(3.220.231.235) 您好!臺灣時間:2021/03/08 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳境峰
研究生(外文):Ching-Feng Chen
論文名稱:半胱胺酸串鍊蛋白的磷酸化對於視網膜波的影響
論文名稱(外文):The Effects of Phosphorylation of Cysteine String Protein on Retinal Waves
指導教授:王致恬
指導教授(外文):Chih-Tien Wang
口試委員:陳示國盧主欽徐立中周申如
口試委員(外文):Shih-Kuo ChenJuu-Chin LuLi-Chung HsuShen-Ju Chou
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:83
中文關鍵詞:半胱胺酸串鍊蛋白視網膜波星狀無軸突細胞視網膜節細胞鈣離子顯像技術
外文關鍵詞:cysteine string proteinretinal wavesstarburst amacrine cellsretinal ganglion cellscalcium imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
視覺系統在發育的關鍵時期會產生一種自發性的放電現象,稱為「視網膜波」,對於神經迴路的正確連結極為重要。視網膜波的形成是透過突觸前神經元—星狀無軸突細胞—釋放乙醯膽鹼,經由突觸後神經元—視網膜節細胞—接收後而產生。先前的研究顯示,發育中的星狀無軸突細胞能週期性地產生神經衝動並進行鈣離子調控的胞吐作用,釋放興奮性神經傳導物質例如乙醯膽鹼和γ-丁氨基酪酸,進而引發視網膜波。然而,其中仍不甚了解的是,星狀無軸突細胞中鈣離子調控之胞吐作用的改變如何能影響視網膜波的時空特性。
半胱胺酸串鍊蛋白被發現能幫助SNARE蛋白進行正確摺疊,SNARE蛋白已被證實為胞吐作用中膜融合的參與分子,因此半胱胺酸串鍊蛋白可藉由影響SNARE蛋白來調控神經傳導物質的釋放。此外,半胱胺酸串鍊蛋白能被蛋白質激&;#37238;A所磷酸化,而這種蛋白質激&;#37238;在視網膜波發生的時期會被高度活化。這些結果暗示,星狀無軸突細胞或許能經由細胞內訊息傳遞路徑以調控半胱胺酸串鍊蛋白的磷酸化及其功能,進而影響視網膜波的時空特性。
在此論文中,我們研究半胱胺酸串鍊蛋白的磷酸化是否能影響視網膜波的時空特性。首先,我們使用免疫螢光染色證明半胱胺酸串鍊蛋白能在新生老鼠的內網狀層中表現,在分離的視網膜細胞中,更發現半胱胺酸串鍊蛋白能表現在星狀無軸突細胞內,說明了半胱胺酸串鍊蛋白存在於星狀無軸突細胞中,可能可以調控其神經傳導物質釋放的機制。此外,定量聚合&;#37238;鏈鎖反應的實驗結果顯示,發育中的視網膜內最主要的半胱胺酸串鍊蛋白為α型。為了更進一步研究突觸前星狀無軸突細胞中半胱胺酸串鍊蛋白的磷酸化是否會影響視網膜波,我們將特定基因(半胱胺酸串鍊蛋白或其磷酸化突變株)利用專一性啟動子大量地表現於星狀無軸突細胞之中,再利用鈣離子顯像技術記錄視網膜節細胞層的鈣離子變化以偵測視網膜波的時空特性。我們發現當星狀無軸突細胞表現半胱胺酸串鍊蛋白磷酸化缺陷型S10A時,會顯著降低視網膜波的發生頻率;其餘控制組、半胱胺酸串鍊蛋白野生型及磷酸化模擬型S10D &; S10E則否。相較之下,半胱胺酸串鍊蛋白對於視網膜的空間性質只有較小的影響。全細胞膜電壓固定實驗顯示,半胱胺酸串鍊蛋白磷酸化缺陷型S10A降低視網膜節細胞內突觸後電流頻率和其斜率,但不影響視網膜節細胞的電生理特質,顯示大量表現磷酸化缺陷型S10A所造成的結果是來自突觸前星狀無軸突細胞中神經傳導物質釋放的改變所致。有鑑於半胱胺酸串鍊蛋白磷酸化缺陷型S10A會降低視網膜波的頻率而不影響其空間性質,我們的研究顯示半胱胺酸串鍊蛋白的磷酸化,在調控視網膜波的時間性質上,扮演著重要角色。

During a developmental critical period, the visual system displays a robust spontaneous activity termed “retinal waves”, essential for neural circuit refinement. These waves are initiated by releasing neurotransmitters from presynaptic starburst amacrine cells (SACs) onto postsynaptic retinal ganglion cells (RGCs). Previous studies showed that the developing SACs can periodically fire action potentials and undergo Ca2+-regulated exocytosis, thus releasing excitatory neurotransmitters such as acetylcholine (ACh) and γ-amino butyric acid (GABA) and inducing periodic retinal waves. However, little is known regarding how altering the Ca2+-regulated exocytosis in SACs affects the spatial or temporal properties of retinal waves.
