( 您好!臺灣時間:2021/02/26 04:19
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Peng-Kai Kao
論文名稱(外文):Fabrication of Microfluidic Paper-based Analytical Devices Using Plasma Processes
外文關鍵詞:fluorocarbon plasma polymerizationportable atmospheric-pressure microplasma generation devicesmicrofluidic paper-based devices on demand
  • 被引用被引用:0
  • 點閱點閱:444
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用電漿製程製備以紙為基底之微流道裝置,共提出兩種可行的電漿製程:「單一步驟之氟碳電漿聚合反應」,以及「以電池驅動、可攜式、可撓曲之常壓空氣微電漿蝕刻反應」。第一部分,我們利用單一步驟之氟碳電漿進行聚合反應,其優點包括反應為乾式氣相、快速且解析度良好。藉由FTIR與XPS分析顯示,此製程能於濾紙表面鍍上一疏水性屏障 (氟碳薄膜) 的同時,使紙質微流道和偵測區域的主要化學性質及表面元素鍵結均能維持如未處理的濾紙一般。接著,我們發現電漿製程時間對於所製備之微流體為一關鍵影響因素,當鍍膜時間充足 (例如,180秒),樣品溶液能被完整地侷限在微流體流道內,且在此製程條件下,僅需要4.5 μL之溶液便能完整潤濕一寬度為800 μm之微流道裝置。最後,我們利用亞硝酸鹽檢定顯示此製備方法之可行性。
第二部分,我們提出使用一可攜式微電漿產生裝置 (microplasma generation device, MGD),在常壓下產生空氣電漿進行蝕刻反應以製備紙基微流體。藉由引入製備印刷電路板之碳粉熱轉印法 (toner transfer-based),一輕薄且具可撓性之微電漿產生裝置可於30分鐘內製備完成。此微電漿產生裝置可由一可攜式電源供應器 (重量小於1公斤) 搭配一顆12伏特電池或交流/ 直流轉換器驅動。利用此微電漿產生裝置能進行無遮罩圖案化製程 (maskless patterning),在疏水的紙纖維表面產生微米尺度的親水性圖案,並維持良好的圖案轉移擬真度 (pattern transfer fidelity)。接著,我們利用此微電漿產生裝置製備紙基微流體。在合適的微電漿電極設計之下,能於一分鐘之內、花費小於美金0.05元,製作出一流道寬度500 μm之微流體。最後,我們利用定量比色檢定及繪製檢量線來偵測葡萄糖和亞硝酸鹽,結果顯示葡萄糖和亞硝酸鹽分別於1-50 mM及0.1-5 mM 有線性反應。我們相信此低成本、微小化且可攜式之電漿產生裝置能讓使用者在戶外 (in-field) 以及/或是基於各式需求 (on-demand) 來操作電漿,並應用於各種領域。而以此電漿裝置所製備之微流道裝置可望對生醫分析、環境監控以及食品安全檢驗帶來嶄新發展的可能性。

In this work, we first demonstrated an all-dry, top-down, and one-step rapid process to fabricate paper-based microfluidic devices using fluorocarbon plasma polymerization. This process is able to create fluorocarbon-coated hydrophobic patterns on filter paper substrates while maintaining the trench and detection regions intact and free of contamination after the fabrication process, as confirmed by ATR-FTIR and XPS. We have shown that the processing time is one critical factor that influences the device performance. For the device fabricated with a sufficiently long processing time (180 s), the sample fluid flow can be well confined in the patterned trenches. By testing the device with 800 μm channel width, a sample solution amount as small as 4.5 μL is sufficient to perform the test. NO2&;#8722; assay is also performed and shows that such a device is capable for biochemical analysis.
In the second part of this master thesis, a portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (μPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12V-batteries or AC-DC converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-mm spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate μPADs is demonstrated. With a proper design of the MGD electrode geometry, μPADs with 500 μm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the μPADs by performing quantitative colorimetric assay tests and establish calibration curve for detection of glucose and nitrite. The results show a linear response to glucose assay for 1-50 mM and nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate μPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.

