1.Bathurst, J., Burton, A., Ward, T. (1997). Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engineering, 123(5), 410-419.
2.Blake, W., Wallbrink, P., Doerr, S., Shakesby, R., Humphreys, G. (2006). Magnetic enhancement in wildfire&;#8208;affected soil and its potential for sediment&;#8208;source ascription. Earth Surface Processes and Landforms, 31(2), 249-264.
3.Caine, N. (1980). The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A. Physical Geography, 23-27.
4.Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736.
5.Dai, F., Lee, C. (2001). Frequency–volume relation and prediction of rainfall-induced landslides. Engineering geology, 59(3), 253-266.
6.Delmas, M., Pak, L.-T., Cerdan, O., Souchere, V., Le Bissonnais, Y., Couturier, A., Sorel, L. (2012). Erosion and sediment budget across scale: A case study in a catchment of the European loess belt. Journal of Hydrology, 420, 255-263.
7.Devoli, G., De Blasio, F. V., Elverhoi, A., Hoeg, K. (2009). Statistical analysis of landslide events in Central America and their run-out distance. Geotechnical and Geological Engineering, 27(1), 23-42.
8.Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78(383), 605-610.
9.Ferguson, R. (1986). River loads underestimated by rating curves. Water Resources Research, 22(1), 74-76.
10.Ferro, V., Minacapilli, M. (1995). Sediment delivery processes at basin scale. Hydrological Sciences Journal, 40(6), 703-717.
11.Ferro, V., Porto, P. (2000). Sediment delivery distributed (SEDD) model. Journal of Hydrologic Engineering, 5(4), 411-422.
12.Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A., Ojha, T. (2004). Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology, 63(3), 131-143.
13.Girmay, G., Singh, B., Nyssen, J., Borrosen, T. (2009). Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. Journal of Hydrology, 376(1), 70-80.
14.Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222-229.
15.Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98(3-4), 239-267.
16.Hovius, N., Stark, C. P., Hao&;#8208;Tsu, C., Jiun&;#8208;Chuan, L. (2000). Supply and removal of sediment in a landslide&;#8208;dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108(1), 73-89.
17.Jakeman, A., Chen, T., Post, D., Hornberger, G., Littlewood, I., Whitehead, P. (1993). Assessing uncertainties in hydrological response to climate at large scale. IAHS PUBLICATION, 37-37.
18.Jen, C.-H., Lin, J.-C., Hsu, M.-L., Petley, D. N. (2006). Fluvial transportation and sedimentation of the Fu-shan small experimental catchments. Quaternary international, 147(1), 34-43.
19.Jordan, P. (2006). The use of sediment budget concepts to assess the impact on watersheds of forestry operations in the southern interior of British Columbia. Geomorphology, 79(1), 27-44.
20.Kao, S., Lee, T., Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.
21.Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., Zatkin, R. S. (1987). Real-time landslide warning during heavy rainfall. Science, 238(4829), 921-925.
22.Lopez-Tarazon, J., Batalla, R. J., Vericat, D., Francke, T. (2009). Suspended sediment transport in a highly erodible catchment: the River Isabena (Southern Pyrenees). Geomorphology, 109(3), 210-221.
23.Li, C., Ma, T., Zhu, X., Li, W. (2011). The power–law relationship between landslide occurrence and rainfall level. Geomorphology, 130(3), 221-229.
24.Lu, H., Moran, C. J., Prosser, I. P. (2006). Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling &; Software, 21(9), 1297-1308.
25.McCool, D., Brown, L., Foster, G., Mutchler, C., Meyer, L. (1987). Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASAE-American Society of Agricultural Engineers (USA).
26.Merritt, W. S., Letcher, R. A., Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling &; Software, 18(8), 761-799.
27.Nash, D. B. (1994). Effective Sediment-Transporting Discharge from Magnitude-Frequency Analysis. The Journal of Geology, 102(1), 79-95. doi: 10.2307/30065712
28.Nichols, M., Nearing, M., Polyakov, V., Stone, J. (2013). A sediment budget for a small semiarid watershed in southeastern Arizona, USA. Geomorphology, 180, 137-145.
