(3.220.231.235) 您好!臺灣時間:2021/03/08 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張傳杰
研究生(外文):Chuan-Chieh Chang
論文名稱:梅姬颱風(2010)快速增強之機制探討
論文名稱(外文):Understanding the Mechanisms Leading to the Rapid Intensification of Typhoon Megi (2010)
指導教授:吳俊傑吳俊傑引用關係
指導教授(外文):Chun-Chieh Wu
口試委員:游政谷陽明仁
口試日期:2014-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:230
中文關鍵詞:颱風快速增強對流加熱對流爆發次環流位渦慣性穩定度暖心結構
外文關鍵詞:Typhoonrapid intensificationconvective heatingconvective burstsecondary circulationpotential vorticityinertial stabilitywarm core structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:421
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在颱風路徑預報有長足進展的近30年間,颱風強度預報進步卻相對有限,其中一個困難在於無法準確預報快速增強(Rapid Intensification, RI)的現象所致,因此研究此現象背後的物理機制有其必要。
  本研究使用WRF模式對於梅姬颱風(2010)進行高解析度數值模擬,合理模擬出其快速增強過程,同時進行改變雲微物理參數法的敏感性實驗,將增強速率不同的兩颱風進行比較分析。結果顯示,增強較快颱風開始增強前於中高層有較高位渦、慣性穩定度以及更加的軸對稱,同時暖心發展在更高之高度且強度較強,伴隨近中心有更旺盛之對流發展和更強的次環流,以及更劇烈的眼-眼牆質量交換。
  將開始增強前的時間分為強對流旺盛-不旺盛兩種時期,發現強對流較旺盛時會伴隨颱風內核區位渦的大幅增加,顯示旺盛對流之於颱風結構改善的重要性,為了更進一步了解兩者間的因果關係,我們進行了位渦收支分析以及使用熱力風平衡模式進行診斷,收支結果顯示水平平流可能扮演重要角色,而熱力風平衡模式診斷結果則顯示強對流能提供較多潛熱,引起較強次環流,將外圍較大的角動量帶入颱風內部中高層,有助於位渦的增加。另外,我們也發現強對流引起較強的次環流,能有效的幫助眼內增溫,增強颱風暖心。
  綜合所看到的特徵以及診斷的結果,我們提出一個可能導致快速增強的概念模式:較強的正壓不穩定導致較劇烈的眼-眼牆交互作用,使得更多高熵空氣由眼傳入眼牆中,刺激眼牆中更旺盛的對流,提供更多潛熱,引起更強的次環流,較強次環流有助於中高層位渦和慣性穩定度的增加,也有助於眼內的增溫,當中高層慣性穩定度增加後,也有助於於較強的暖心維持在較高的高度,如此型態的暖心更能有效的讓颱風中心氣壓下降,導致快速增強的發生。


  While TC track forecasts have been improved remarkably during the past 20 years, progress in intensity forecast has lagged significantly behind. One subset of intensity change, rapid intensification (RI), is particularly difficult to predict. Therefore, the objective of this study is to investigate the key mechanisms that lead to the RI of typhoon Megi (2010).
  This study uses Weather Research and Forecasting Model (WRF) to simulate the RI process associated with Megi. The RI process of typhoon Megi (2010) is simulated reasonably well (by comparing with observations). Furthermore, we carry out a series of sensitivity experiments using different microphysical schemes to evaluate the uncertainty of RI with different model physical processes. Comparisons of different experiments indicate that RI TC has greater potential vorticity (PV), inertial stability (I2), axisymmetricity at mid-upper level. In addition, warmer core located at higher altitude, more active convection near TC center, stronger secondary circulation and more significant interaction between eye and eyewall that can also be identified. These features may be the precursors of RI.
  The PV budget is conducted to gain more physical insights. Results show that when the convective bursts (CBs) are active, the simulated PV tendency is significantly greater. In addition, horizontal PV advection may play a role in increasing the mid-upper level PV, and this may be a result from the secondary circulation triggered by the heating of CBs. The Sawyer-Eliassen model is utilized to diagnose the balanced response of heating and it shows that when CBs are active, the enhanced latent heat strengthens the secondary circulation and the PV advection due to secondary circulation is greater. In addition, we also found that the strong secondary circulation is beneficial to the increased potential temperature in the eye.
  In conclusion, this study suggests propose a possible new path leading to RI: more active convection near the TC center which could be triggered by high entropy air transported from the eye which will generate greater latent heat and initiating stronger secondary circulation. The stronger secondary circulation is favorable for the increased PV and I2 at mid-to-upper level, which also facilitate the formation of warm core at higher level. The greater I2 at mid-to-upper level could also sustain the warm core structure at higher level. The development of warm core at higher level induces the surface pressure dropping effectively, greater I2 at mid-to-upper level also enhances the heating efficiency; these can help lead to the onset of RI.


致謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 文獻回顧和研究動機 1
1.1 過去文獻回顧 2
1.1.1 綜觀環境相關文獻 2
1.1.2 內核結構觀測相關文獻 5
1.1.3 高解析數值模擬相關文獻 8
1.2 研究動機和科學目標 12
第二章 研究工具和方法 13
2.1 模式介紹 13
2.2 模式設定和使用資料 13
2.3 敏感性實驗設計 14
2.4 研究方法 15
2.4.1 快速增強定義 15
2.4.2 不同降水區域定義方法 15
第三章 研究結果I - 梅姬颱風(2010)快速增強之前兆 17
3.1 梅姬颱風簡述以及模式結果驗證 17
3.1.1 梅姬颱風簡述 17
3.1.2 模式強度、路徑、風場以及對流型態驗證 17
3.2 快速增強前綜觀環境分析 19
3.3 快速增強前渦旋結構分析 20
3.3.1 結構演變分析 20
3.3.2 結構對稱度分析 21
3.4 對流尺度分析 23
3.4.1 對流型態分析 23
3.4.2 對流加熱效率分析 24
3.5 位渦收支分析 25
3.5.1 無雨區位渦收支分析 25
3.5.2 對流區位渦收支分析 28
3.6 熱力風平衡模式診斷 30
3.6.1 Active CB period - Non active CB period渦旋結構比較 30
3.6.2 Active CB period - Non active CB period診斷結果比較 31
3.6.3 不同渦漩結構診斷結果比較 32
3.7 綜合討論及小結 33
第四章 研究結果II – 改變雲微物理參數法之敏感性實驗 35
4.1 敏感性實驗結果 35
4.2 綜觀環境和渦漩結構比較 35
4.3 暖心結構比較和位溫收支分析 36
4.3.1 暖心結構比較 36
4.3.2 位溫收支分析 37
4.3.3 地面氣壓反演 39
4.4 對流尺度分析比較 40
4.4.1 對流型態比較 40
4.4.2 對流加熱效率比較 41
4.4.3 對流型態差異探討 42
4.5 綜合討論及小結 45
第五章 研究結果III –梅姬颱風(2010)快速增強之過程 48
5.1 綜觀分析 48
5.2 渦漩和暖心結構分析 48
5.2.1 渦漩結構分析 48
5.2.2 暖心結構分析 50
5.3 對流尺度分析 50
5.4 綜合討論與小結 51
第六章 結論和未來展望 54
參考文獻: 57


楊朝淵,2010:西北太平洋超級颱風快速增強現象之原因探討,國立台灣大學大 氣科學研究所碩士論文,95p。
吳舜楠,2013:潛熱釋放對渦旋演變影響之熱力風平衡模式診斷分析,國立台灣大學大氣科學研究所碩士論文,72p。
Barnes, G. M. and P. Fuentes, 2010: Eye Excess Energy and the Rapid Intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 1446-1458.
Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atm. Phys., 52, 233-240.
Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari. and P. G. Black, 2000: Environmental Influences on the Rapid Intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322-352.
Braun, S. A., 2002: A Cloud Resolving Simulation of Hurricane Bob (1991):Storm Structure and Eyewall buoyancy. Mon. Wea. Rev., 130, 1573-1592.
Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the Rapid Intensification of Hurricane Wilma (2005). Part I: Model Prediction and Structural Chnages. Wea. Forecasting., 26, 885-901.
_______, and ______, 2013: On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper-Level Warm Core. J. Atmos. Sci., 70, 146-162.
Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian Trajection View on Transport and Mixing Processes Between the Eye, Eyewall, and Environment Using a High-Resolution Simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835-1856.
D’Asaro, E. A., P. G. Black, L. R. Centurioni, Y.-T. Chang, S. S. Chen, R. C. Foster, H. C. Graber, P. Harr, V. Hormann, R.-C. Lien, I.-I. Lin, T. B. Sanford, T.-Y. Tang, and C.-C. Wu, 2013: Impacts of Typhoons on the Ocean in the Pacific: ITOP. Bull. Amer. Meteor Soc. Doi:BAMS-D-12-00104.(in press)
Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143-1155.
________, 1991: The theory of hurricanes. Annual Rev. Fluid Mech., 23, 179-196.
Guimond, S. R., G. M. Heymsfield. and F. J. Turk, 2010: Multiscale Observations of Hurricane Dennis (2005): The Effects of Hot Towers on Rapid Intensification. J. Atmos. Sci., 67, 633-654.
Harnos, D. H., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L0875.
Hendricks, D. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243-3271.
Holland, G. J., 1997: The Maximum Potential Intensity of Tropical Cyclones. J. Atmos. Sci., 54, 2519-2541.