誌謝 I
中文摘要 III
目錄 VII
圖目錄 IX
表目錄 XIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第2章 文獻回顧 3
2.1 低壓氟碳電漿鍍疏水性薄膜 3
2.1.1 超疏水原理及表面遲滯現象 3
2.1.2 低壓電漿技術 8
2.1.3 電漿鍍氟碳膜研究 9
2.2 常壓微電漿系統 14
2.2.1 常壓微電漿之種類 14
2.2.2 常壓微電漿之應用 21
2.3 紙為基底之微流道裝置 25
2.3.1 紙為基底之微流道裝置之原理與種類 25
2.3.2 紙為基底之微流道裝置之檢測技術 32
2.3.3 紙為基底之微流道裝置應用於疾病檢測 38
第3章 實驗設備與架構 44
3.1 低壓電漿系統以及利用氟碳電漿製備紙基微流體 44
3.2 可攜式常壓微電漿系統及其用於製備紙基微流體 47
3.3 比色檢定與影像處理 54
3.3.1 比色檢定 (Colorimetric assays) 54
3.3.2 影像處理 55
3.4 材料性質分析檢測儀器 56
第4章 實驗結果與討論 58
4.1 利用氟碳電漿製備紙為基底之微流道裝置 58
4.1.1 利用低壓氟碳電漿聚合進行紙為基底之親疏水表面工程 58
4.1.2 單一步驟氟碳電漿製程製備紙上疏水圖案 60
4.1.3 微流體裝置之組成性質與表面化學分析 62
4.1.4 製程時間對紙基微流體輸送行為之影響 68
4.1.5 檢定應用:亞硝酸鈉定量分析 72
4.2 利用可攜式常壓微電漿製備紙為基底之微流道裝置 75
4.2.1 碳粉熱轉印法製備可撓曲微電漿產生裝置 75
4.2.2 疏水性紙基板上製備親水性微流道 76
4.2.3 電漿產生裝置之圖案設計與微流道特性 77
4.2.4 電漿操作參數對紙基微流體輸送行為之影響 80
4.2.5 檢定應用:葡萄糖/ 亞硝酸鈉定量分析 84
4.2.6 手繪法製備微電漿產生裝置之電極 88
第5章 結論與未來展望 90
第6章 文獻回顧 91
附錄 104

1.P.-K. Kao and C.-C. Hsu, "One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization", Microfluid Nanofluid, 16 (5), 811-818 (2014).
2."World Urbanization Prospects - The 2011 Revision ", Department of Economic and Social Affairs, Population Division, UN, New York, (2012).
3.X. Li, J. Tian, T. Nguyen and W. Shen, "Paper-Based Microfluidic Devices by Plasma Treatment", Analytical Chemistry, 80 (23), 9131-9134 (2008).
4.X. M. Li, D. Reinhoudt and M. Crego-Calama, "What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces", Chem Soc Rev, 36 (8), 1350-1368 (2007).
5.R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Industrial and Engineering Chemistry, 28, 988-994 (1936).
6.A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces", Transactions of the Faraday Society, 40, 0546-0550 (1944).
7.B. Balu, V. Breedveld and D. W. Hess, "Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing", Langmuir, 24 (9), 4785-4790 (2008).
8.S. Wang and L. Jiang, "Definition of superhydrophobic states", Advanced Materials, 19 (21), 3423-3424 (2007).
9.W. Li and A. Amirfazli, "Superhydrophobic surfaces: Adhesive strongly to water?", Advanced Materials, 19 (21), 3421-3422 (2007).
10.L. Feng, Y. A. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, "Petal effect: A superhydrophobic state with high adhesive force", Langmuir, 24 (8), 4114-4119 (2008).
11.M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li and L. Jiang, "Superhydrophobic aligned polystyrene nanotube films with high adhesive force", Advanced Materials, 17 (16), 1977-1980 (2005).
12.M. J. Hancock, K. Sekeroglu and M. C. Demirel, "Bioinspired Directional Surfaces for Adhesion, Wetting, and Transport", Adv Funct Mater, 22 (11), 2223-2234 (2012).
13.N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick and M. C. Demirel, "An engineered anisotropic nanofilm with unidirectional wetting properties", Nat Mater, 9 (12), 1023-1028 (2010).
