|
[1]Jost P 1976 Economic Impact of Tribology, (Proc Mechanical Failures Prevention Group: NBS Special Pub. 423, Gaithersburg, MD) pp 117-39 [2]Bakunin V N, Suslov A Y, Kuzmina G N, Parenago O P and Topchiev A V 2004 Synthesis and Application of Inorganic Nanoparticles as Lubricant Components – a Review J. Nanopart. Res. 6 273-84 [3]Tenne R, Margulis L, Genut M and Hodes G 1992 Polyhedral and Cylindrical Structures of Tungsten Disulfide Nature 360 444-6 [4]Feldman Y, Wasserman E, Srolovitz D J and Tenne R 1995 High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes Science 267 222-5 [5]Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Hollow nanoparticles of WS2 as potential solid-state lubricants Nature 387 791-3 [6]Rapoport L, Feldman Y, Homyonfer M, Cohen H, Sloan J, Hutchison J L and Tenne R 1999 Inorganic fullerene-like material as additives to lubricants: structure–function relationship Wear 225-229 975-82 [7]Cizaire L, Vacher B, Le Mogne T, Martin J M, Rapoport L, Margolin A and Tenne R 2002 Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles Surf. Coat. Tech. 160 282-7 [8]Rapoport L, Leshchinsky V, Lvovsky M, Lapsker I, Volovik Y, Feldman Y, Popovitz-Biro R and Tenne R 2003 Superior tribological properties of powder materials with solid lubricant nanoparticles Wear 255 794-800 [9]Rapoport L, Fleischer N and Tenne R 2005 Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites J. Mater. Chem. 15 1782-8 [10]Rapoport L, Nepomnyashchy O, Lapsker I, Verdyan A, Soifer Y, Popovitz-Biro R and Tenne R 2005 Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials Tribol. Lett. 19 143-9 [11]Tenne R, Rem&;#353;kar M, Enyashin A and Seifert G 2008 Inorganic Nanotubes and Fullerene-Like Structures (IF) (Springer Berlin Heidelberg) [12]Rosentsveig R, Gorodnev A, Feuerstein N, Friedman H, Zak A, Fleischer N, Tannous J, Dassenoy F and Tenne R 2009 Fullerene-like MoS2 Nanoparticles and Their Tribological Behavior Tribol. Lett. 36 175-82 [13]Tannous J, Dassenoy F, Lahouij I, Mogne T, Vacher B, Bruhacs A and Tremel W 2010 Understanding the Tribochemical Mechanisms of IF-MoS2 Nanoparticles Under Boundary Lubrication Tribol. Lett. 41 55-64 [14]Tevet O, Goldbart O, Cohen S R, Rosentsveig R, Popovitz-Biro R, Wagner H D and Tenne R 2010 Nanocompression of individual multilayered polyhedral nanoparticles Nanotechnology 21 365705 [15]Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner H D and Tenne R 2011 Friction mechanism of individual multilayered nanoparticles Proc. Natl. Acad. Sci. U.S.A. 108 19901-6 [16]Enyashin A N, Gemming S, Bar-Sadan M, Popovitz-Biro R, Hong S Y, Prior Y, Tenne R and Seifert G 2007 Structure and stability of molybdenum sulfide fullerenes Angew. Chem. Int. Ed. 46 623-7 [17]Tenne R and Redlich M 2010 Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes Chem. Soc. Rev. 39 1423-34 [18]Yadgarov L, Rosentsveig R, Leitus G, Albu-Yaron A, Moshkovich A, Perfilyev V, Vasic R, Frenkel A I, Enyashin A N, Seifert G, Rapoport L and Tenne R 2012 Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles Angew. Chem. Int. Ed. 51 1148-51 [19]Tenne R, Rosentsveig R and Zak A 2013 Inorganic nanotubes and fullerene-like nanoparticles: Synthesis, mechanical properties, and applications Phys. Status Solidi A 210 2253-8 [20]Field S K, Jarratt M and Teer D G 2004 Tribological properties of graphite-like and diamond-like carbon coatings Tribol. Int. 37 949-56 [21]Berman D, Erdemir A and Sumant A V 2013 Few layer graphene to reduce wear and friction on sliding steel surfaces Carbon 54 454-9 [22]Berman D, Erdemir A and Sumant A V 2013 Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen Carbon 59 167-75 [23]Scharf T W and Prasad S V 2013 Solid lubricants: a review J. Mater. Sci. 48 511-31 [24]Muratore C, Bultman J E, Aouadi S M and Voevodin A A 2011 In situ Raman spectroscopy for examination of high temperature tribological processes Wear 270 140-5 [25]Zabinski J S, Donley M S and Prasad S V 1994 Synthesis and Characterization of Tungsten Disulfide Films Grown by Pulsed-Laser Deposition J. Mater. Sci. 29 4834-9 [26]Prasad S V and Zabinski J S 1993 Tribology of Tungsten Disulfide (WS2) - Characterization of Wear-Induced Transfer Films J. Mater. Sci. Lett. 12 1413-5 [27]Prasad S V, Zabinski J S and Mcdevitt N T 1995 Friction Behavior of Pulsed-Laser