|
1.S. M. G. Yang, V. Aravindan, W. I. Cho, D. R. Chang, H. S. Kim, and Y. S. Lee, "Realizing the Performance of LiCoPO4 Cathodes by Fe Substitution with Off-Stoichiometry," J. Electrochem. Soc., 159, A1013-A1018 (2012) 2.J. L. Allen, T. R. Jow, and J. Wolfenstine, "Improved cycle life of Fe-substituted LiCoPO4," J. Power Sources, 196, 8656-8661 (2011) 3.C. Daniel and J. O. Besenhard, Handbook of battery materials, 2nd ed, Wiley-VCH Verlag, Weinheim (2011) 4.J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, 414, 359-367 (2001) 5.M. S. WHITTINGHAM, "Electrical Energy Storage and Intercalation Chemistry," Science, 192, 1126-1127 (1976) 6.D. W. Murphy, J. Broadhead, and B. C. H. Steele, Materials for advanced batteries, Plenum Press, New York (1980) 7.D. W. Murphy, F. J. Di Salvo, J. N. Carides, and J. V. Waszczak, "Topochemical reactions of rutile related structures with lithium," Mater. Res. Bull., 13, 1395-1402 (1978) 8.M. Lazzari and B. Scrosati, "A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes," J. Electrochem. Soc., 127, 773-774 (1980) 9.T. Nagaura and K. Tozawa, "Lithium ion rechargeable battery," Progress in Batteries &; Solar Cells, 9, 209 (1990) 10.I. Kelly, J. Owen, and B. Steele, "Poly (ethylene oxide) electrolytes for operation at near room temperature," J. Power Sources, 14, 13-21 (1985) 11.J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, "Performance of Bellcore''s plastic rechargeable Li-ion batteries," Solid State Ionics, 86–88, Part 1, 49-54 (1996) 12.V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy &; Environmental Science, 4, 3243-3262 (2011) 13.G. A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Springer, (2004) 14.M. Thackeray, "Lithium-ion batteries: An unexpected conductor," Nature materials, 1, 81-82 (2002) 15.K. Mizushima, P. Jones, P. Wiseman, and J. Goodenough, "LixCoO2(0< x&;#8804;1): A new cathode material for batteries of high energy density," Mater. Res. Bull., 15, 783-789 (1980) 16.T. Nagaura and K. Tozawa, Lithium Ion Rechargeable Battery, Progress in Batteries and Solar Cells, 9, 209 (1990) 17.W. van Schalkwijk and B. Scrosati, Advances in lithium-ion batteries, Springer, (2002) 18.J. N. Reimers and J. R. Dahn, "Electrochemical and In Situ X&;#8208;Ray Diffraction Studies of Lithium Intercalation in LixCoO2," J. Electrochem. Soc., 139, 2091-2097 (1992) 19.T. Ohzuku and A. Ueda, "Solid&;#8208;State Redox Reactions of LiCoO2 (R3¯m) for 4 Volt Secondary Lithium Cells," J. Electrochem. Soc., 141, 2972-2977 (1994) 20.H. Li, Z. Wang, L. Chen, and X. Huang, "Research on Advanced Materials for Li-ion Batteries," Adv. Mater., 21, 4593-4607 (2009) 21.Y. J. Kim, T.-J. Kim, J. W. Shin, B. Park, and J. Cho, "The Effect of Al2O3 Coating on the Cycle Life Performance in Thin-Film LiCoO2 Cathodes," J. Electrochem. Soc., 149, A1337-A1341 (2002) 22.L. Liu, L. Chen, X. Huang, X.-Q. Yang, W.-S. Yoon, H. S. Lee, and J. McBreen, "Electrochemical and In Situ Synchrotron XRD Studies on Al2O3-Coated LiCoO2 Cathode Material," J. Electrochem. Soc., 151, A1344-A1351 (2004) 23.K. Y. Chung, W.-S. Yoon, J. McBreen, X.-Q. Yang, S. H. Oh, H. C. Shin, W. I. Cho, and B. W. Cho, "Structural Studies on the Effects of ZrO2 Coating on LiCoO2 during Cycling Using In Situ X-Ray Diffraction Technique," J. Electrochem. Soc., 153, A2152-A2157 (2006) 24.J. Cho, C. S. Kim, and S. I. Yoo, "Improvement of Structural Stability of LiCoO2 Cathode during Electrochemical Cycling by Sol&;#8208;Gel Coating of SnO2," Electrochem. Solid-State Lett., 3, 362-365 (2000) 25.J. Cho, Y. J. Kim, and B. Park, "Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell," Chem. Mater., 12, 3788-3791 (2000) 26.T. Ohzuku, A. Ueda, and M. Nagayama, "Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells," J. Electrochem. Soc., 140, 1862-1870 (1993) 27.G.