Cysteine string protein (CSP) was found to ensure the correct folding of fusion machinery [i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins], thus playing an important role in regulating neurotransmitter release. In addition, CSP can be phosphorylated by protein kinase A (PKA) that is highly activated during retinal waves. These results suggest that the intracellular signaling in SACs may modulate the function of CSP and thus regulate neurotransmitter release during retinal waves.
In this study, we investigated how phosphorylation of CSP affects the spatial or temporal properties of retinal waves. First, we used immunofluorescence staining to show that CSP was expressed in the inner plexiform layer (IPL) of the neonatal rat retina. Further immunostaining of dissociated retinal cells confirmed that the expression of CSP was localized to presynaptic SACs, implying that CSP may involve in regulating neurotransmitter release from SACs. The quantitative polymerase chain reaction (qPCR) experiment showed that CSPα was the dominant isoform in the developing rat retina. To investigate whether phosphorylation of CSPα in presynaptic SACs affects retinal waves, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter (pmGluR2). After overexpression of CSP or its phosphomutants in SACs, subsequent Ca2+ imaging was performed in the RGC layer to detect the spatial and temporal properties of wave-associated spontaneous Ca2+ transients. We found that the frequency of Ca2+ transients was significantly decreased by the phosphodeficient mutant (CSPα-S10A), but not by the wild-type CSPα (CSPα-WT) or the phosphomimetic mutants (CSPα-S10D and CSPα-S10E) compared to the control. In contrast, the CSPα phosphodeficient mutant had a relatively minor effect on the spatial correlation of spontaneous Ca2+ transients over distance. Whole-cell voltage-clamp recordings demonstrated that the CSPα phosphodeficient mutant reduced the frequency and the slope of wave-associated postsynaptic currents (PSCs), but not altered the electrical properties of postsynaptic RGCs, suggesting that the effects by overexpressing the CSPα phosphodeficient mutant were due to the change in the release from presynaptic SACs. Given that the CSPα phosphodeficient mutant down-regulates the frequency but does not significantly alter the spatial correlation of retinal waves, our results suggest that phosphorylation of CSPα may play an important role in regulating the temporal properties of retinal waves.

國立臺灣大學碩士學位論文口試委員會審定書......................................................... i
Acknowledgements ........................................................................................................ ii
中文摘要....................................................................................................................... iv
Abstract ......................................................................................................................... vi
Abbreviations ................................................................................................................ ix
Contents ...................................................................................................................... xiii
Chapter I
Introduction .................................................................................................................... 1
1.1 Development of the nervous system ................................................................. 1
1.2 Organization of mammalian visual system ...................................................... 1
1.3 The structure of retina ...................................................................................... 2
1.4 Visual phototransduction pathway ................................................................... 2
1.5 Retinal development ......................................................................................... 4
1.6 Retinal waves.................................................................................................... 4
1.7 Cysteine string protein (CSP) ........................................................................... 7
1.8 Specific aims .................................................................................................. 10
Chapter II
Materials and Methods ............................................................................................. 12
2.1 Animals........................................................................................................... 12
2.2 Plasmid construction and subcloning ............................................................. 12
2.3 Dissection of retinas and optic nerves ............................................................ 15
2.4 Retinal explants culture .................................................................................. 16
2.5 Transient transfection ..................................................................................... 17
2.6 Immunofluorochemistry ................................................................................. 18
2.7 Immunofluorescence staining for dissociated retinal cells ............................. 20
2.8 Antibodies....................................................................................................... 21
2.9 Calcium imaging ............................................................................................ 21
2.10 Data analysis of spontaneous Ca2+ transients ............................................... 23
2.11 Retinal RNA extraction ................................................................................ 24
2.12 Primary retinal cell culture ........................................................................... 26
2.13 Whole-cell patch-clamp recordings .............................................................. 27
Chapter III
