(3.237.178.91) 您好!臺灣時間:2021/03/07 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佁甄
研究生(外文):I-Jen Chen
論文名稱:氣膠對東亞夏季季風之影響
論文名稱(外文):Aerosol Impact on East Asian Summer Monsoon
指導教授:陳正平陳正平引用關係
指導教授(外文):Jen-Ping Chen
口試委員:許晃雄陳維婷黃彥婷蔡宜君
口試委員(外文):Huang-Hsiung HsuWei-Ting ChenYen-Ting HwangI-Chun Tsai
口試日期:2014-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:氣膠輻射效應東亞夏季季風動力回饋風-蒸發-海表面溫度正回饋作用太平洋-日本遙相關
外文關鍵詞:Aerosol radiative forcingEast Asian summer monsoondynamical feedbackwind-evaporation-SST feedbackPacific-Japan pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
亞洲擁有世界最顯著的季風區,且為人口分布最密集之地區。除了南亞外,東亞是另一個同樣有強季風系統、高人口及高人為汙染的地區。少數針對東亞的研究皆認為,氣膠對季風的影響導致地表溫度降低、降水減少及季風強度減弱,但對其動力回饋機制缺乏深入探討。本研究之目的為瞭解氣膠的效應對東亞季風的影響,利用NCAR/CESM 加入單層海洋模式以提供良好的海洋回饋,模擬東亞在西元1850及2000年不同氣膠排放條件去估計人為氣膠所產生的影響,並從不同的角度,包括動力回饋機制,探討氣膠對夏季氣候之影響。
本研究結果顯示,總氣膠驅動力造成的直接效應反映在氣膠排放源區;氣膠間接效應隨著雲系綜觀系統的移動而擴大範圍,平均造成了東亞地區的地表溫度及降水減少,分別為-1.07°C 和 -0.46 mm/day。氣膠輻射效應造成之動力回饋現象,主要透過間接影響海表面溫度及太平洋高壓脊強度,再經由「風-蒸發-海表面溫度」的正回饋作用(Wind-Evaporation-Sea-Surface-Temperature feedback, WES feedback)使得地表溫度與輻射變化的地理分布有不一致性。主要氣膠排放區地表與低對流層溫度下降,然而上升運動卻加強了,使梅雨鋒面增強及降水增加;這是主要透過激發Pacific-Japan pattern的回饋機制所導致。而整體東亞夏季季風強度則為減弱。
另分析不同性質之氣膠種類的影響,顯示吸收性氣膠(黑碳)及非吸收性氣膠所造成地表溫度變化分別為 0.18 °C 和 -0.53 °C,對降水的影響則分別為-0.35 mm/day和-0.34 mm/day。非吸收性氣膠會散射短波輻射,降低地表溫度與增加大氣穩定度;吸收性氣膠會吸收輻射加熱大氣,而底層較熱的大氣會加熱地表,抵銷其阻擋短波輻射到達地表之作用,但合起來的效果仍增加大氣穩定度。非吸收性氣膠和吸收性氣膠兩者皆有和總氣膠相同的WES feedback及Pacific-Japan pattern回饋機制,惟強度較弱,兩者在東亞夏季季風的強度皆顯示為減弱,而吸收性氣膠影響的減弱程度較小。


Asia has the strongest monsoon system in the world and has the most population continent. In addition to Indian monsoon, East Asia is another area with strong monsoon system, high population and high aerosol pollution. The relevant studies show that aerosol causes decrease in surface temperature, reduction of precipitation and the weakness of monsoon system. However, less research was studied further into the dynamical feedback. This study focuses on the how aerosol will change the East Asian summer monsoon. We apply the NCAR/CESM global model with slab ocean model to get a better ocean feedback, and simulate the year 1850 and 2000 emission scenarios in order to estimate the influence of anthropogenic aerosol forcing and to approach the problem from different perspectives, including dynamical feedback.