-A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Springer, (2004) 28.C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, and L. Fournes, "An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties," Electrochim. Acta, 45, 243-253 (1999) 29.J. Morales, C. Perez-Vicente, and J. Tirado, "Cation distribution and chemical deintercalation of Li1-x Ni1+ xO2," Mater. Res. Bull., 25, 623-630 (1990) 30.T. Ohzuku, A. Ueda, and M. Kouguchi, "Synthesis and Characterization of LiAl1/4Ni3/4&;#8201;O2&;#8201;&;#8201;&;#8201;&;#8201;(&;#8201;&;#8201;R&;#8201;3&;#772;m&;#8201;)&;#8201; for Lithium&;#8208;Ion (Shuttlecock) Batteries," J. Electrochem. Soc., 142, 4033-4039 (1995) 31.W. Li, J. Currie, and J. Wolstenholme, "Influence of morphology on the stability of LiNiO2," J. Power Sources, 68, 565-569 (1997) 32.I. Saadoune and C. Delmas, "On the LixNi0.8Co0.2O2System," J. Solid State Chem., 136, 8-15 (1998) 33.C. Pouillerie, F. Perton, P. Biensan, J. Peres, M. Broussely, and C. Delmas, "Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide," J. Power Sources, 96, 293-302 (2001) 34.E. Rossen, C. D. W. Jones, and J. R. Dahn, "Structure and electrochemistry of LixMnyNi1&;#8722;yO2," Solid State Ionics, 57, 311-318 (1992) 35.Z. Liu, A. Yu, and J. Y. Lee, "Synthesis and characterization of LiNi1&;#8722;x&;#8722;yCoxMnyO2 as the cathode materials of secondary lithium batteries," J. Power Sources, 81–82, 416-419 (1999) 36.T. Ohzuku and Y. Makimura, "Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries," Chem. Lett., 30, 642-643 (2001) 37.N. Yabuuchi and T. Ohzuku, "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries," J. Power Sources, 119–121, 171-174 (2003) 38.M. E. Spahr, P. Novak, B. Schnyder, O. Haas, and R. Nesper, "Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials," J. Electrochem. Soc., 145, 1113-1121 (1998) 39.G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, and J. M. Tarascon, "The elevated temperature performance of the LiMn2O4/C system: failure and solutions," Electrochim. Acta, 45, 255-271 (1999) 40.Y.-M. Lin, H.-C. Wu, Y.-C. Yen, Z.-Z. Guo, M.-H. Yang, H.-M. Chen, H.-S. Sheu, and N.-L. Wu, "Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery," J. Electrochem. Soc., 152, A1526-A1532 (2005) 41.T. Ohzuku, M. Kitagawa, and T. Hirai, "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell: III . X&;#8208;Ray Diffractional Study on the Reduction of Spinel&;#8208;Related Manganese Dioxide," J. Electrochem. Soc., 137, 769-775 (1990) 42.D. H. Jang and S. M. Oh, "Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells," J. Electrochem. Soc., 144, 3342-3348 (1997) 43.L. Yang, M. Takahashi, and B. Wang, "A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling," Electrochim. Acta, 51, 3228-3234 (2006) 44.T. Inoue and M. Sano, "An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature," J. Electrochem. Soc., 145, 3704-3707 (1998) 45.Y. Xia, Y. Zhou, and M. Yoshio, "Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells," J. Electrochem. Soc., 144, 2593-2600 (1997) 46.Z. CHEN and K. AMINE, "Capacity fade of Li1+xMn2-xO4-based lithium-ion cells," J. Electrochem. Soc., 153, A316-A320 (2006) 47.H. Tsunekawa, a. Tanimoto, Satoshi, R. Marubayashi, M. Fujita, K. Kifune, and M. Sano, "Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries," J. Electrochem. Soc., 149, A1326-A1331 (2002) 48.B.-T. Yu, W.-H. Qiu, F.