Results ...................................................................................................................... 29
3.1 CSP was expressed in the developing rat retina ............................................. 29
3.2 CSP was expressed in the optic nerves (the axons of retinal ganglion cells) . 30
3.3 CSPα1 was the major CSP isoform in the developing rat retina .................... 30
3.4 The frequency of Ca2+ transients in postsynaptic RGCs were significantly
decreased by overexpressing the phosphodeficient mutant CSP-S10A in
presynaptic SACs ................................................................................................. 31
3.5 Spatial properties of retinal waves were not changed by overexpressing
CSP-S10A in presynaptic SACs ........................................................................... 32
3.6 The frequency of wave-associated postsynaptic currents (PSCs) in RGCs was
significantly decreased by overexpressing CSP-S10A in presynaptic SACs ....... 33
3.7 The slope of wave-associated PSCs was decreased by overexpressing
CSP-S10A in presynaptic SACs ........................................................................... 35
3.8 The intrinsic membrane properties of RGCs were not changed by
overexpressing CSP-S10A in presynaptic SACs ................................................. 36
Chapter IV
Discussion ................................................................................................................ 37
4.1 Endogenous CSP in the developing rat retina ................................................ 37
4.2 Presynaptic CSP in regulating retinal waves .................................................. 38
4.3 CSP regulates the releasing properties in presynaptic SACs ......................... 40
4.4 Pros and cons of the study .............................................................................. 41
4.5 Future directions ............................................................................................. 44
Chapter V
Conclusion ................................................................................................................ 46
References .................................................................................................................... 47
List of Figures
Figure 1. The structure of vertebrate eyeball and retina ........................................... 52
Figure 2. The central projection targets of retinal ganglion cells (RGCs) ............... 53
Figure 3. The retinal waves and the underlying mechanisms .................................. 54
Figure 4. Retinal waves drive the activation of protein kinase A (PKA), which also
plays a role in regulating retinal waves .................................................................... 55
Figure 5. The structure and proposed function of cysteine string protein (CSP) ..... 56
Figure 6. Ca2+-regulated exocytosis modulated by CSP phosphorylation ............... 57
Figure 7. CSP was expressed around the rat IPL during development and partially
colocalized to SACs ................................................................................................. 58
Figure 8. CSP was expressed in the developing rat retina ....................................... 59
Figure 9. CSP was expressed in the developing rat SACs ....................................... 60
Figure 10. Colocalization ratios between CSP and ChAT immunoreactivity signals
................................................................................................................................. 61
Figure 11. CSP was expressed in the developing rat optic nerves ........................... 62
Figure 12. The mRNA levels of CSP isoforms in the developing rat retina ............ 63
Figure 13. Transfected SACs, Fura-2-loaded RGCs and the recordings of
spontaneous Ca2+ transients after ex vivo retinal transfection .................................. 64
Figure 14. The frequency and interval of spontaneous Ca2+ transients were changed
by overexpression of CSP-S10A in SACs ............................................................... 66
Figure 15. The amplitude and duration of spontaneous Ca2+ transients were not
changed by overexpression of wild-type or mutant CSP in SACs ........................... 68
Figure 16. The spatial correlation of spontaneous Ca2+ transients ........................... 70
Figure 17. The frequency of postsynaptic currents (PSCs) in RGCs were changed
by overexpression of CSP-S10A in SACs ............................................................... 71
Figure 18. The slope to the peak PSC was decreased by overexpression of
CSP-S10A in SACs .................................................................................................. 73
Figure 19. The membrane properties of RGCs were not changed by overexpression
of CSP-S10A in SACs .............................................................................................. 75
List of Tables
Table 1. The values of correlation indexes from each construct (Ctrl, CSP-WT,
CSP-S10A, CSP-S10D, and CSP-S10E) .................................................................. 76
Table 2. Antibodies used for immunofluorescence staining .................................... 78
Appendix
The 9th International Symposium of the Kanagawa University - National Taiwan
University Exchange Program: Abstract and Poster ................................................ 80
2014 Institute of Molecular and Cellular Biology Poster Contest: Poster ............... 82
Figure for PLoS One Paper “Adenosine A2A Receptor Up-Regulates Retinal Wave
Frequency via Starburst Amacrine Cells in the Developing Rat Retina” (Huang et
al., 2014): The immunofluorescence staining of A2AR in the developing rat SACs
................................................................................................................................. 83

Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219-225.