Deposited Tungsten Disulfide Films Tribol. T. 38 57-62 [28]Chhowalla M and Amaratunga G A 2000 Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear Nature 407 164-7 [29]Hirata A, Igarashi M and Kaito T 2004 Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles Tribol. Int. 37 899-905 [30]Joly-Pottuz L, Matsumoto N, Kinoshita H, Vacher B, Belin M, Montagnac G, Martin J M and Ohmae N 2008 Diamond-derived carbon onions as lubricant additives Tribol. Int. 41 69-78 [31]Joly-Pottuz L, Dassenoy F, Belin M, Vacher B, Martin J M and Fleischer N 2005 Ultralow-friction and wear properties of IF-WS2 under boundary lubrication Tribol. Lett. 18 477-85 [32]Hu J J and Zabinski J S 2005 Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM) Tribol. Lett. 18 173-80 [33]Scharf T W, Kotula P G and Prasad S V 2010 Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings Acta. Mater. 58 4100-9 [34]Wahl K J, Dunn D N and Singer I L 1999 Wear behavior of Pb–Mo–S solid lubricating coatings Wear 230 175-83 [35]Yang H B, Liu S K, Lil J X, Li M H, Peng G and Zou G T 2006 Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance Nanotechnology 17 1512-9 [36]Lahouij I, Dassenoy F, de Knoop L, Martin J M and Vacher B 2011 In Situ TEM Observation of the Behavior of an Individual Fullerene-Like MoS2 Nanoparticle in a Dynamic Contact Tribol. Lett. 42 133-40 [37]Lahouij I, Dassenoy F, Vacher B and Martin J-M 2011 Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle Tribol. Lett. 45 131-41 [38]Jelenc J and Remskar M 2012 Friction on a single MoS2 nanotube Nanoscale Res. Lett. 7 208 [39]Lahouij I, Vacher B and Dassenoy F 2014 Direct observation by in situ transmission electron microscopy of the behaviour of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure Lubr. Sci. 26 163-73 [40]Liang T, Phillpot S R and Sinnott S B 2009 Parametrization of a reactive many-body potential for Mo-S systems Phys. Rev. B 79 245110 [41]Liang T, Phillpot S R and Sinnott S B 2012 Erratum: Parametrization of a reactive many-body potential for Mo-S systems [Phys. Rev. B 79, 245110 (2009)] Phys. Rev. B 85 199903 [42]Lahouij I, Bucholz E W, Vacher B, Sinnott S B, Martin J M and Dassenoy F 2012 Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works Nanotechnology 23 375701 [43]Bucholz E W and Sinnott S B 2013 Structural effects on mechanical response of MoS2 nanostructures during compression J. Appl. Phys. 114 034308 [44]Bucholz E W and Sinnott S B 2012 Mechanical behavior of MoS2 nanotubes under compression, tension, and torsion from molecular dynamics simulations J. Appl. Phys. 112 123510 [45]Stewart J A and Spearot D E 2013 Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2) Model. Simul. Mater. Sc. 21 045003 [46]Jiang J W, Park H S and Rabczuk T 2013 Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity J. Appl. Phys. 114 064307 [47]Johnson K, Kendall K and Roberts A 1971 Surface energy and the contact of elastic solids Proc. R. Soc. A 324 301-13 [48]Krijt S, Dominik C and Tielens A G G M 2014 Rolling friction of adhesive microspheres J. Phys. D: Appl. Phys. 47 175302 [49]Dominik C and Tielens A G G M 1995 Resistance to rolling in the adhesive contact of two elastic spheres Philos. Mag. A 72 783-803 [50]Frenkel D and Smit B 2001 Understanding molecular simulation: from algorithms to applications (Academic press) [51]Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular-Dynamics J. Comput. Phys. 117 1-19 Software available at http://lammps.sandia.gov [52]Abell G C 1985 Empirical chemical pseudopotential theory of molecular and metallic bonding Phys. Rev. B Condens. Matter. 31 6184-96 [53]Tersoff J 1986 New empirical model for the structural properties of silicon Phys. Rev. Lett. 56 632-5 [54]Tersoff J 1988 Empirical Interatomic Potential for Carbon, with Applications to Amorphous-Carbon Phys. Rev. Lett. 61 2879-82 [55]Tersoff J 1988 New empirical approach for the structure and energy of covalent systems Phys. Rev. B Condens. Matter 37 6991-7000 [56]Tersoff J 1988 Empirical interatomic potential for silicon with improved elastic properties Phys. Rev. B Condens. Matter 38 9902-5 [57]Tersoff J 1989 Modeling solid-state chemistry: Interatomic potentials for multicomponent systems Phys. Rev. B Condens. Matter 39 5566-8 [58]Brenner D W 1990 Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films Phys. Rev. B 42 9458-71 [59]Brenner D W 1992 Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films Phys. Rev. B 46 1948 [60]Stuart S J, Tutein A B and Harrison J A 2000 A reactive potential for hydrocarbons with intermolecular interactions J. Chem. Phys. 112 6472-86 [61]Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys. Condens Matter. 