14.Y. M. Zheng, X. F. Gao and L. Jiang, "Directional adhesion of superhydrophobic butterfly wings", Soft Matter, 3 (2), 178-182 (2007).
15.B. Bhushan, "Bioinspired Structured Surfaces", Langmuir, 28 (3), 1698-1714 (2012).
16.K. Tachibana, "Current status of microplasma research", IEEJ T Electr Electr, 1 (2), 145-155 (2006).
17.J. W. Coburn and H. F. Winters, "Plasma etching—A discussion of mechanisms", Journal of Vacuum Science &; Technology, 16 (2), 391-403 (1979).
18.K. Teshima, H. Sugimura, Y. Inoue, O. Takai and A. Takano, "Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating", Appl Surf Sci, 244 (1-4), 619-622 (2005).
19.X. Y. Lu, C. C. Zhang and Y. C. Han, "Low-density polyethylene superhydrophobic surface by control of its crystallization behavior", Macromolecular Rapid Communications, 25 (18), 1606-1610 (2004).
20.W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood and T. J. McCarthy, "Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples", Langmuir, 15 (10), 3395-3399 (1999).
21.N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry and P. Roach, "Porous materials show superhydrophobic to superhydrophilic switching", Chem. Commun., (25), 3135-3137 (2005).
22.L. Jiang, Y. Zhao and J. Zhai, "A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics", Angew Chem Int Edit, 43 (33), 4338-4341 (2004).
23.H. T. Sahin, S. Manolache, R. A. Young and F. Denes, "Surface fluorination of paper in CF4-RF plasma environments", Cellulose, 9 (2), 171-181 (2002).
24.A. Sinha, D. W. Hess and C. L. Henderson, "Area selective atomic layer, deposition of titanium dioxide: Effect of precursor chemistry", J Vac Sci Technol B, 24 (6), 2523-2532 (2006).
25.E. F. Hare, E. G. Shafrin and W. A. Zisman, "Properties of Films of Adsorbed Fluorinated Acids", J Phys Chem-Us, 58 (3), 236-239 (1954).
26.D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S. Badyal, S. A. Brewer, S. Coulson and C. Willis, "Pulsed plasma deposition of super-hydrophobic nanospheres", Chemistry of Materials, 14 (11), 4566-4571 (2002).
27.S. H. Kim, J. H. Kim, B. K. Kang and H. S. Uhm, "Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2", Langmuir, 21 (26), 12213-12217 (2005).
28.J. Yang, H. J. Song, H. Tang, H. Y. Ji and C. S. Li, "Plasma-driven tunable liquid adhesion of superoleophobic aluminum surfaces", Appl Surf Sci, 280, 940-944 (2013).
29.J. Tarrade, T. Darmanin, E. Taffin de Givenchy, F. Guittard, D. Debarnot and F. Poncin-Epaillard, "Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology", Appl Surf Sci, 292 (0), 782-789 (2014).
30.L. C. Gao and T. J. McCarthy, ""Artificial lotus leaf" prepared using a 1945 patent and a commercial textile", Langmuir, 22 (14), 5998-6000 (2006).
31.L. C. Gao and T. J. McCarthy, "The "lotus effect" explained: Two reasons why two length scales of topography are important", Langmuir, 22 (7), 2966-2967 (2006).
32.M. Li, J. Xu and Q. Lu, "Creating superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process", J Mater Chem, 17 (45), 4772-4776 (2007).
33.Y. Xiu, L. Zhu, D. W. Hess and C. P. Wong, "Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition", Langmuir, 22 (23), 9676-9681 (2006).
34.徐振哲, "常壓微電漿之發展近況及其應用", 化工技術, 249, 66-83 (2013).
35.K. H. Becker, K. H. Schoenbach and J. G. Eden, "Microplasmas and applications", J Phys D Appl Phys, 39 (3), R55-R70 (2006).
36.M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing", New York: Wiley, (2005).
37.V. I. Gibalov and G. J. Pietsch, "The development of dielectric barrier discharges in gas gaps and on surfaces", J Phys D Appl Phys, 33 (20), 2618-2636 (2000).
38.U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications", Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003).
39.V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?", Spectrochim Acta B, 59 (7), 909-928 (2004).