-S. Li, and L. Cheng, "Comparison of the electrochemical properties of LiBOB and LiPF6 in electrolytes for LiMn2O4/Li cells," J. Power Sources, 166, 499-502 (2007) 49.T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J.-i. Yamaki, "Degradation Mechanism and Life Prediction of Lithium-Ion Batteries," J. Electrochem. Soc., 153, A576-A582 (2006) 50.K. Takahashi, M. Saitoh, N. Asakura, T. Hibino, M. Sano, M. Fujita, and K. Kifune, "Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries," J. Power Sources, 136, 115-121 (2004) 51.K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, and G. Henriksen, "Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications," J. Power Sources, 129, 14-19 (2004) 52.Z. Chen, Q. Wang, and K. Amine, "Improving the performance of soft carbon for lithium-ion batteries," Electrochim. Acta, 51, 3890-3894 (2006) 53.A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gerand, and J. M. Tarascon, "Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95O4 Electrodes," J. Electrochem. Soc., 146, 428-436 (1999) 54.J. Choa and M. M. Thackeray, "Structural Changes of LiMn2O4 Spinel Electrodes during Electrochemical Cycling," J. Electrochem. Soc., 146, 3577-3581 (1999) 55.M. Saitoh, M. Sano, M. Fujita, M. Sakata, M. Takata, and E. Nishibori, "Studies of Capacity Losses in Cycles and Storages for a Li1.1Mn1.9O4 Positive Electrode," J. Electrochem. Soc., 151, A17-A22 (2004) 56.H.-C. Wu, Z.-Z. Guo, H.-P. Wen, and M.-H. Yang, "Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials," J. Power Sources, 146, 736-740 (2005) 57.A. Robertson, S. Lu, W. Averill, and W. Howard, "M3+&;#8208;Modified LiMn2O4 Spinel Intercalation Cathodes I. Admetal Effects on Morphology and Electrochemical Performance," J. Electrochem. Soc., 144, 3500-3505 (1997) 58.Y. Sun, Z. Wang, L. Chen, and X. Huang, "Improved Electrochemical Performances of Surface-Modified Spinel LiMn2O4 for Long Cycle Life Lithium-Ion Batteries," J. Electrochem. Soc., 150, A1294-A1298 (2003) 59.J.-S. Kim, C. S. Johnson, J. T. Vaughey, S. A. Hackney, K. A. Walz, W. A. Zeltner, M. A. Anderson, and M. M. Thackeray, "The Electrochemical Stability of Spinel Electrodes Coated with ZrO2,&;#8201;Al2O3,&;#8201;and SiO2 from Colloidal Suspensions," J. Electrochem. Soc., 151, A1755-A1761 (2004) 60.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho&;#8208;olivines as Positive&;#8208;Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144, 1188-1194 (1997) 61.V. A. Streltsov, E. Belokoneva, V. Tsirelson, and N. Hansen, "Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data," Acta Crystallogr. Sect. B: Struct. Sci., 49, 147-153 (1993) 62.A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates," J. Electrochem. Soc., 144, 1609-1613 (1997) 63.C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures Li3Fe2(XO4)3 (X=P, As)," J. Solid State Chem., 135, 228-234 (1998) 64.A. K. Padhi, V. Manivannan, and J. B. Goodenough, "Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution," J. Electrochem. Soc., 145, 1518-1520 (1998) 65.A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, and K. Zaghib, "LiFePO4 water-soluble binder electrode for Li-ion batteries," J. Power Sources, 163, 1047-1052 (2007) 66.A. S. Andersson, B. Kalska, L. Haggstrom, and J. O. Thomas, "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study," Solid State Ionics, 130, 41-52 (2000) 67.F. Zhou, K. Kang, T. Maxisch, G. Ceder, and D. Morgan, "The electronic structure and band gap of LiFePO4 and LiMnPO4," Solid State Commun., 132, 181-186 (2004) 68.C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, and C. Masquelier, "Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M= Fe, Mn) electrode