跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡偉銘
研究生(外文):Wei-Ming Tsai
論文名稱:利用雲解析模式探討組織性對流對於極端降雨之影響
論文名稱(外文):The response of extreme precipitation to the organized convections using a cloud resolving model
指導教授:吳健銘
指導教授(外文):Chien-Ming Wu
口試委員:隋中興陳維婷蘇世顥
口試委員(外文):Chung-Hsing SuiWei-Ting ChenShih-Hao Su
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:51
中文關鍵詞:對流組織風切濕度極端降雨
外文關鍵詞:convectionorganiztionmoisturewind shearextreme precipitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討對流系統的組織結構以及極端降雨在不同大尺度環境下的反應為何,利用具有明確物理過程之三維雲解析模式VVM作為模擬工具,透過GATE(GARP Atlantic Tropical Experiment)探空觀測之大尺度環境外力來改變環境水氣的狀態,另外搭配垂直風切有無的設定進行一系列針對垂直風切作用於不同環境下的敏感性實驗,將模式輸出結果進行統計分析。

研究結果顯示藉由四邊連結分割法所診斷出的雲尺寸大小於垂直高度1.5~5km處受到風切影響最為顯著,突顯出風切作用的垂直範圍和雲尺寸變化的垂直範圍具有一定的相關性。乾濕環境的差異主導雲尺寸發展的大小,同時也影響垂直風切在對流組織作用的程度,雲尺寸在有無垂直風切下的差異於前10%以及1%中特別明顯,顯示前10%雲即有良好的組織結構存在,在1%的分析中,雲尺寸於最濕的環境中透過組織作用甚至能夠發展至8倍。另外雲尺寸頻率分佈也受到垂直風切作用而有所改變,其分布範圍變廣且小尺寸的雲數量所佔的比例增多。

降雨分析方面,前1%的極端降雨強度在垂直風切環境存在下有明顯的增強,此外第99.9百分位的極端降雨相對增加量值於最乾的環境(~60%)相較於最濕的環境(~20%)下更為顯著。為了去探討組織性對流與降雨的關聯性,我們結合核心雲尺寸以及地面降雨進行分析,結果顯示核心雲大小與降雨強度存在著正比的關係,即越大的雲具有越強的降雨。最後在單雲降雨強度的分析結果下則顯示模擬空間內前10%大的雲在有垂直風切下的強度較強,其結果在濕環境中更加明顯,此意味著在具有一定程度的垂直風切作用下,模擬空間中的前10%的核心雲可以視為組織性對流系統,並有利於整體前1%的極端降雨上的增強。

關鍵字: 對流、組織、風切、濕度、極端降雨


Our study focuses on how convective organizations and the associated precipitation extremes respond to various environments. Thus, we use a 3D cloud resolving model VVM with explicit physical process to examine the im-pacts. The model is imposed with sounding data of large-scale forcing observed in GATE (GARP Atlantic Tropical Experiment) to change the environmental moisture. Combining the vertical wind shear, we set a series of idealized sensitivity tests and do statistical analyses with model outputs.

Results reveal that a dramatic increasing of cloud size diagnosed by the four-connected segmentation method is shown from 1.5~5km height under each environment, which indicates a strong correlation between wind shear and the cloud size. Environmental moisture is crucial to the cloud size and organization. The difference of size between w/wo wind shear is much larger in 10% and 1% analysis, so the first 10% clouds can be considered as ones with larger and more organized structures. In 1% analysis, the cloud size can be even 8 times larger under the moistest environment. Cloud size distribution is broadened and the ratio of small cloud size increases when vertical wind shear exits.

The effect of wind shear on enhancing precipitation becomes significant in the 1% extreme. Besides, relative enhancement at the 99.9 percentile is especially greater in the driest environment (~60%) than the moistest one (~20%). To explore the relationship between cloud size and precipitation strength, we combine core cloud size with surface precipitation and show a proportional relation. Moreover, the precipitation strength of first 10% size-averaged shows a significant enhancement, especially in moistening cases, which implies the first 10% clouds can be considered as organized convections leading to the enhancement of 1% extreme precipitation.