40.D. D. Hsu and D. B. Graves, "Microhollow cathode discharge reactor chemistry", Plasma Chemistry and Plasma Processing, 25 (1), 1-17 (2005).
41.R. H. Stark and K. H. Schoenbach, "Direct current high-pressure glow discharges", J. Appl. Phys., 85 (4), 2075-2080 (1999).
42.C. Lazzaroni, P. Chabert, A. Rousseau and N. Sadeghi, "The excitation structure in a micro-hollow cathode discharge in the normal regime at medium argon pressure", J Phys D Appl Phys, 43 (12)(2010).
43.C. C. Hsu, J. H. Tsai, Y. J. Yang, Y. C. Liao and Y. W. Lu, "A Foldable Microplasma-Generation Device on a Paper Substrate", J Microelectromech S, 21 (5), 1013-1015 (2012).
44.Y. J. Yang and C. C. Hsu, "A Flexible Paper-Based Microdischarge Array Device for Maskless Patterning on Nonflat Surfaces", J Microelectromech S, 22 (2), 256-258 (2013).
45.J. G. Eden, S. J. Park, N. P. Ostrom and K. F. Chen, "Recent advances in microcavity plasma devices and arrays: a versatile photonic platform", J Phys D Appl Phys, 38 (11), 1644-1648 (2005).
46.S. A. Wright and Y. B. Gianchandani, "Contaminant gas removal using thin-film Ti electrode microdischarges", Applied Physics Letters, 95 (11)(2009).
47.H. W. Chang and C. C. Hsu, "Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior", Plasma Sources Science &; Technology, 20 (4)(2011).
48.H. W. Chang and C. C. Hsu, "Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour", J Phys D Appl Phys, 45 (25)(2012).
49.A. H. Hsieh, H. W. Chang and C. C. Hsu, "The bubble to jetting transition mechanism of plasmas in NaNO3 solutions sustained by pulsed power", J Phys D Appl Phys, 45 (41)(2012).
50.H. W. Chang and C. C. Hsu, "Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses", Plasma Chemistry and Plasma Processing, 33 (3), 581-591 (2013).
51.Y. Sakiyama, T. Tomai, M. Miyano and D. B. Graves, "Disinfection of E. coli by nonthermal microplasma electrolysis in normal saline solution", Applied Physics Letters, 94 (16)(2009).
52.S. Bhattacharyya, D. Staack, E. A. Vitol, R. Singhal, A. Fridman, G. Friedman and Y. Gogotsi, "Localized Synthesis of Metal Nanoparticles Using Nanoscale Corona Discharge in Aqueous Solutions", Advanced Materials, 21 (40), 4039-4044 (2009).
53.K. R. Stalder, D. F. McMillen and J. Woloszko, "Electrosurgical plasmas", J Phys D Appl Phys, 38 (11), 1728-1738 (2005).
54.E. J. Szili, S. A. Al-Bataineh, P. Ruschitzka, G. Desmet, C. Priest, H. J. Griesser, N. H. Voelcker, F. J. Harding, D. A. Steele and R. D. Short, "Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces", RSC Adv, 2 (31), 12007-12010 (2012).
55.S. Weagant, V. Chen and V. Karanassios, "Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer", Anal Bioanal Chem, 401 (9), 2865-2880 (2011).
56.M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark and D. B. Graves, "Long-term antibacterial efficacy of air plasma-activated water", J Phys D Appl Phys, 44 (47)(2011).
57.F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang and M. G. Kong, "Microplasmas: Sources, particle kinetics, and biomedical applications", Plasma Process. Polym., 5 (4), 322-344 (2008).
58.K. Tachibana, S. Kawai, H. Asai, N. Kikuchi and S. Sakamoto, "Characteristics of Ne-Xe microplasma in unit discharge cell of plasma display panel equipped with counter sustain electrodes and auxiliary electrodes", J Phys D Appl Phys, 38 (11), 1739-1749 (2005).
59.S. O. Kim, "Microplasma device utilizing SU-8 photoresist as a barrier rib", IEEE Transactions on Plasma Science, 36 (4), 1244-1245 (2008).
