跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/23 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育鮪
研究生(外文):Yu-Wei Lin
論文名稱:東亞-西太平洋夏季季風之年際變化
論文名稱(外文):Interannual variability of the East Asia-West Pacific summer monsoon
指導教授:林和林和引用關係
指導教授(外文):LinHo
口試委員:隋中興陳正平吳建銘許晃雄陳正達洪志誠
口試委員(外文):C. H. Sui
口試日期:2014-05-13
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:年代際變化季風槽太平洋-日本遙相關聖嬰/南方震盪副熱帶高壓梅雨鋒面
外文關鍵詞:Inetrannual variabiltymonsoon troughPacific Japan patternEl Nino/Southern Oscillationsubtropical highMeiyu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
東亞-西太平洋夏季季風(East Asia-West Pacfiic suumer monsoon, EA-WPSM)年際變化受到該區域複雜的時、空間結構,具有強烈區域敏感性。本文以EA-WPSM兩大年際變化型態為基礎,特別著重於西太平洋季風槽未曾提及的重要熱帶物理機制,並澄清溫帶海氣交互作用對於副熱帶高壓年際變化的貢獻。
EA-WPSM最主要年際變化(EOF1占有24.7%)反映著西北太平洋季風槽(monsoon trough)變化,故稱為MT mode,並直接受到當時的聖嬰/南方震盪(El Nino/Souther Oscillation,ENSO)狀態作用(相關係數r=0.87)。MT mode以130°E以東的熱帶西太平洋降水跟渦度在赤道南北兩側之帶狀變異為主體。赤道以北自菲律賓海向赤道中太平洋傾斜的正渦度帶,反應著西北太平洋季風槽;赤道以南負渦度帶被新幾內亞島嶼所分離,顯示低層兩支跨赤道氣流分別源自班達海跟索羅門海進入季風槽所造成的效果。由於季風槽主要水汽來源是由新幾內亞跨赤道氣流挾帶的水汽平流主導。應用大氣邊界層模式解析跨赤道氣流的影響因子,發現海洋大陸一帶的邊界層氣壓梯度扮演著主導的角色。此邊界層氣壓梯度的形成是當時ENSO冷卻海洋大陸海溫並透過Lindzen Nigam 機制所致。
另一EA-WPSM年際變化呈現Nitta 1987年所提的太平洋日本遙相關(Pacific Japan pattern)環流結構(EOF2占13.9%),主要反映在太平洋跟日本南北向帶狀渦度震盪,故稱為PJ mode。PJ mode最主要環流特徵為西太平洋副熱帶高壓脊處于強烈沉降因而增強,雖ENSO領先PJ mode半年,但兩者關係(r=0.53)還有解釋空間。本文比對El Nino JJA(1)跟PJ mode在EA-WPSM的結構差異,發現黑潮延伸區在PJ mode年顯著冷卻,強化25°N到40°N間的經向海溫梯度。從經向垂直剖面亦可見西風噴流南移,高層瞬變渦流輻合亦提供副高脊高壓的增強作用。增強的副高脊亦可提供暖濕西南氣流強化其北側梅雨鋒面。高層大氣駐波活動通量(WAF)在35°N至45°N由北向南傳送能量,熱帶低層大氣向北的WAF可達30°N,反映PJ mode之溫帶/熱帶交互作用。由於夏季黑潮延伸區海洋混合層快速變薄,此季節性變化利於梅雨鋒面遮蔽短波輻射造成該區海溫冷卻之效應,形成中緯度海氣交互作用的正回饋。換言之,更險峻的海表面溫度梯度需要更有效的斜壓調節,東亞季風內的鋒面/海溫梯度/副高脊透過正回饋具備了自我維持的能力。至於PJ mode中印度洋熱容效應(IO capacity)在春季支持副高脊之預先條件(pre-condition),反而在夏季的效用為次要。
有趣的是本文所提出的兩個物理機制都跟海溫經向梯度有關。MT mode以海洋大陸冷海溫強化經向海溫梯度,透過Lindzen Nigam 機制影響跨赤道氣流對季風槽的調整。而PJ mode則是在夏季北太平洋冷海溫出現時,強化了大氣斜壓性,透過斜壓調整過程,強化梅雨鋒面跟副熱帶高壓的耦合結構。


The interannual variability of East Asia-West Pacific summer monsoon (EA-WPSM) is a very complicated phenomenon. Because eddies with various spatial and temporal scales interact with each other, that causes results by statistical analysis to be sensitive in domain and variable. The study shows two dominant modes of the EA-WPSM which passed statistical tests to gain most comprehensive information.
