(3.231.29.122) 您好!臺灣時間:2021/02/25 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾開治
研究生(外文):Kai-Chih Tseng
論文名稱:DYNAMO期間,季內震盪之濕化過程診斷
論文名稱(外文):Moistening Processes of Madden-Julian Oscillations during DYNAMO
指導教授:隋中興隋中興引用關係
指導教授(外文):Chung-Hsiung Sui
口試委員:許晃雄盧孟明陳維婷
口試委員(外文):Huang-Hsiung HsuMong-Ming LuWei-Ting Chen
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:57
中文關鍵詞:季內震盪對流濕化過程邊界層尺度分離
外文關鍵詞:MJOconvectionmoisteningboundary layerscale separation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,利用熱帶季內震盪觀測實驗 Dynamics of Madden Julian Oscillation (DYNAMO) 期間,所搜集的探空資料、經過探空同化的作業用網格資料以及衛星資料等,對於季內震盪(MJOs)低層大氣濕化過程進行探討。對於MJOs的濕化過程,我們利用時間尺度分離的水氣方程,與季內尺度(intraseasonal)的水氣趨勢項(tendency term)和水氣異常(moisture anomaly)求取內積,並利用相關係數探討在MJOs不同相位時,各種濕化機制所扮演角色。在研究的結果顯示,背景場與季內震盪的水氣和風場交互作用,是促使MJOs水氣移動以及成長的主要來源,同時對流貢獻(-Q2)則為主要的水氣耗散項 。更進一步將MJO生命期分成四個階段:對流抑制相位(suppressed phase) 、對流成長相位(cloud developing phase) 、 對流相位(convective phase) 、對流消散相位(decaying phase),我們發現十月份 (MJO1) 與十一月份的MJO(MJO2)在對流抑制相位到對流成長相位這段過程(pre-moistening stage),呈現不同特徵 。在MJO1,背景場的沉降作用限制了對流的發展,Q2呈現負值代表透過海面蒸發以及非降水性淺對流再蒸發影響濕化低層大氣;而在MJO2,背景場的上升運動,使得對流活動相對活躍,伴隨的Q2呈現正值,顯示對流降水有效的移除大氣中的水氣。這個結果也指出,低頻系統(如:季節變化或年際變化)對於MJO生成都有顯著影響。而先前研究所注重的低層水氣輻合則在對流成長相位較為顯著;除此之外由天氣尺度(synoptic eddies)所貢獻的水氣平流項,則為水氣混合擴散的效果,此項在MJO1 pre-moistening為濕化低層大氣效果,在MJO2則為耗散水氣效果。

Low-tropospheric (1000~700 hPa) moistening processes of the two Madden-Julian Oscillations (MJOs) over the Indian Ocean during Dynamics of the MJO (DYNAMO) are investigated by using soundings, operational assimilation and satellite data. Through the life cycles, the moistening processes responsible for MJO evolution is investigated by projecting the scale-separated moisture budget terms onto intraseasonal moisture anomaly and its time tendency change and by checking their correlation over their life cycles using time-decomposed wind and moisture fields. Results indicate that broad-scale advection by low-frequency and MJO flow and moisture fields are dominant moisture sources, while residual of moisture budget (&;#8722;Q2) as dominant sink contributing to tendency term (propagation) and intaseasonal moisture anomaly (growth and decay). Dividing their life cycles into four phases (suppressed, cloud developing, convective, and decaying phase), the two MJOs exhibit different budget balances in pre-moistening stage from the suppressed phase to cloud developing phase when low-frequency vertical motion is downward in MJO1 but upward in MJO2. The corresponding drying and moistening are balanced by negative Q2 (re-evaporation in non-raining cloud) in MJO1 and positive Q2 in MJO2. The result implies that seasonal cycle and interannual oscillations can affect the initiation of MJOs. The pre-moistening in the low-troposphere by boundary-layer moisture convergence leading the deep convection is observed but only in the cloud developing to convective phase of MJOs. Nonlinear moisture advection by synoptic disturbances and by MJOs always acts as diffusive terms. They are dominant moisture sources (sinks) in the suppress phase of MJO1 (MJO2).

口試委員審定書 1
Acknowledge 2
Abstract (Chinese) 3
Abstract 4
Contents 6
Figure Captions 6
Table Captions 12
Chapter 1 Introduction 13
Chapter 2 Data and Method 17
a.Sounding Observation 17
b.Satellite Data 18
c.ECMWF operational data 18
d.Diagnostic Moisture Budget 19
e.Scale-separated Moisture Budget 20
Chapter 3 MJO evolution in DYNAMO period 21
a.Large-scale environment and MJO evolution 21
b.Evolution of vertical moisture, vertical motion and convective activity over DYNAMO sounding array 23
Chapter 4 Moisture Budget 27
a.Projection of budget terms onto moisture anomaly and its tendency change 28
b.Moisture budget in the pre-moistening stage 31
Chapter 5 Conclusion and Remarks 36
Reference 40
Tables 46
Figures 47


Andersen, J. A., and Z. Kuang, 2012: Moist Static Energy Budget of MJO-like Disturbances in the Atmosphere of a Zonally Symmetric Aquaplanet. J. Climate., 25, 2782–2804.