60.G. R. Bardajee, A. Pourjavadi, R. Soleyman and N. Sheikh, "Irradiation mediated synthesis of a superabsorbent hydrogel network based on polyacrylamide grafted onto salep", Nucl Instrum Meth B, 266 (18), 3932-3938 (2008).
61.J. Chen, S. J. Park, Z. F. Fan, J. G. Eden and C. Liu, "Development and characterization of micromachined hollow cathode plasma display devices", J Microelectromech S, 11 (5), 536-543 (2002).
62.J. G. Eden, S. J. Park, C. M. Herring and J. M. Bulson, "Microplasma light tiles: thin sheet lamps for general illumination", J Phys D Appl Phys, 44 (22)(2011).
63.U. Kogelschatz, "Applications of microplasmas and microreactor technology", Contrib Plasm Phys, 47 (1-2), 80-88 (2007).
64.D. D. Hsu and D. B. Graves, "Microhollow cathode discharge stability with flow and reaction", J Phys D Appl Phys, 36 (23), 2898-2907 (2003).
65.P. J. Lindner, S. Y. Hwang and R. S. Besser, "Analysis of a Microplasma Fuel Reformer with a Carbon Dioxide Decomposition Reaction", Energ Fuel, 27 (8), 4432-4440 (2013).
66.D. Mariotti and R. M. Sankaran, "Microplasmas for nanomaterials synthesis", J Phys D Appl Phys, 43 (32)(2010).
67.C. Richmonds and R. M. Sankaran, "Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations", Applied Physics Letters, 93 (13)(2008).
68.P. A. Lin and R. M. Sankaran, "Plasma-Assisted Dissociation of Organometallic Vapors for Continuous, Gas-Phase Preparation of Multimetallic Nanoparticles", Angew Chem Int Edit, 50 (46), 10953-10956 (2011).
69.C. J. Wagner, P. A. Tchertchian and J. G. Eden, "Coupling electron-hole and electron-ion plasmas: Realization of an npn plasma bipolar junction phototransistor", Applied Physics Letters, 97 (13)(2010).
70.C.-K. Hsu, H.-Y. Huang, W.-R. Chen, W. Nishie, H. Ujiie, K. Natsuga, S.-T. Fan, H.-K. Wang, J. Y.-Y. Lee, W.-L. Tsai, H. Shimizu and C.-M. Cheng, "Paper-Based ELISA for the Detection of Autoimmune Antibodies in Body Fluid—The Case of Bullous Pemphigoid", Analytical Chemistry, 86 (9), 4605-4610 (2014).
71.S. J. Lo, S. C. Yang, D. J. Yao, J. H. Chen, W. C. Tu and C. M. Cheng, "Molecular-level dengue fever diagnostic devices made out of paper", Lab Chip, 13 (14), 2686-2692 (2013).
72.S. A. Bhakta, R. Borba, M. Taba, C. D. Garcia and E. Carrilho, "Determination of nitrite in saliva using microfluidic paper-based analytical devices", Anal Chim Acta, 809, 117-122 (2014).
73.M. Y. Hsu, C. Y. Yang, W. H. Hsu, K. H. Lin, C. Y. Wang, Y. C. Shen, Y. C. Chen, S. F. Chau, H. Y. Tsai and C. M. Cheng, "Monitoring the VEGF level in ''aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA", Biomaterials, 35 (12), 3729-3735 (2014).
74.A. W. Martinez, S. T. Phillips, M. J. Butte and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays", Angew Chem Int Edit, 46 (8), 1318-1320 (2007).
75.C. M. Cheng, A. W. Martinez, J. L. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica and G. M. Whitesides, "Paper-Based ELISA", Angew Chem Int Edit, 49 (28), 4771-4774 (2010).
76.M. M. Mentele, J. Cunningham, K. Koehler, J. Volckens and C. S. Henry, "Microfluidic Paper-Based Analytical Device for Particulate Metals", Analytical Chemistry, 84 (10), 4474-4480 (2012).
77.P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul and C. S. Henry, "Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals", Analytical Chemistry, 86 (7), 3555-3562 (2014).
78.S. M. Z. Hossain, R. E. Luckham, M. J. McFadden and J. D. Brennan, "Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples", Analytical Chemistry, 81 (21), 9055-9064 (2009).