The first EOF mode, called the monsoon trough (MT) mode, is directly forced by current El Nino/Southern Oscillation (ENSO) state. The MT mode is characterized by zonally elongated structure stretching from 130°E to date line. The major bands as a dipole-like pattern, lies on two sides of the equator. The band north of the equator, tilted from the Philippine Sea toward the equatorial eastern Pacific, can be identified with the monsoon trough. The band on the Southern Hemisphere is weakened by New Guinea Island, which relates to the low-level cross-equatorial flow that originates from the Banda Sea and Solomon Sea to the monsoon trough, which causes two anomalous vorticity poles. The major moisture source of the monsoon trough is the low-level mositure advection laterally driven by the New Guinea cross-equatorial flow. By decomposing contributions to the cross-equatorial flow based on the linear mixed layer model, the boundary layer pressure gradient in the Maritime Continent plays a major role. The pressure gradient is further found to be related to the densely-packed sea surface temperature (SST) gradient near the equator around New Guinea, which is well correlated with concurrent ENSO state.
The second laeding mode (EOF2 13.9%) shows the famous Pacific Japan pattern discovered by Nitta in 1987, called the PJ mode. It also shows a band structure elongated in the east-west direction and more closes the coast of East Asia, especially around the Philippines to Japan. The major feature of PJ mode is the enhanced western Pacific subtropical high ridge (WPSH) under stronger subsidence. Although this mode reveals a positive correlation with the ENSO phase in the previous winter, their correlation (r=0.53) reflects that some influences are still not found. According to the comparsion the spatial structure between El Nino JJA(1) and PJ mode summer, the significant cold SST anomalies appear over the Kuroshio Extension in the PJ mode. It deepens the meridional SST gradient between 25°N and 40°N. The sharp SST gradient needs more active baroclinic adjustment. Over the North Pacific, the southward displacement of the westerly jet and extratropical storm track are borth connected to the enhanced meiyu rainband, which changes the shortwave radiation at surface and cools SST with shallow oceanic mixed layer depth in summer. The enhanced WPSH also supplies the northeastward warm and moist low-level flow to meiyu. In addition, the wave activity flux shows significant upper southward transport around 30°N~45°N and reveals a northward transport around WPSH (15°N~30°N), which implies the interaction between the meiyu front and subtropical ridge. Therefore, the meiyu front, SST gradient and WPSH ridge among the East Asia summer monsoon via the positive feedback to promote the self-maintaining mechanism. On the other hand, the Indian Ocean capacity effect reveals a pre-condition of enhanced WPSH in spring, but it becomes a second forcing of PJ mode in summer. As a result, both MT and PJ mode have their major original forcing related to the SST gradient, through the mechanisms are completely different. The MT mode reveals the influence of near-equatorial Lindzen Nigam mechanism, and the PJ mode is associated with the enhanced baroclinic adjustment.


摘要 i
Abstract i
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiii
1 前言 14
1.1 求取複雜性的共識 15
1.2 結果重點 17
2 資料與分析方法 20
2.1 資料 20
2.1.1. 大尺度環流場與海洋資料 20
2.1.2. 西北太平洋熱帶氣旋資料 21
2.1.3. AMIP II模式資料 21
2.1.4. 指數定義 22
2.2 分析方法 23
2.2.1. 濾子(filter) 23
2.2.2. EOF對區域變化的敏感度 23
2.2.3. 水平駐波活動通量(Horizontal Wave activity flux) 24
3 東亞-西太平洋夏季年際變化的主要模態 26
3.1 季風槽型態-MT mode 26
3.2 太平洋日本遙相關變化型態-PJ mode 29
3.3 ENSO跟MT mode及PJ mode的時滯相關 31
4 新幾內亞跨赤道氣流與季風槽之連結 33
4.1 邊界層混合模式(Mixed layer model, MLM) 34
4.2 新幾內亞異常冷海溫分析 37
5 西太平洋副熱帶高壓脊增強機制 41
5.1 以乾大氣模式探究副高脊周圍對流之影響 41
5.2 對比ENSO跟PJ mode在EA-WPSM空間結構差異 43
5.3 溫帶海氣交互作用強化梅雨鋒面之機制探討 44
5.3.1. 黑潮延伸區的海溫梯度 44
5.4 PJ mode中熱帶的影響-蘇門答臘海氣交互作用 47
6 AMIP II中的EA-WPSM年際變化 50
7 結論與延伸討論 53
7.1 結論 53
7.2 延伸探討 55
Reference 57


Adler, R , and Coauthors, 2003: The Version-2 Glocbal Precipiation Climatology Project (GPCP) monthly precipitation analysis (1979-presetn), J. Hydrometeor. 4 1149-1167.