Bear MF, Connors BW, Paradiso MA (2007) Neuroscience: Lippincott Williams &; Wilkins.
Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature reviews Neuroscience 11:18-29.
Blankenship AG, Ford KJ, Johnson J, Seal RP, Edwards RH, Copenhagen DR, Feller MB (2009) Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62:230-241.
Blanks JC, Adinolfi AM, Lolley RN (1974) Synaptogenesis in the photoreceptor terminal of the mouse retina. The Journal of comparative neurology 156:81-93.
Braun JE, Scheller RH (1995) Cysteine string protein, a DnaJ family member, is present on diverse secretory vesicles. Neuropharmacology 34:1361-1369.
Brown H, Larsson O, Branstrom R, Yang SN, Leibiger B, Leibiger I, Fried G, Moede T, Deeney JT, Brown GR, Jacobsson G, Rhodes CJ, Braun JE, Scheller RH, Corkey BE, Berggren PO, Meister B (1998) Cysteine string protein (CSP) is an insulin secretory granule-associated protein regulating beta-cell exocytosis. The EMBO journal 17:5048-5058.
Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Quarterly reviews of biophysics 38:1-47.
Chamberlain LH, Henry J, Burgoyne RD (1996) Cysteine string proteins are associated with chromaffin granules. The Journal of biological chemistry 271:19514-19517.
Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383-396.
Chanturiya A, Chernomordik LV, Zimmerberg J (1997) Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proceedings of the National Academy of Sciences of the United States of America 94:14423-14428.
Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, Huang PC, Chang YT, Chang PY, Wang CT (2012) Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 7:e47465.
Chiang N, Hsiao Y-T, Yang H-J, Lin Y-C, Lu J-C, Wang C-T (2014) Phosphomimetic mutation of cysteine string protein-α increases the rate of regulated exocytosis by modulating fusion pore dynamics in PC12 cells. PLoS ONE 9:e99180.
Cormack B (2001) Directed mutagenesis using the polymerase chain reaction. Current protocols in neuroscience Chapter 4: Unit 4.11.
Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends in biochemical sciences 19:176-181.
Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, Tsien RY, Feller MB (2006) Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. The Journal of neuroscience 26:12807-12815.
Evans GJ, Morgan A (2002) Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. The Biochemical journal 364:343-347.
Evans GJ, Morgan A, Burgoyne RD (2003) Tying everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis. Traffic 4:653-659.
Evans GJ, Wilkinson MC, Graham ME, Turner KM, Chamberlain LH, Burgoyne RD, Morgan A (2001) Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. The Journal of biological chemistry 276:47877-47885.
Evans GJ, Barclay JW, Prescott GR, Jo SR, Burgoyne RD, Birnbaum MJ, Morgan A (2006) Protein kinase B/Akt is a novel cysteine string protein kinase that regulates exocytosis release kinetics and quantal size. The Journal of biological chemistry 281:1564-1572.
Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653-656.
Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182-1187.
Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Sudhof TC (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42:237-251.
Firth SI, Wang CT, Feller MB (2005) Retinal waves: mechanisms and function in visual system development. Cell calcium 37:425-432.
Fisher LJ (1979) Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. The Journal of comparative neurology 187:359-372.
Ford KJ, Felix AL, Feller MB (2012) Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves. The Journal of neuroscience 32:850-863.
Gorleku OA, Chamberlain LH (2010) Palmitoylation and testis-enriched expression of the cysteine-string protein beta isoform. Biochemistry 49:5308-5313.
Grozdanov V, Muller A, Sengottuvel V, Leibinger M, Fischer D (2010) A method for preparing primary retinal cell cultures for evaluating the neuroprotective and neuritogenic effect of factors on axotomized mature CNS neurons. Current protocols in neuroscience Chapter 3: Unit 3.22.