79.A. K. Yetisen, M. S. Akram and C. R. Lowe, "Paper-based microfluidic point-of-care diagnostic devices", Lab Chip, 13 (12), 2210-2251 (2013).
80.E. Carrilho, A. W. Martinez and G. M. Whitesides, "Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics", Analytical Chemistry, 81 (16), 7091-7095 (2009).
81.Y. Zhang, C. B. Zhou, J. F. Nie, S. W. Le, Q. Qin, F. Liu, Y. P. Li and J. P. Li, "Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing", Analytical Chemistry, 86 (4), 2005-2012 (2014).
82.K. Abe, K. Suzuki and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Analytical Chemistry, 80 (18), 6928-6934 (2008).
83.J. Olkkonen, K. Lehtinen and T. Erho, "Flexographically Printed Fluidic Structures in Paper", Analytical Chemistry, 82 (24), 10246-10250 (2010).
84.D. A. Bruzewicz, M. Reches and G. M. Whitesides, "Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper", Analytical Chemistry, 80 (9), 3387-3392 (2008).
85.C. L. Cassano and Z. H. Fan, "Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays", Microfluid Nanofluid, 15 (2), 173-181 (2013).
86.H. Liu and R. M. Crooks, "Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out", Analytical Chemistry, 84 (5), 2528-2532 (2012).
87.W. Dungchai, O. Chailapakul and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing", Analyst, 136 (1), 77-82 (2011).
88.T. Songjaroen, W. Dungchai, O. Chailapakul and W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping", Talanta, 85 (5), 2587-2593 (2011).
89.E. W. Washburn, "The dynamics of capillary flow", Phys. Rev., 17 (3), 273-283 (1921).
90.X. Li, J. Tian and W. Shen, "Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors", Cellulose, 17 (3), 649-659 (2010).
91.E. M. Fenton, M. R. Mascarenas, G. P. Lopez and S. S. Sibbett, "Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping", ACS Appl Mater Inter, 1 (1), 124-129 (2009).
92.E. Fu, B. Lutz, P. Kauffman and P. Yager, "Controlled reagent transport in disposable 2D paper networks", Lab Chip, 10 (7), 918-920 (2010).
93.A. W. Martinez, S. T. Phillips and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape", Proc. Natl. Acad. Sci. U. S. A., 105 (50), 19606-19611 (2008).
94.G. G. Lewis, M. J. DiTucci, M. S. Baker and S. T. Phillips, "High throughput method for prototyping three-dimensional, paper-based microfluidic devices", Lab Chip, 12 (15), 2630-2633 (2012).
95.S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez, S. T. Phillips, K. A. Mirica and G. M. Whitesides, "Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick", Analytical Chemistry, 84 (6), 2883-2891 (2012).
96.H. Liu and R. M. Crooks, "Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami", J. Am. Chem. Soc., 133 (44), 17564-17566 (2011).
97.E. W. Nery and L. T. Kubota, "Sensing approaches on paper-based devices: a review", Anal Bioanal Chem, 405 (24), 7573-7595 (2013).
98.M. S. Li, J. F. Tian, M. Al-Tamimi and W. Shen, "Paper-Based Blood Typing Device That Reports Patient''s Blood Type "in Writing"", Angew Chem Int Edit, 51 (22), 5497-5501 (2012).
99.A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C. S. Henry and O. Chailapakul, "Lab-on-Paper with Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron", Analytical Chemistry, 82 (5), 1727-1732 (2010).
100.W. Dungchai, O. Chailapakul and C. S. Henry, "Electrochemical Detection for Paper-Based Microfluidics", Analytical Chemistry, 81 (14), 5821-5826 (2009).
101.S. G. Ge, L. Ge, M. Yan, X. R. Song, J. H. Yu and J. D. Huang, "A disposable paper-based electrochemical sensor with an addressable electrode array for cancer screening", Chem. Commun., 48 (75), 9397-9399 (2012).
102.K. Abe, K. Kotera, K. Suzuki and D. Citterio, "Inkjet-printed paperfluidic immuno-chemical sensing device", Anal Bioanal Chem, 398 (2), 885-893 (2010).