materials," J. Electrochem. Soc., 152, A913-A921 (2005) 69.N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, "Electroactivity of natural and synthetic triphylite," J. Power Sources, 97–98, 503-507 (2001) 70.A. Manthiram, "Materials Challenges and Opportunities of Lithium Ion Batteries," The Journal of Physical Chemistry Letters, 2, 176-184 (2011) 71.N. N. Bramnik, K. Nikolowski, C. Baehtz, K. G. Bramnik, and H. Ehrenberg, "Phase transitions occurring upon lithium insertion-extraction of LiCoPO4," Chem. Mater., 19, 908-915 (2007) 72.A. Pujana, J. Pizarro, A. Goni, T. Rojo, and M. Arriortua. Synthesis and structural study of the Li1-3XFeXCoPO4 (X=0-0.10) solid solution related to the litiophylite-triphylite family. in An. Quim. 1998. Springer. 73.T. N. L. Doan and I. Taniguchi, "Preparation of LiCoPO4/C nanocomposite cathode of lithium batteries with high rate performance," J. Power Sources, 196, 5679-5684 (2011) 74.J. Liu, T. E. Conry, X. Song, L. Yang, M. M. Doeff, and T. J. Richardson, "Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries," J. Mater. Chem., 21, 9984 (2011) 75.J. Ni, W. Liu, J. Liu, L. Gao, and J. Chen, "Investigation on a 3.2V LiCoPO4/Li4Ti5O12 full battery," Electrochem. Commun., 35, 1-4 (2013) 76.N. N. Bramnik, K. G. Bramnik, C. Baehtz, and H. Ehrenberg, "Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4," J. Power Sources, 145, 74-81 (2005) 77.E. Markevich, R. Sharabi, H. Gottlieb, V. Borgel, K. Fridman, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, and C. Bruenig, "Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions," Electrochem. Commun., 15, 22-25 (2012) 78.R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, and C. Stinner, "Significantly improved cycling performance of LiCoPO4 cathodes," Electrochem. Commun., 13, 800-802 (2011) 79.J. Wolfenstine, "Electrical conductivity of doped LiCoPO4," J. Power Sources, 158, 1431-1435 (2006) 80.J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, and O. Yamamoto, "Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering," J. Power Sources, 192, 689-692 (2009) 81.I. Taniguchi, T. N. L. Doan, and B. Shao, "Synthesis and electrochemical characterization of LiCoxMn1&;#8722;xPO4/C nanocomposites," Electrochim. Acta, 56, 7680-7685 (2011) 82.A. von Cresce and K. Xu, "Electrolyte Additive in Support of 5 V Li Ion Chemistry," J. Electrochem. Soc., 158, A337-A342 (2011) 83.K. Amine, H. Yasuda, and M. Yamachi, "Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries," Electrochem. Solid-State Lett., 3, 178-179 (2000) 84.N. N. Bramnik, K. G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, and H. Fuess, "Electrochemical and structural study of LiCoPO4-based electrodes," J. Solid State Electrochem., 8, 558-564 (2004) 85.Q. Sun, J.-Y. Luo, and Z.-W. Fu, "Facile Synthesis and Electrochemical Properties of Carbon-Coated LiCoPO4 Submicron Particles as Positive Materials for Lithium Ion Batteries," Electrochem. Solid-State Lett., 14, A151 (2011) 86.M. E. Rabanal, M. C. Gutierrez, F. Garcia-Alvarado, E. C. Gonzalo, and M. E. Arroyo-de Dompablo, "Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling," J. Power Sources, 160, 523-528 (2006) 87.F. Wang, J. Yang, Y. NuLi, and J. Wang, "Highly promoted electrochemical performance of 5V LiCoPO4 cathode material by addition of vanadium," J. Power Sources, 195, 6884-6887 (2010) 88.Y. Zhao, S. Wang, C. Zhao, and D. Xia, "Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries," Rare metals, 28, 117-121 (2009) 89.X. Huang, J. Ma, P. Wu, Y. Hu, J. Dai, Z. Zhu, H. Chen, and