Back L E and Bretherton C S, 2009: On the Relationship between SST Gradients, Boundary Layer Winds, and Convergence over the Tropical Oceans J. Climate, 22, 4182–4196.
Bjerknes J, 1969: Atmospheric teleconnections from the equatorial Paci&;#64257;c, Mon. Weather Rev., 97, 163–172. doi:10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2
Chan J C L, and Zhou W, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810.
Chang C P, Zhang Y S and Li T, 2000: Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge. J. Climate, 13, 4310–4325.
Chiang J C H, Zebiak S E, and Cane M A, 2001: Relative Roles of Elevated Heating and Surface Temperature Gradients in Driving Anomalous Surface Winds over Tropical Oceans J. Atmos. Sci. 58 1371–1394.
Chou C, Tu J Y, and Yu J Y, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 2275-2287.
Chowdary J S, Xie S P, Lee J Y, Kosaka Y and Wang B, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: local and remote forcing, J. Geophys. Res., 115, D22121, doi:10.1029/2010JD014595.
Chung P H, Sui C H, and Li T, 2011: Interannual relationships between the tropical sea surfcae temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophy. Res., 116, D13111.
Cravatte S, Ganachaud A, Duong Q P, Kessler W S, Eldin G, and Dutrieux P, 2011: Observed circulation in the Solomon Sea from SADCP data. Progress in Oceanography, 88(1), 116-130.
Ding Q and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505.
Enomoto T, Hoskins B J and Matsuda Y, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 587, 157–178.
____, 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82(4), 1019–1034.
Gadgil S, Joseph P V and Joshi N V, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141–143.
Gates W L and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc, 80, 29-56.
Gill A E, 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc. 106, 447–462.
Gordon A L and Susanto R D, 2001: Banda Sea Surface Layer Divergence Oce. Dyn., 52, 2-10.
____, 2005: the Indonesian Seas. Oceanography, 18(4), 14-27.
Hsu, H. H., and S. M. Lin, 2007: Asymmetry of the tripole rainfall pattern during the East Asian summer. J. Climate, 20, 4443–4458.
Huijun W, 2001: The weakening of the Asian monsoon circulation after the end of 1970''s. Advances in Atmospheric Sciences, 18(3), 376-386.
Kida S and Richards K J, 2009: Seasonal sea surface temperature variability in the Indonesian seas J. Geophys. Res. 114, C06016, doi:10.1029/2008JC005150
Kim J E, Yeh S W and Hong S Y, 2009: Two Types of Strong Northeast Asian Summer Monsoon. J. Climate, 22, 4406–4417.
Kubota H, Kosaka Y, and Xie S P, 2012: Interdecadal variability of western North Pacific summer monsoon through the Pacific-Japan (PJ) pattern, International workshop on interdecadal variability of the global monsoons, Nanjing, China
Kosaka Y, Nakamura H, Watanabe M and Kimoto M, 2009: Analysis on the Dynamics of a Wave-like Teleconnection Pattern along the Summertime Asian Jet Based on a Reanalysis Dataset and Climate Model Simulations, J. Meteor. Soc. Japan, 87, 561-580.
____ and Nakamura H, 2010: Mechanisms of Meridional Teleconnection Observed between a Summer Monsoon System and a Subtropical Anticyclone. Part I: The Pacific–Japan Pattern. J. Climate, 23, 5085–5108.
____, Xie S P and Nakamura H, 2011: Dynamics of interannual variability in summer precipitation over East Asia, J. Climate, 24, 5435-5453.
____, Xie S P, Lau N C and Vecchi G A, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the National Academy of Sciences, 110(19), 7574-7579.
Kwon M, Jhun J G, Wang B, An S I and Kug J S, 2005: Decadal change in relationship between east Asian and WNP summer monsoons.Geophysical research letters, 32, L16709, doi:10.1029/2005GL023026.
Lau K M and Li M T, 1984: The monsoon of East Asia and its global associations. Bull. Amer. Meteor. Soc., 65, 114-125.
____ and Sheu P J, 1988: nnual cycle, quasi-biennial oscillation, and southern oscillation in global precipitation. J. Geophys. Res., 93(D9), 10975–10988.
Lau N C and Nath M J, 1991: Variability of the Baroclinic and Barotropic Transient Eddy Forcing Associated with Monthly Changes in the Midlatitude Storm Tracks. J. Atmos. Sci., 48, 2589–2613.