The result shows that in total aerosol forcing, the direct radiative forcing is main-ly on the high aerosol distribution area. Aerosol indirect effect follow the cloud movement of the synoptic system and influence the whole Asia. The mean regional surface temperature and precipitation decreased by -1.07°C and -0.46 mm/day, respec-tively, over East Asia , but the responses vary significantly from region to region. The dynamical feedback of aerosol forcing, which affect the sea surface temperature and the strength of Pacific high ridge by indirect effect, shows that the wind-evaporation-SST feedback causes the inconsistency distribution between surface temperature and radiation. The main aerosol emission region shows the reduction of temperature, but cause the updraft at the mei-yu front and has more precipitation in the result. This may due to trigger the Pacific-Japan pattern (P-J pattern) feedback, while we see the similar structure in the result. Overall, aerosol particles cause large regional subsidence anomaly, resulting in weakened summer monsoon.
When considering only absorbing (black carbon) or non-absorbing (sulfate) aero-sols, the changes in surface temperature are +0.18°C and -0.53°C, respectively; where-as the changes in precipitation are -0.35 mm/day and -0.34 mm/day, respectively. Non-absorbing aerosol can scatter the solar radiation, causing the temperature decrease and stabilize atmosphere. Absorbing aerosol shows heating atmosphere can com-pensate the radiation reduction at surface, while the combined effect shows stabilizing atmosphere. The dynamical feedback of WES feedback and P-J pattern are show in the absorbing and non-absorbing aerosol result, only with a weaker phenomenon.


摘要 III
Abstract IV
表目錄 VII
圖目錄 VII
第一章 前言 1
第二章 研究方法 9
2.1 數值模式CESM及其設定 9
2.2 實驗設計 11
2.2.1 總氣膠實驗組(改變所有氣膠對東亞季風之影響) 11
2.2.2 分類氣膠實驗組(比較吸收性氣膠及非吸收性氣膠之差異) 11
第三章 氣膠輻射效應影響及動力回饋 12
3.1 氣膠直接輻射效應 13
3.2 氣膠間接輻射效應 14
3.3 動力回饋 16
3.3.1 溫度與輻射變化之不一致性 16
3.3.2 梅雨鋒面增強 18
3.3.3 類Pacific-Japan pattern與熱帶對流變化 19
3.3.4 東亞夏季季風指標 21
3.4 小結 21
第四章 吸收性氣膠與非吸收性氣膠之比較 23
4.1 吸收性與非吸收性氣膠之比較 23
4.2 與Total aerosol 之比較 26
第五章 總結與未來展望 27
5.1 結論 27
5.2 未來展望 29
參考文獻 31


Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.(2012):Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate dynamics, 38(5-6), 897-911.
Bollasina, M. A., Ming, Y., amd Ramaswamy, V.(2013):Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols. Geo-physical Research Letters, 40(14), 3715-3720.
Chiang, J. C., and Bitz, C. M.(2005):Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics, 25(5), 477-496.
Chung, C. E., &; Ramanathan, V.(2006):Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. Journal of Climate,19(10).
Ding, Y. H., and Chan, J. C.(2005):The East Asian summer monsoon: an over-view.Meteorology and Atmospheric Physics,89(1-4), 117-142.
Guo, L., Highwood, E. J., Shaffrey, L. C., and Turner, A. G.(2013):The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmospheric Chemistry and Physics, 13(3), 1521-1534.
Huang, Y., Dickinson, R. E., and Chameides, W. L. (2006). Impact of aerosol indirect effect on surface temperature over East Asia. Proceedings of the National Acad-emy of Sciences of the United States of America, 103(12), 4371-4376.
Jiang, X., Barth, M. C., Wiedinmyer, C., and Massie, S. T.(2013):Influence of an-thropogenic aerosols on the Asian monsoon: a case study using the WRF-Chem model. Atmospheric Chemistry and Physics Discussions, 13(8), 21383-21425.
Ju, L. X., and Han, Z.W.(2013):Impact of Different East Asian Summer Monsoon Circulations on Aerosol-Induced Climatic Effects. Atmospheric and Oceanic Science Letters, 6(5), 227-232.
Kosaka, Y. and Nakamura, H.(2006):Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quarterly Journal of the Royal Meteorolog-ical Society, 132(619), 2009-2030.