14 783-802 [62]Stone T W, Horstemeyer M F, Hammi Y and Gullett P M 2008 Contact and friction of single crystal nickel nanoparticles using molecular dynamics Acta. Mater. 56 3577-84 [63]Storakers B, Biwa S and Larsson P-L 1997 Similarity analysis of inelastic contact Int. J. Solids Struct. 34 3061-83 [64]Mo Y, Turner K T and Szlufarska I 2009 Friction laws at the nanoscale Nature 457 1116-9 [65]Amontons G 1699 De la resistance causee dans les machines Mem. Acad. R. A 275 - 82 [66]Joly-Pottuz L, Bucholz E W, Matsumoto N, Phillpot S R, Sinnott S B, Ohmae N and Martin J M 2010 Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations Tribol. Lett. 37 75-81 [67]Bucholz E W, Phillpot S R and Sinnott S B 2012 Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions Comp. Mater. Sci. 54 91-6 [68]Bucholz E W and Sinnott S B 2013 Computational investigation of the mechanical and tribological responses of amorphous carbon nanoparticles J. Appl. Phys. 113 073509 [69]Zheng X, Zhu H T, Kosasih B and Tieu A K 2013 A molecular dynamics simulation of boundary lubrication: The effect of n-alkanes chain length and normal load Wear 301 62-9 [70]Barry P R, Chiu P Y, Perry S S, Sawyer W G, Phillpot S R and Sinnott S B 2009 The effect of normal load on polytetrafluoroethylene tribology J. Phys. Condens Matter. 21 144201 [71]Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (Oxford university press) [72]Robbins M O and Muser M H 2000 Computer simulations of friction, lubrication and wear (Handbook of Modern Tribology) (Boca Raton, FL: CRC Press) [73]Vanossi A and Braun O M 2007 Driven dynamics of simplified tribological models J. Phys.Condens. Mat. 19 [74]Mate C M, McClelland G M, Erlandsson R and Chiang S 1987 Atomic-scale friction of a tungsten tip on a graphite surface Phys. Rev. Lett. 59 1942-5 [75]Fujisawa S, Kishi E, Sugawara Y and Morita S 1995 Load dependence of two-dimensional atomic-scale friction Phys. Rev. B Condens. Matter. 52 5302-5 [76]Liang T, Sawyer W G, Perry S S, Sinnott S B and Phillpot S R 2008 First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3 Phys. Rev. B 77 104105 [77]Smith G, Modine N, Waghmare U and Kaxiras E 1998 First-principles study of static nanoscale friction between MoO3 and MoS2 J. Comput. Aided Mater. Des. 5 61-71 [78]Ding W, Howard A J, Peri M D M and Cetinkaya C 2007 Rolling resistance moment of microspheres on surfaces: contact measurements Philos. Mag. 87 5685-96 [79]Sumer B and Sitti M 2008 Rolling and Spinning Friction Characterization of Fine Particles Using Lateral Force Microscopy Based Contact Pushing J. Adhes. Sci. Technol. 22 481-506 [80]Griffith A A 1921 The Phenomena of Rupture and Flow in Solids Philos. T. R. Soc. London Ser. A: Math. Phys. Eng. Sci. 221 163-98 [81]Jin Y and Yuan F G 2005 Nanoscopic modeling of fracture of 2D graphene systems J. Nanosci. Nanotechnol. 5 601-8 [82]Tsai J L, Tzeng S H and Tzou Y J 2010 Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics Int. J. Solids Struct. 47 503-9 [83]Irwin G R 1957 Analysis of stresses and strains near the end of a crack traversing a plate J. appl. Mech. 24 361-4 [84]Shewchuk J R 1996 Applied Computational Geometry Towards Geometric Engineering, ed M Lin and D Manocha (Springer Berlin Heidelberg) pp 203-22 [85]Baskes M I 1992 Modified embedded-atom potentials for cubic materials and impurities Phys. Rev. B Condens. Matter 46 2727-42 [86]Alexander S 2010 Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 015012 Software available at http://ovito.org/ [87]Gundlach B, Kilias S, Beitz E and Blum J 2011 Micrometer-sized ice particles for planetary-science experiments – I. Preparation, critical rolling friction force, and specific surface energy Icarus 214 717-23 [88]Heim L O, Blum J, Preuss M and Butt H J 1999 Adhesion and friction forces between spherical micrometer-sized particles Phys. Rev. Lett. 83 3328-31 [89]Blum J and Wurm G 2000 Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates Icarus 143 138-46
|