Benedict, J., and D. A. Randall, 2007: Observed Characteristics of the MJO Relative to Maximum Rainfall. J. Climate., 64, 2332-2354.

Ching, L., C.-H. Sui, and M.-J. Yang, 2010: An analysis of multi-scale nature of tropical cyclone activities in June 2004. Part 1: Climate background. J. Geophys. Res., 115, D24108

Del Genio, A. D., Y Chen, D. Kim, and M.-S. Yao, 2012: The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations. J. Climate., 25, 3755–3770.

Grabowski, W. W., 2003: MJO-like Coherent Structures: Sensitivity Simulations Using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60, 847–864.

Hendon, H. H., and M. L. Salby, 1994: The Life Cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51 , 2225–2237.

Hu, Q., and D. A. Randall, 1994: Low-Frequency Oscillations in Radiative-Convective Systems. J. Atmos. Sci., 51, 1089–1099.

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeor, 8, 38–55.

Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 4914–4931

Johnson, R. H., and P. E. Ciesielski, 2013: Structure and Properties of Madden–Julian Oscillations Deduced from DYNAMO Sounding Arrays. J. Atmos. Sci., 70, 3157–3179.

Kerns, B. W., and S. Chen, 2014: Equatorial Dry Air Intrusion and Related Synoptic Variability in MJO Initiation during DYNAMO. Mon. Wea. Rev., 142, 1326–1343.

Kikuchi, K., and Y.N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101

Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and Vertical Structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62, 2790–2809.

Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus Nonpropagating Madden–Julian Oscillation Events. J. Climate, 27, 111–125.

Kim, J.-H., C.-H. Ho, C.-H. Sui, and S.-K. Park, 2005: Dipole Structure of Interannual Variations in Summertime Tropical Cyclone Activity over East Asia. J. Climate. Vol. 18, No. 24, pp. 5344–5356.

Lau, K.-M., P. H. Chan, 1986: Aspects of the 40–50 Day Oscillation during the Northern Summer as Inferred from Outgoing Longwave Radiation. Mon. Wea. Rev., 114, 1354–1367.

_____, and L. Peng 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950-972

_____, and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: observations during TOGA COARE. J. Climate, 10, 465-472.

_____, and D. E. Waliser, 2005: Intraseasonal Variability in the Atmospheric-Ocean Climate System, 436 pp., Praxis, Chichester, U.K.

_____, and H.-T. Wu, 2010: Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden–Julian Oscillation. J. Climate,23, 504–518.

Lawrence, D. and P. J. Webster, 2002: The boreal summer intraseasonal oscillation and the South Asian monsoon. J. Atmos. Sci., 59, 1593-1606.

Liebmann B., H. Hendon, and J. Glick, 1994: The relationship between tropical cyclones of the western Paci&;#64257;c and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.

_____, and C.A. Smith, 1996: Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.

Li, T., and C. Zhou, 2009: Planetary Scale Selection of the Madden–Julian Oscillation*. J. Atmos. Sci., 66, 2429–2443.

Madden, R. A., and P. R. Julian, 1972: Description of global –scale circulation cells in the tropics with a 40-50 day period. J. Climate, 29,2665-2690

Maloney, E. D., and D. L. Hartmann, 2000: Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation. J. Climate, 13, 1451–1460.

_____, 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate., 22, 711-729.

Mapes, B. E., S. Tulich, J.-L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves. Dyn. Atmos. Oceans, 42, 3-29.

Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area, J. Meteor. Soc Japan., 44, 25-43.

Matthews A. J., 2008: Primary and successive events in the Madden-Julian Oscillation. Quart. J. Roy. Meteorol. Soc., 134, 439-453.

Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part I: Analytical results. J. Atmos. Sci., 51, 1876-1894.

Sobel, A., and E. Maloney, 2012: An Idealized Semi-Empirical Framework for Modeling the Madden–Julian Oscillation. J. Atmos. Sci., 69, 1691–1705.

_____, and Eric Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187-192.

Sperber, K. R., 2003: Propagation and the Vertical Structure of the Madden–Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.

Sui, C-H., and K-M. Lau, 1992: Multiscale Phenomena in the Tropical Atmosphere over the Western Pacific. Mon. Wea. Rev., 120, 407–430.

_____, K-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal Variations in Tropical Oceanic Cumulus Convection during TOGA COARE. J. Atmos. Sci., 54, 639–655.

Wang, B., 1988: Dynamics of tropical low frequency waves: An analysis of moist Kelvin Waves. J. Atmos. Sci., 45, 2051-2065

_____, and T. Li, 1994: Convective interaction with boundary dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400.

Wang, W., and M. E. Schlesinger, 1999: The Dependence on Convection Parameterization of the Tropical Intraseasonal Oscillation Simulated by the UIUC 11-Layer Atmospheric GCM. J. Climate, 12, 1423–145

Wheeler, M., and G. N. Kiladis, 1999:Convectively coupled equatorial waves: Analysis of cloud and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56,374-399

_____, and H. H. Hendon., 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Wea. Rev., 132, 1917–1932.

Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cluster from large-scale heat and moisture budget. J. Atmos. Sci, 30, 611-627

Yan, H., M. Zhong, and Y. Zhu (2004), Determination of the degree of freedom of digital filtered time series with an application to the correlation analysis between the length of day and the Southern Oscillation Index, Chin. Astron. Astrophys., 28, 120-126

Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