Kosaka, Y. and Nakamura, H.(2010):Mechanisms of Meridional Teleconnection Observed between a Summer Monsoon System and a Subtropical Anticyclone. Part I: The Pacific–Japan Pattern. Journal of Climate, 23(19), 5085–5108.
Laing, A., and Evans, J. L.(2011):Introduction to tropical meteorology. Educational material from The COMET Program, University Corporation for Atmospheric Research (UCAR).
Lau, K. M., Kim, M. K., and Kim, K. M.(2006):Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau.Climate Dy-namics, 26(7-8), 855-864.
Lau, K. M., Ramanathan, V., Wu, G. X., Li, Z., Tsay, S. C., Hsu, C., Sikka, R., Holben, B., Lu, D., Tartari, G., Chin, M., Koudelova, P., Chen, H., Ma, Y., Huang, J., Taniguchi, K., and Zhang, R.(2008):THE JOINT AEROSOL-MONSOON EXPERIMENT. Bulletin of the American Meteorological Society, 89(3).
Lau, W. K., and Kim, K. M.(2007):3 Does aerosol weaken or strengthen the Asian monsoon?. Developments in Earth Surface Processes, 10, 13-22.
Lau, W. K., and Kim, K. M.(2010):Fingerprinting the impacts of aerosols on long&;#8208;term trends of the Indian summer monsoon regional rainfall. Geophysical Re-search Letters, 37(16).
Liu, Y., Sun, J., &; Yang, B. (2009). The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B, 61(4), 642-656.
Lu, R. and Dong, B. (2001):Westward Extension of North Pacific Subtropical High in Summer. Journal of the Meteorological Society of Japan. Ser. II, 79(6), 1229-1241.
Nitta, T.(1987):Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65(3), 373-390.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Silla, D.R., and Wild, M.(2005):Atmospheric brown clouds: Im-pacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5326-5333.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L.(Ed.)(2007):Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC(Vol. 4). Cambridge University Press.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... (Eds.)(2013).Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the IPCC(Vol.5).
Streets, D. G., Shindell, D. T., Lu, Z., and Faluvegi, G.(2013):Radiative forcing due to major aerosol emitting sectors in China and India. Geophysical Research Let-ters, 40(16), 4409-4414.
Tao, S., Chen, L. X.(1987):A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology [M]. Oxford: Oxford University Press, 1(987), 60-92.
Tsai, I. C., Chen, J. P., Lin, P. Y., Wang, W. C., and Isaksen, I. S. A.(2010):Sulfur cycle and sulfate radiative forcing simulated from a coupled global cli-mate-chemistry model. Atmospheric Chemistry and Physics, 10(8), 3693-3709.
Wang, B., Wu, R., and Lau, K. M.(2001):Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific–East Asian Monsoons. Journal of Climate, 14(20).
Wang, B., Wu, Z., Li, J., Liu, J., Chang, C. P., Ding, Y., and Wu, G.(2008):How to measure the strength of the East Asian summer monsoon. Journal of Climate, 21(17).
Wang, C., Kim, D., Ekman, A. M., Barth, M. C., and Rasch, P. J.(2009):Impact of anthropogenic aerosols on Indian summer monsoon. Geophysical Research Let-ters, 36(21).
Wang, W. C., Chen, J. P., Isaksen, I. S. A., Tsai, I. C., Noone K., and McGuffie K.(2011):Chapter 13: climate-chemistry interaction:future tropospheric ozone and aerosols. The Future of the World''s Climate: A Modelling Perspective. (Henderson-Sellers, A., and McGuffie, K. eds.)Elsevier, 2011.
Webster, P. J.(1994):The role of hydrological processes in ocean&;#8208;atmosphere inter-actions. Reviews of Geophysics, 32(4), 427-476.
Zhu, C., Lee, W. S., Kang, H., and Park, C. K.(2005):A proper monsoon index for seasonal and interannual variations of the East Asian monsoon.Geophysical re-search letters,32(2).
Zhu, J., Liao, H., and Li, J.(2012):Increases in aerosol concentrations over eastern China due to the decadal&;#8208;scale weakening of the East Asian summer mon-soon.Geophysical Research Letters,39(9).
林育鮪(2014):東亞-西太平洋夏季季風之年際變化,國立臺灣大學


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