Key words: convection, organization, wind shear , moisture, extreme precipitation


目 錄
口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目 錄 v
圖表目錄 vi

第一章 前言 1
第二章 數值模式及理想化實驗設計 4
2-1數值模式─Vector Vorticity Equation Model (VVM) 4
2-2 理想化實驗設計 4
第三章 模式變數平均場比較 6
第四章 對流結構探討 9
4-1對流組織作用─中尺度線狀對流系統形成機制 9
4-2 四邊連結分割法(Four-connected segmentation method) 9
4-3 診斷雲尺寸之分析探討 11
第五章 降雨分析 15
5-1 平均降雨分析 15
5-2 極端降雨分析 16
5-3極端降雨與對流組織大小之關係 17
5-4極端降雨增強機制探討 19
第六章 總結與討論 21
6-1總結 21
6-2討論 22
參考文獻 24

Alexander, G. D., &; Young, G. S. (1992). The relationship between EMEX mesoscale precipitation feature properties and their environmental characteristics. Monthly weather review, 120(4), 554-564.

Bretherton, C. S., Blossey, P. N., &; Khairoutdinov, M. (2005). An energy-balance analysis of deep convective self-aggregation above uniform SST. Journal of the atmospheric sciences, 62(12), 4273-4292.

Derbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J. Y., Piriou, J. M., Redelsperger, J. L., &; Soares, P. M. M.(2004). Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130(604), 3055-3079.

Houze Jr, R. A., Smull, B. F., &; Dodge, P. (1990). Mesoscale organization of springtime rainstorms in Oklahoma. Monthly Weather Review, 118(3), 613-654.

Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan (2005), Organization of oceanic convection during the onset of the 1998 east Asian summer monsoon, Mon. Weather Rev., 133, 131– 148.

Jung, J. H., &; Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. Monthly Weather Review, 136(1), 276-294.

Khairoutdinov, M., &; Randall, D. (2006). High-resolution simulation of shallow to deep convection transition over land. Journal of the atmospheric sciences, 63(12), 3421-3436.

Krueger, S. K., Fu, Q., Liou, K. N., &; Chin, H. N. S. (1995). Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34(1), 281-287.

Kuang, Z. (2010), Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively cou-pled waves, Journal of the atmospheric sciences., 67, 941–962

Lafore, J. P., &; Moncrieff, M. W. (1989). A numerical investigation of the organiztion and interaction of the convective and stratiform regions of tropical squall lines. Journal of the atmospheric sciences, 46(4), 521-544.

LeMone, M. A. (1983). Momentum transport by a line of cumulonimbus. Journal of the Atmospheric Sciences, 40(7), 1815-1834.

——, Barnes, G. M., &; Zipser, E. J. (1984). Momentum flux by lines of cumulonimbus over the tropical oceans. Journal of the atmospheric sciences,41(12), 1914-1932.

——, Zipser, E. J., &; Trier, S. B. (1998). The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale
convective systems during TOGA COARE. Journal of the atmospheric sciences
, 55(23), 3493-3518.

Liu, C., Moncrieff, M. W., &; Zipser, E. J. (1997). Dynamical influence of microphysics in tropical squall lines: A numerical study. Monthly weather review, 125(9), 2193-2210.

Lucas, C., Zipser, E. J., &; Ferrier, B. S. (2000). Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. Journal of the
atmospheric sciences, 57(15), 2351-2373.

Rickenbach, T. M., &; Rutledge, S. A. (1998). Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. Journal of the atmospheric sciences, 55(17), 2715-2729.

Robe, F. R., &; Emanuel, K. A. (2001). The effect of vertical wind shear on radiative-convective equilibrium states. Journal of the atmospheric sciences, 58(11),
1427-1445.

Thorpe, A. J., Miller, M. J., &; Moncrieff, M. W. (1982). Two&;#8208;dimensional convection in non&;#8208;constant shear: A model of mid&;#8208;latitude squall lines. Quarterly Journal of the Royal Meteorological Society, 108(458), 739-762.

Tompkins, A. M. (2001a). Organization of tropical convection in low vertical wind shears: The role of water vapor. Journal of the atmospheric sciences, 58(6), 529-545.

Tompkins, A. M. (2001b). Organization of tropical convection in low vertical wind shears: The role of cold pools. Journal of the atmospheric sciences, 58(13), 1650-1672.

Trivej, P., &; Stevens, B. (2010). The echo size distribution of precipitating shallow cumuli. Journal of the Atmospheric Sciences, 67(3).

Tulich, S. N., &; Mapes, B. E. (2010). Transient environmental sensitivities of explicitly simulated tropical convection. Journal of the Atmospheric Sciences,67(4).

Wang, S., &; Sobel, A. H. (2012). Impact of imposed drying on deep convection in a cloud&;#8208;resolving model. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D2).

Xu, K. M., Arakawa, A., &; Krueger, S. K. (1992). The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. Journal of the atmospheric sciences, 49(24), 2402-2420.







QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top