Gust J, Wright JJ, Pratt EB, Bosma MM (2003) Development of synchronized activity of cranial motor neurons in the segmented embryonic mouse hindbrain. The Journal of physiology 550:123-133.
Huang P-C, Hsiao Y-T, Kao S-Y, Chen C-F, Chen Y-C, Chiang C-W, Lee C-f, Lu J-C, Chern Y, Wang C-T (2014) Adenosine A2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS ONE 9:e95090.
Kim SH, Choi YM, Jang JY, Chung S, Kang YK, Park MK (2007) Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons. Pflugers Archiv : European journal of physiology 455:309-321.
Kohan SA, Pescatori M, Brecha NC, Mastrogiacomo A, Umbach JA, Gundersen CB (1995) Cysteine string protein immunoreactivity in the nervous system and adrenal gland of rat. The Journal of neuroscience 15:6230-6238.
Liu M, Duggan J, Salt TE, Cordeiro MF (2011) Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Experimental eye research 92:244-250.
Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE (2000) Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 28:195-204.
Mastrogiacomo A, Gundersen CB (1995) The nucleotide and deduced amino acid sequence of a rat cysteine string protein. Brain research Molecular brain research 28:12-18.
Mastrogiacomo A, Evans CJ, Gundersen CB (1994a) Antipeptide antibodies against a Torpedo cysteine-string protein. Journal of neurochemistry 62:873-880.
Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Gundersen CB (1994b) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263:981-982.
Olney JW (1968) An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Investigative ophthalmology 7:250-268.
Pupier S, Leveque C, Marqueze B, Kataoka M, Takahashi M, Seagar MJ (1997) Cysteine string proteins associated with secretory granules of the rat neurohypophysis. The Journal of neuroscience 17:2722-2727.
Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV (2011) Campbell Biology: Pearson Benjamin Cummings.
Rozas JL, Gomez-Sanchez L, Mircheski J, Linares-Clemente P, Nieto-Gonzalez JL, Vazquez ME, Lujan R, Fernandez-Chacon R (2012) Motorneurons require cysteine string protein-alpha to maintain the readily releasable vesicular pool and synaptic vesicle recycling. Neuron 74:151-165.
Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nature cell biology 13:30-39.
Sharma M, Burre J, Bronk P, Zhang Y, Xu W, Sudhof TC (2012) CSPalpha knockout causes neurodegeneration by impairing SNAP-25 function. The EMBO journal 31:829-841.
Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harbor perspectives in biology 3.
Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-353.
Syed MM, Lee S, Zheng J, Zhou ZJ (2004) Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. The Journal of physiology 560:533-549.
Torborg CL, Feller MB (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in neurobiology 76:213-235.
Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450:50-55.
Umbach JA, Zinsmaier KE, Eberle KK, Buchner E, Benzer S, Gundersen CB (1994) Presynaptic dysfunction in Drosophila csp mutants. Neuron 13:899-907.
Wang CT, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, Nakanishi S, Feller MB (2007) GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. The Journal of neuroscience 27:9130-9140.
Watt AJ, Cuntz H, Mori M, Nusser Z, Sjostrom PJ, Hausser M (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nature neuroscience 12:463-473.
Wong RO (1999) Retinal waves and visual system development. Annual review of neuroscience 22:29-47.
Wong RO, Oakley DM (1996) Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron 16:1087-1095.
Wong WT, Sanes JR, Wong ROL (1998) Developmentally regulated spontaneous activity in the embryonic chick retina. The Journal of Neuroscience 18:8839–8852.
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC (2011) An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70:1115-1127.
Zhang H, Kelley WL, Chamberlain LH, Burgoyne RD, Lang J (1999) Mutational analysis of cysteine-string protein function in insulin exocytosis. Journal of cell science 112 ( Pt 9):1345-1351.
Zheng J, Lee S, Zhou ZJ (2006) A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nature neuroscience 9:363-371.
Zheng JJ, Lee S, Zhou ZJ (2004) A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44:851-864.
Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263:977-980.
Zinsmaier KE, Hofbauer A, Heimbeck G, Pflugfelder GO, Buchner S, Buchner E (1990) A cysteine-string protein is expressed in retina and brain of Drosophila. Journal of neurogenetics 7:15-29.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