效率數值試驗追蹤劑試驗停留時間分佈
外文關鍵詞:Constructed WetlandsHydraulic EfficiencyTABS-2Numerical ExperimentTracer TestResidence Time Distribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:419
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,人工溼地常應用於處理點源和非點源汙染,而處理汙染物的效率與溼地內的流況以及停留時間有相當程度的關聯,因此本研究應用追蹤劑試驗以評估濕地之停留時間分布以及水力效率。
本研究結合現地試驗及數值模式以探討濕地內水理特性,選用二維水理模式TABS-2模擬追蹤劑試驗,以追蹤劑試驗結果率定渦流黏滯係數、擴散係數及衰減係數,期許能更貼近真實的情況,並藉由數值模型設計不同的案例,達到改善水力效率之目的。
本研究選用Rhod-WT作為追蹤劑,於桃園傳貴池進行追蹤劑試驗,總共進行三場追蹤劑試驗,從追蹤劑試驗的結果可以發現,現地的水力效率約為0.02-0.18,顯示現地的水力特性不佳。為了改善水力效率,考慮不同的水深、流量、出入流口設置以及阻擋結構物的配置,共設計了53組數值試驗。
數值試驗的結果顯示,濕地的水深、流量與水力效率皆有高度的相關性,而於本案例中阻擋結構物的設置為有效提升水力效率的關鍵,設置單個阻擋結構物可將水力效率提升至0.68,設置兩個阻擋結構物可將水力效率提升至1.05,本研究並綜合22組數值試驗結果,發現流量與水力效率成正相關線性關係、水深與水力效率成負相關線性關係,而阻擋結構數長、寬及數量與水力效率之多變量複迴歸關係則發現,影響程度以阻擋構造物的數量最高、寬度次之、長度再次之,彼此間相差一個數量級序(order of magnitude)。


Wetlands provide considerable benefits and promote biodiversity by offering habitat for water loving plants, birds and insects. Among various types of wetlands, free water surface constructed wetlands (CWs) are artificial wetlands designed to provide multiple functions, such as waste water treatment, ecosystem services, carbon reservoirs, and flood detention. CWs have been proposed as a cost-effective treatment for point and non-point source pollution in recent years. The treatment efficiency strongly depends on flow pattern and residence times of the flow condition. The treatment efficiency of CWs cannot be determined without understanding the flow dynamics of individual parcels of water through the wetland. This study thus presents a tracer experiment to estimate wetland residence time distributions and hydraulic efficiency. Both field investigation and numerical model experiment were conducted and examined. A horizontal two dimensional model, TABS-2, is employed to simulate the tracer tests. Then, varied of numerical experiments designed to achieve improve situ hydraulic efficiency.
The Chuangui pond in Taoyuan County was selected as field site, and use rhodamine-WT as the tracer to perform tracer tests to discuss residence time distribution of the constructed wetland. Three tracer tests are investigated on a 0.35 ha treatment wetland. The overall hydraulic efficient is calculated as 0.02-0.18 and reveals a poor hydraulic status. The results also indicate the worst hydraulic efficiency occurs at the deep water pond area. In order to improve hydraulic efficiency, 53 scenarios are designed to test the improvement efficiency with different water depths, flow discharge, configuration of inlet and outlet, and number and allocation of obstructions by using TABS-2 simulation. The results show that there is a high correlation between the water depth, flow and hydraulic efficiency. In this case, setting of obstruction is the key to effectively enhance hydraulic efficiency. In the case of set one obstruction, hydraulic efficiency can be raised to 0.68. In the other case of installing two obstructions, hydraulic efficiency can be raised to 1.05 which achieves a good hydraulic condition.


誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第壹章 緒論 1
1-1研究緣起 1
1-2研究動機與目的 2
1-3研究架構 3
第貳章 文獻回顧 5
2-1 人工溼地 5
2-1-1濕地定義及類型 5
2-1-2國內外相關案例 6
2-2追蹤劑試驗 7
2-2-1追蹤劑種類 7
2-2-2追蹤劑試驗相關研究 8
2-3水力效率相關研究 10
第&;#21442;章 研究材料與方法 15
3-1 研究地點 15
3-2 追蹤劑試驗 16
3-2-1量筒試驗(靜水試驗) 16
3-2-2水槽試驗(動水試驗) 17
3-2-3現地追蹤劑試驗進行方式 17
3-2-4追蹤劑試驗數據分析方法 19
3-3 數值模式介紹 20
3-3-1 水理模組(RMA2) 21
3-3-2 水質模組(RMA4) 22
3-3-3 模式操作步驟 23
3-4水力效率評估方法 24
3-4-1 停留時間分佈(RTD , Residence Time Distribution) 24
3-4-2分散指標 26
3-4-3有效體積比 28
3-4-4 水力效率(Hydraulic Efficiency) 29
第肆章 追蹤劑試驗 30
4-1 水文及地形調查 30
4-1-1 地形資料 30
4-1-2 水文資料 32
4-2 追蹤劑試驗 34
4-2-1量筒試驗結果 34
4-2-2水槽試驗結果 35
4-2-3現地試驗結果 39
4-2-4現地水力效率計算 40
第伍章 數值實驗 42
5-1數值模式建立 42
5-1-1 數值地形及網格 42
5-1-2 邊界條件設定 43
5-2 模式參數設定 46
5-2-1渦流黏滯係數E與延散係數D 48
5-2-2衰減係數K(decay coefficient) 49
5-2-3參數率定與驗證 49
5-3模擬結果分析 55
5-3-1水理及水質模擬結果 55
5-3-2水力效率計算 57
5-3-2現地與數值模擬之水力效率 59
5-4現地水力效率之改善 59
5-4-1下游水深與水力效率的關係 61
5-3-2入流量與水力效率的關係 63
5-3-3出入流口設置與水力效率的關係 66
5-3-4阻擋結構物與水力效率的關係 67
5-3-5水力效率與簡化的水力效率之差異 72
5-3-6水力效率改善成果 73
第陸章 結論與建議 75
6-1 結論 75
6-2 建議 76
參考文獻 78
附錄-符號表 83


1.Bodin, H., Persson, J., Englund, J. E., &; Milberg, P. (2013). Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal. Journal of Hydrology, 501, 1-12.
2.Corcoran, E. (Ed.). (2010). Sick Water?: The Central Role of Wastewater Management in Sustainable Development: a Rapid Response Assessment. UNEP/Earthprint.
3.Dierberg, F. E., Juston, J. J., DeBusk, T. A., Pietro, K., &; Gu, B. (2005). Relationship between hydraulic efficiency and phosphorus removal in a submerged aquatic vegetation-dominated treatment wetland. Ecological Engineering, 25(1), 9-23.
4.Danckwerts, P. V. (1953). Continuous flow systems: distribution of residence times. Chemical Engineering Science, 2(1), 1-13.
5.Dierberg, F. E., &; DeBusk, T. A. (2005). An evaluation of two tracers in surface-flow wetlands: Rhodamine-WT and lithium. Wetlands, 25(1), 8-25.
6.Dal Cin, L., &; Persson, J. (2000). The influence of vegetation on hydraulic performance in a surface flow wetland. In Proceedings of the seventh international conference on wetland systems for water pollution control (Vol. 2, pp. 539-546).
7.Fogler, H. S. (2006). Elements of chemical reaction engineering.
8.Jenkins, G. A., &; Greenway, M. (2005). The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecological Engineering,25(1), 61-72.
9.Knight, R. L. (1992). Ancillary benefits and potential problems with the use of wetlands for nonpoint source pollution control. Ecological Engineering, 1(1), 97-113.
10.Kadlec, R. H. (1994). Detention and mixing in free water wetlands. Ecological Engineering, 3(4), 345-380.
11.Kadlec, R. H., &; Wallace, S. (1996). Treatment wetlands. CRC press.
12.Kadlec, R. (2005). Wetland to pond treatment gradients. Water Science &; Technology, 51(9), 291-298.