H. Wang, "Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries," Mater. Lett., 59, 578-582 (2005) 90.M. Kotobuki, "Hydrothermal synthesis of carbon-coated LiCoPO4 cathode material from various Co sources," International Journal of Energy and Environmental Engineering, 4, 1-7 (2013) 91.M. Minakshi and S. Kandhasamy, "Influence of sol–gel derived lithium cobalt phosphate in alkaline rechargeable battery," J. Sol-Gel Sci. Technol., 64, 47-53 (2012) 92.Gangulibabu, D. Bhuvaneswari, N. Kalaiselvi, N. Jayaprakash, and P. Periasamy, "CAM sol–gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries," J. Sol-Gel Sci. Technol., 49, 137-144 (2009) 93.P. Deniard, A. M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, and S. Jobic, "High potential positive materials for lithium-ion batteries: transition metal phosphates," J. Phys. Chem. Solids, 65, 229-233 (2004) 94.H. Ehrenberg, N. N. Bramnik, A. Senyshyn, and H. Fuess, "Crystal and magnetic structures of electrochemically delithiated Li1&;#8722;xCoPO4 phases," Solid State Sciences, 11, 18-23 (2009) 95.S.-L. WANG, Z.-Y. TANG, O. SHA, and J. YAN, "Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method," Acta Physico-Chimica Sinica, 28, 343-348 (2012) 96.H. H. Li, J. Jin, J. P. Wei, Z. Zhou, and J. Yan, "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances," Electrochem. Commun., 11, 95-98 (2009) 97.F. Wang, J. Yang, Y. NuLi, and J. Wang, "Novel hedgehog-like 5V LiCoPO4 positive electrode material for rechargeable lithium battery," J. Power Sources, 196, 4806-4810 (2011) 98.J. F. Ni, Y. Han, J. Liu, H. Wang, and L. Gao, "Improving Electrochemical Properties of LiCoPO4 by Mn Substitution: A Case Research on LiCo0.5Mn0.5PO4," ECS Electrochemistry Letters, 2, A3-A5 (2012) 99.J. L. Allen, T. Thompson, J. Sakamoto, C. R. Becker, T. R. Jow, and J. Wolfenstine, "Transport properties of LiCoPO4 and Fe-substituted LiCoPO4," J. Power Sources, 254, 204-208 (2014) 100.H. Li, Y. Wang, X. Yang, L. Liu, L. Chen, and J. Wei, "Improved electrochemical performance of 5V LiCoPO4 cathode materials via yttrium doping," Solid State Ionics, 255, 84-88 (2014) 101.D.-W. Han, Y.-M. Kang, R.-Z. Yin, M.-S. Song, and H.-S. Kwon, "Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials," Electrochem. Commun., 11, 137-140 (2009) 102.D. Wang, Z. Wang, X. Huang, and L. Chen, "Continuous solid solutions LiFe1&;#8722;xCoxPO4 and its electrochemical performance," J. Power Sources, 146, 580-583 (2005) 103.A. Eftekhari, "Surface Modification of Thin-Film Based LiCoPO4 5 V Cathode with Metal Oxide," J. Electrochem. Soc., 151, A1456 (2004) 104."XAS Handbook: National Synchrotron Radiation Research Center.," 105.D. Koningsberger and R. Prins, "X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES," (1988) 106."http://web.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf" 107."http://antoine.frostburg.edu/engin/sem/workings.html" 108.Y.-M. Kang, Y.-I. Kim, M.-W. Oh, R.-Z. Yin, Y. Lee, D.-W. Han, H.-S. Kwon, J. H. Kim, and G. Ramanath, "Structurally stabilized olivine lithium phosphate cathodes with enhanced electrochemical properties through Fe doping," Energy &; Environmental Science, 4, 4978-4983 (2011) 109.M. Nakayama, S. Goto, Y. Uchimoto, M. Wakihara, Y. Kitajima, T. Miyanaga, and I. Watanabe, "X-ray Absorption Spectroscopic Study on the Electronic Structure of Li1-xCoPO4 Electrodes as 4.8 V Positive Electrodes for Rechargeable Lithium Ion Batteries," The Journal of Physical Chemistry B, 109, 11197-11203 (2005) 110.O. Haas, A. Deb, E. J. Cairns, and A. Wokaun, "Synchrotron X-Ray Absorption Study of LiFePO4 Electrodes," J. Electrochem. Soc., 152, A191-A196 (2005)
|