103.E. Fu, T. Liang, P. Spicar-Mihalic, J. Houghtaling, S. Ramachandran and P. Yager, "Two-Dimensional Paper Network Format That Enables Simple Multistep Assays for Use in Low-Resource Settings in the Context of Malaria Antigen Detection", Analytical Chemistry, 84 (10), 4574-4579 (2012).
104.L. Ge, J. X. Yan, X. R. Song, M. Yan, S. G. Ge and J. H. Yu, "Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing", Biomaterials, 33 (4), 1024-1031 (2012).
105.J. L. Delaney, C. F. Hogan, J. Tian and W. Shen, "Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors", Analytical Chemistry, 83 (4), 1300-1306 (2011).
106.J. H. Yu, L. Ge, J. D. Huang, S. M. Wang and S. G. Ge, "Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid", Lab Chip, 11 (7), 1286-1291 (2011).
107.L. Ge, S. M. Wang, X. R. Song, S. G. Ge and J. H. Yu, "3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device", Lab Chip, 12 (17), 3150-3158 (2012).
108.C. Klungthong, R. V. Gibbons, B. Thaisomboonsuk, A. Nisalak, S. Kalayanarooj, V. Thirawuth, N. Nutkumhang, M. P. Mammen and R. G. Jarman, "Dengue Virus Detection Using Whole Blood for Reverse Transcriptase PCR and Virus Isolation", J Clin Microbiol, 45 (8), 2480-2485 (2007).
109.D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel and N. Ferrara, "Vascular Endothelial Growth-Factor Is a Secreted Angiogenic Mitogen", Science, 246 (4935), 1306-1309 (1989).
110.S. M. Wang, L. Ge, X. R. Song, J. H. Yu, S. G. Ge, J. D. Huang and F. Zeng, "Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing", Biosens Bioelectron, 31 (1), 212-218 (2012).
111.S. W. Wang, L. Ge, Y. Zhang, X. R. Song, N. Q. Li, S. G. Ge and J. H. Yu, "Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy", Lab Chip, 12 (21), 4489-4498 (2012).
112.P. Rattanarat, W. Dungchai, W. Siangproh, O. Chailapakul and C. S. Henry, "Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples", Anal Chim Acta, 744, 1-7 (2012).
113.C. G. Shi, X. Shan, Z. Q. Pan, J. J. Xu, C. Lu, N. Bao and H. Y. Gu, "Quantum Dot (QD)-Modified Carbon Tape Electrodes for Reproducible Electrochemiluminescence (ECL) Emission on a Paper-Based Platform", Analytical Chemistry, 84 (6), 3033-3038 (2012).
114.S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell and C. T. Culbertson, "Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva", Anal Bioanal Chem, 397 (5), 1821-1829 (2010).
115.A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi and G. M. Whitesides, "Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis", Analytical Chemistry, 80 (10), 3699-3707 (2008).
116.T. M. Blicharz, D. M. Rissin, M. Bowden, R. B. Hayman, C. DiCesare, J. S. Bhatia, N. Grand-Pierre, W. L. Siqueira, E. J. Helmerhorst, J. Loscalzo, F. G. Oppenheim and D. R. Walt, "Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: A proof of principle", Clin Chem, 54 (9), 1473-1480 (2008).
117.A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices", Analytical Chemistry, 82 (1), 3-10 (2010).
118.M. Schwanninger, J. C. Rodrigues, H. Pereira and B. Hinterstoisser, "Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose", Vib Spectrosc, 36 (1), 23-40 (2004).
119.P. Favia, G. Cicala, A. Milella, F. Palumbo, R. Rossini and R. d''Agostino, "Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges", Surface &; Coatings Technology, 169, 609-612 (2003).
120.I. T. Martin, G. S. Malkov, C. I. Butoi and E. R. Fisher, "Comparison of pulsed and downstream deposition of fluorocarbon materials from C3F8 and c-C4F8 plasmas", Journal of Vacuum Science &; Technology A, 22 (2), 227-235 (2004).
121.R. M. Nagler, "Saliva analysis for monitoring dialysis and renal function", Clin Chem, 54 (9), 1415-1417 (2008).

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