13.Keefe, S. H., Daniels, J. S. T., Runkel, R. L., Wass, R. D., Stiles, E. A., &; Barber, L. B. (2010). Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland. Water Resources Research, 46(11).
14.Kjellin, J., Worman, A., Johansson, H., &; Lindahl, A. (2007). Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden.Advances in water resources, 30(4), 838-850.
15.Neralla, S., Weaver, R. W., Lesikar, B. J., &; Persyn, R. A. (2000). Improvement of domestic wastewater quality by subsurface flow constructed wetlands.Bioresource Technology, 75(1), 19-25.
16.Persson, J., Somes, N. L. G., &; Wong, T. H. F. (1999). Hydraulics efficiency of constructed wetlands and ponds. Water science and technology, 40(3), 291-300.
17.Schuetz, T., Weiler, M., &; Lange, J. (2012). Multitracer assessment of wetland succession: Effects on conservative and nonconservative transport processes.Water Resources Research, 48(6).
18.Stern, D. A., Khanbilvardi, R., Alair, J. C., &; Richardson, W. (2001). Description of flow through a natural wetland using dye tracer tests. Ecological Engineering,18(2), 173-184.
19.Shih, S. S., Kuo, P. H., Fang, W. T., &; LePage, B. A. (2013). A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling. Ecological Engineering, 61, 200-206.
20.Tai, D. Y., &; Rathbun, R. E. (1988). Photolysts of rhodamine-WT dye. Chemosphere, 17(3), 559-573.
21.Thackston, E. L., Shields Jr, F. D., &; Schroeder, P. R. (1987). Residence time distributions of shallow basins. Journal of Environmental Engineering, 113(6), 1319-1332.
22.Thullen, J. S., Sartoris, J. J., &; Nelson, S. M. (2005). Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance.Ecological Engineering, 25(5), 583-593.
23.Wilson Jr, J. F., Cobb, E. D., &; Kilpatrick, F. A. (1986). Fluorometric procedures for dye tracing: US Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A12, 34.
24.Williams, C. F., &; Nelson, S. D. (2011). Comparison of Rhodamine-WT and bromide as a tracer for elucidating internal wetland flow dynamics. Ecological Engineering, 37(10), 1492-1498.
25.Wahl, M. D., Brown, L. C., Soboyejo, A. O., Martin, J., &; Dong, B. (2010). Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecological Engineering, 36(12), 1691-1699.
26.王興睿,石&;#26658;岡,張文亮,2011,應用追蹤劑試驗於牡蠣殼礫間接觸水質淨化系統之人工濕地設計與延散效應分析,農業工程學報,頁17-31。
27.荊樹人,林瑩峰,李得元,王姿文,沈家丞,沈道剛,蔡凱元,林業偉,1998,人工溼地系統淨化污染河水的功效探討,第23 屆廢水處理技術研討會,頁 294-299。
28.郭品含,2008,水質處理型滯洪溼地之最佳化設計研究,台灣大學土木所碩士論文。
29.張文賢,2004,建立人工濕地設置與操作作業程序及技術,行政院公共工程委員會九十三年度工作報告書,愛魚生態工程有限公司。
30.張翊峰、王書斌、荊樹人、林瑩峰、李得元,2005,台灣地區人工溼地技術關聯資料庫之建立與研究,嘉南學報,第三十一期,頁253-263。
31.張文亮,2006,溼地生態與工程課程講義
32.錢紀銘、林健榮、張翊峰、林俊廷、吳潁祥、呂建樟、張齊升,2005,以鹽度追&;#36394;劑試驗探討小型組合式人工溼地之水力特性,嘉南學報,第三十一期,頁242-252。
33.謝蕙蓮,徐崇斌,陳章波,張文賢,2013,人工溼地的生態建構與意義,明治科技大學出版。
34.謝治宇,2010,新海橋人工濕地水力特性研究,逢甲大學水利工程與資源保育學系碩士班碩士論文。
35.蘇宗敏,2007,表面流人工溼地水力效率之研究,台灣大學土木所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