29.Page, M., Trustrum, N., Dymond, J. (1994). Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand. Geomorphology, 9(3), 169-188.
30.Pratt-Sitaula, B., Garde, M., Burbank, D. W., Oskin, M., Heimsath, A., Gabet, E. (2007). Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record. Quaternary Research, 68(1), 111-120.
31.Rajurkar, M., Kothyari, U., Chaube, U. (2004). Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285(1), 96-113.
32.Robinson, J. S., Sivapalan, M. (1997). Temporal scales and hydrological regimes: Implications for flood frequency scaling. Water Resources Research, 33(12), 2981-2999.
33.Sorooshian, S. (1991). Parameter estimation, model identification, and model validation: conceptual-type models Recent advances in the modeling of hydrologic systems (pp. 443-467): Springer.
34.Syvitski, J. P., Morehead, M. D., Bahr, D. B., Mulder, T. (2000). Estimating fluvial sediment transport: the rating parameters. Water Resources Research, 36(9), 2747-2760.
35.Varnes, D. J. (1978). Slope movement types and processes. Transportation Research Board Special Report(176).
36.Walling, D. (1983). The sediment delivery problem. Journal of Hydrology, 65(1), 209-237.
37.Walling, D., Collins, A. (2008). The catchment sediment budget as a management tool. Environmental Science &; Policy, 11(2), 136-143.
38.Wheater, H., Jakeman, A., Beven, K. (1993). Progress and directions in rainfall-runoff modelling.
39.Wischmeier, W. H., Smith, D. D. (1978). Predicting rainfall erosion losses-A guide to conservation planning. Predicting rainfall erosion losses-A guide to conservation planning.
40.Zhang, Q., Xu, C.-y., Becker, S., Jiang, T. (2006). Sediment and runoff changes in the Yangtze River basin during past 50 years. Journal of Hydrology, 331(3), 511-523.
41.林文賜, 林昭遠, 周文杰, 黃碧慧. (2006). 集水區坡面泥砂產量推估模式建立之研究. 明道學術論壇, 2(2)。42.林建宏. (2010). 石門水庫集水區泥砂收支與遞移率之研究. 臺灣大學土木工程學研究所學位論文。
43.林昭遠. (2004). 應用衛星影像探討集水區逕流係數空間分佈之研究. 行政院農業委員會研究計畫報告。
44.邱昱嘉. (2007). 放射性核種銫 137 在土壤重新分布率估算之研究. 臺灣大學土木工程學研究所學位論文。
45.洪麗娟. (2009). 1996-2008 年臺灣降雨的特性分析. 國立中央大學大氣物理研究所碩士論文。46.莊善傑. (2005). 大甲溪流域的山崩在颱風與地震事件中與地質環境之對應關係. 臺灣大學土木工程學研究所學位論文。
47.陳毅青. (2012). 降雨誘發崩塌侵蝕之規模頻率及其控制因子. 臺灣大學土木工程學研究所學位論文。
48.陳樹群, 吳俊毅, 吳岳霖, 王士豪. (2009). GIS 圖層及修正因子建置臺灣通用土壤流失公式 (TUSLE)-以石門水庫集水區為例. 中華水土保持學報, 40(2),。49.陳樹群, 諸予涵, 吳俊鋐. (2012). 旗山溪集水區長期降雨特性改變與崩塌分佈關係. 中華水土保持學報, 43(4)。50.馮美禎, 杜怡德, 林俐玲. (2006). 應用農業非點源污染模式探討集水區泥砂遞移率. 水土保持學報。51.楊斯堯, 詹錢登, 黃文舜, 曾國訓. (2010). 運用時雨量資料推估降雨沖蝕指數. 中華水土保持學報, 41(3)。52.經濟部水利署. (2001~2010). 水文年報.
53.蔡宗賢. (2012). 石門水庫集水區崩塌地產砂與後續沖刷之量化研究. 臺灣大學土木工程學研究所學位論文。
54.盧昭堯, 蘇志強, 吳藝昀. (2005). 臺灣地區年等降雨沖蝕指數圖之修訂. 中華水土保持學報, 36(2)。