Lin Y W, LinHo and Chou C, 2014: The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon. Environmental Research Letters, 9, 044003
Lindzen R and Nigam S, 1987: On the role of sea surface temperature gradients in forcing low level winds and convergence in the Tropics, J. Atmos. Sci., 44, 2418–2436
LinHo and Wang B, 2002: The Time–Space Structure of the Asian–Pacific Summer Monsoon: A Fast Annual Cycle View, J. Climate, 15, 2001–2019
Lu R and Z Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 2058–2072.
Mantua N J and Hare S R, 2002: The Pacific decadal oscillation. Journal of Oceanography, 58(1), 35-44.
Matsuno T, 1966: Quasi-geostrophic motions in the equatorial area, J. Meteor, Soc. Japan, 44, 25-42
Melet A, L Gourdeau, J Verron and B Djath, 2013: Solomon Sea circulation and water mass modifications: response at ENSO timescales, Ocean Dynamics, 63(1), 1-19.
Nitta T, 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65(3), 373-390.
North G R, T L Bell, R F Cahalan and F J Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110(7), 699-706.
Nakamura H, T Sampe, Y Tanimoto and A Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts, "Earth''s Climate: The Ocean-Atmosphere Interaction", C. Wang, S.-P. Xie and J. A. Carton, Eds., Geophys. Monogr., 147, American Geophysical Union, Washington, D.C., U.S.A., 329-346.
____ and Fukamachi T, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quarterly Journal of the Royal Meteorological Society, 130(599), 1213-1233.
Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C and Kaplan A, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670
Stevens B, Duan J J, McWilliams J C, Munnich M, and Neelin J D, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific, J. Climate, 15, 30-44
Sampe T, Nakamura H, Goto A, and Ohfuchi W, 2010: Significance of a Midlatitude SST Frontal Zone in the Formation of a Storm Track and and Eddy-Driven Westerly Jet. J.Climate, 23, 1793-1814.
____ and Xie S P, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. Journal of Climate, 23(1), 113-134.
Saji N H, Goswami B N, Vinayachandran P N and Yamagata, T., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363. doi:10.1038/43854.PMID 16862108
Sui C H, P H Chung, and T Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high, Geophys. Res. Lett., 34, L11701, doi:10.1029/2006GL029204.
Takaya K., and H. Nakamura, 2001: A formulation of a phase-Independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627.
Tao S and Chen L, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, Chang C P and Krishnamurti T N (Oxford University Press), pp 60-92
Ting M and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 3565–3582.
Uppala S M and Coauthors, 2005: The ERA&;#8208;40 re&;#8208;analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012
Waliser D E and Graham N E, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98(D7), 12881–12893
Wang B, Wu R and Li T, 2003: Atmosphere-warm ocean interaction and its impact on Asian-Australian monsoon variability J. Climate, 16, 1195-1211
____., and Johnny CL Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15(13), 1643-1658.
____., Ding Q., Fu X., Kang I. S., Jin K., Shukla J. and Doblas&;#8208;Reyes F., 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Research Letters, 32(15).
____, Wu, Z., Li, J., Liu, J., Chang, C. P., Ding, Y., and Wu, G., 2008: How to measure the strength of the East Asian summer monsoon. J.Climate, 21, 4449-4463
____, J. Yang, and T. Zhou, 2008: Interdecadal Changes in the Major Modes of Asian–Australian Monsoon Variability: Strengthening Relationship with ENSO since the Late 1970s. J. Climate, 21, 1771–1789..
Xiang B., Wang, B., Yu, W., &; Xu, S. (2013). How can anomalous western North Pacific Subtropical High intensify in late summer?. Geophysical Research Letters, 40(10), 2349-2354.
Xie S. P., Hu, K., Hafner, J., Tokinaga, H., Du, Y., Huang, G., and Sampe, T., 2009: Indian Ocean Capacitor Effect on Indo–Western Pacific Climate during the Summer following El Nino. J. Climate, 22, 730-747
____, Du, Y., Huang, G., Zheng, X. T., Tokinaga, H., Hu, K., and Liu, Q., 2010: Decadal Shift in El Nino Influences on Indo–Western Pacific and East Asian Climate in the 1970s*. Journal of Climate, 23, 3352-3368
Yang J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon, Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.
Yasui S. and M. Watanabe, 2010: Forcing Processes of the Summertime Circumglobal Teleconnection Pattern in a Dry AGCM. J. Climate, 23, 2093–2114.
Yihui D., and Chan, J. C., 2005:. The East Asian summer monsoon: an overview.Meteorology and Atmospheric Physics, 89(1-4), 117-142.
Zhang M., Li, S., Lu, J., &; Wu, R., 2012: Comparison of the Northwestern Pacific Summer Climate Simulated by AMIP II AGCMs. J. Climate, 25, 6036-6056


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top