Hong, S.-Y., and J.-O. Lim, 2006: The WRF Single-Moment 6-class Microphysics Scheme (WSM6). J. Korean. Meteor. Soc., 42, 129-151.
Holliday, C. R., and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022-1034.
Jiang, H., 2012: The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection. Mon. Wea. Rev., 140, 1164-1176.
_______, and E. M. Ramirez, 2013: Necessary Conditions for Tropical Cyclone Rapid Intensification as Derived from 11 Years TRMM Data. J. Clim., 26, 6459-6470.
Kaplan, J., and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Wea. Forecasting., 18, 1093-1108.
Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Wea. Forecasting., 25, 220-241.
Kelley, O. A., J. Stout, and J. B. Halverson, 2005: Hurricane Intensification Detected by Continuously Monitoring Tall Precipitation in the Eyewall. Geophys. Res. Lett., 32, L20819.
Kieu, C., V. Tallapragada, and W. Hogsett, 2014: Vertical structure of tropical cyclones at onset of rapid intensification in the HWRF model. Geophys. Res. Lett., 41, 3298-3306.
Kwon, Y. C., and W. M. Frank, 2008: Dynamic Instabilities of Simulated Hurricane-like Vortices and Their Impacts on the Core Structure of Hurricanes. Part II: Moist Experiments. J. Atmos. Sci., 65, 106-122.
Li, X., and Z. Pu, 2008: Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations. Mon. Wea. Rev., 136, 4819-4838.
McFarquhar, G. M., B. F. Jewett., M. S. Gilmore., S. W. Nesbitt. and T.-L. Hsieh, 2012: Vertical Velocity and Microphysical Distributions Related to Rapid Intensification in a Simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 3515-3534.
Miyamoto, Y., and T. Takemi, 2013: A Transition Mechanism for the Spontaneous Axisymmetric Intensification of Tropical Cyclones. J. Atmos. Sci., 70, 112-129.
Molinari, J., and D. Vollaro, 2010: Rapid Intensification of a Sheared Tropical Strom. Mon. Wea. Rev., 138, 3869-3885.
Monette, S. A., C. S. Velden, K. S. Griffin, and C. M. Rozoff, 2012: Examining Trends in Satellite-Detected Tropical Overshooting Tops as a Potential Predictor of Tropical Cyclone Rapid Intensification. J. Appl. Meteor., 34, 1978-2007.
Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New Insights Into the Physics of Intense Storms. Pert I: Mean Vortex Structure and Maximum Intensity Estimates. Bull. Amer. Meteor. Soc., 87, 1335-1347.
Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Q. J. R. Meteorol. Soc. 137, 829-844.
Ooyama K., 1982: Conceptual Evolution of the Theory and Modeling of the Tropical Cyclone. J. Meteor. Soc. Japan. 60, 369-380.
Persing, J., and M. T. Montgomery, 2003: Hurricane Superintensity. J. Atmos. Sci., 60, 2349-2371.
Reasor, P. D., M. D. Eastin. And J. F. Gamache, 2009: Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution. Mon. Wea. Rev., 137, 603-631.
Rogers, R., 2010: Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification. J. Atmos. Sci., 67, 44-70.
________, P. Reasor. and S. Lorsolo, 2013: Airborne Doppler Observations of the Inner-Core Structural Differences between Intensifying and Steady-State Tropical Cyclones. Mon. Wea. Rev., 141, 2970-2991.
Schubert, W. H., and J. J. Hack, 1982: Inertial Stability and Tropical Cyclone Develoment. J. Atmos. Sci., 39, 1687-1697.
Sitkowski, M., and G. M. Barnes., 2009: Low-Level Thermodynamic, Kinematic, and Reflectivity Fields of Hurricane Guillermo (1997) during Rapid Intensification. Mon. Wea. Rev., 137, 645-667.
Steiner, M., R. A. House, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978-2007.
Stern, D. P., and F. Zhang, 2012: How Does the Eye Warm? Part I: A Potential Temperature Budget Analysis of an Idealized Tropical Cyclone. J. Atmos. Sci., 70, 73-90.
Vigh, J. L., and Schubert, W. H., 2009: Rapid Development of Tropical Cyclone Warm Core. J. Atmos. Sci., 66, 3335-3350.
Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010): Part I: Rapid Intensification. Mon. Wea. Rev., 124, 29-48.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteor. Atmos. Phys., 87, 257-278.
Wu, L., H. Su, R. G. Fovell, B. Wang, J. T. Shen, B. H. Kahn, S. M. Hristova-Veleva, B. H. Lambrigtsen, E. J. Fetzer, and J. H. Jiang, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809.
Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, Convection, and Latent Heating Distributions in Rapidly Intensifying Tropical Cyclones. J. Atmos. Sci., accepted.
Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