(18.210.12.229) 您好!臺灣時間:2021/03/01 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭勁良
研究生(外文):Ching-Liang Kuo
論文名稱:鋰離子電池正極材料磷酸鋰鈷之研究
論文名稱(外文):Study on LiCoPO4 Cathode Materials for Lithium-ion Batteries
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
口試委員:吳弘俊劉偉仁
口試委員(外文):Hyng-Chun WuWei-Ren Liu
口試日期:2014-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:137
中文關鍵詞:鋰離子電池磷酸鋰鈷噴霧乾燥溶膠凝膠法碳披覆鐵摻雜
外文關鍵詞:Li-ion batteryLiCoPO4Spray-dryingSol-gel methodCarbon coatingFe doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磷酸鹽系列電極材料LiMPO4 (M=Fe, Co, Ni, Mn) 由於具有優異的電化學性能、高理論電容量、熱穩定性佳及安全性佳等優點,故成為新一代鋰離子電池之正極材料。其中,磷酸鋰鈷由於其位於4.8V的還原電位在同系列材料中為最高,因此確保了此材料擁有最高的能量密度,故近來受到不少的關注。在本論文中,主要期望發展出具有高電容量及優異循環壽命的磷酸鋰鈷材料,因此需克服其固有的缺點如低導電度、低鋰離子擴散性及充放電循環中結構的不可逆變化等。實驗中主要採用噴霧乾燥法及溶膠凝膠法等兩種方法來合成磷酸鋰鈷,而為了達成前述的目的,我們對材料採取了一連串的改質與修正,如碳材披覆、鐵離子的摻雜及以不同劑量比合成化合物等,以期能改善電化學性能。
首先,我們將材料以不同氣氛燒結以觀察其效應,在氧化氣氛空氣下燒結的樣品,由於碳成份全部被氧化,故形成一個多孔性的二次粒子,有利於鋰離子在材料內部的擴散性。此外,當在前驅物溶液(Precursor solution)中加入過氧化氫水溶液後,由於其易與檸檬酸所含的羧基起反應,以及另一個與Fenton reaction類似的反應發生,故也有助於形成一多孔性的二次粒子。從電性結果中則可發現當合成出多孔性二次粒子時,電性結果受到改善。
為了提升導電度,我們則嘗試將碳材披覆於粒子表面。由於磷酸鋰鈷在充放電過程中會受到分解,造成其電容量衰退速度過快,因此我們利用鐵的摻雜以期改善其結構穩定性。另外,我們也調整不同的熱處理條件如燒結溫度及持溫時間,以及鋰與過渡金屬鈷和鐵的劑量比。透過這些改質與修正,放電電容量及循環壽命等電化學特性則逐步地被改善。
當我們確認透透過碳材披覆以及鐵離子的摻雜可有效改善電性後,我們嘗試在含鐵離子的樣品Li1.1Co0.8Fe0.2PO4外層包覆一層碳材以觀察其效應。從充放電曲線中,我們可發現當含鐵離子的樣品被碳材包覆時,在約3.5V處有一屬於磷酸鋰鐵的反應平台產生。透過X光吸收近邊緣結構(XANES)的結果,則可確認此乃由於碳材會活化磷酸鋰鐵的反應性,故除了由固有的磷酸鋰鈷反應平台所貢獻的電容量外,磷酸鋰鐵也貢獻了一些放電電容量。實驗結果則顯示,在650°C下在空氣中燒結12小時的Li1.1Co0.8Fe0.2PO4樣品擁有最高的電容量以及良好的循環性。


Olivine orthophosphates LiMPO4 (M=Fe, Co, Ni, Mn) is a new-generation cathode materials for Li-ion batteries due to remarkable electrochemical properties, high theoretical capacity, and thermal stability as well as increased safety. Among them, Lithium cobalt phosphate (LiCoPO4) bares highest redox potential at 4.8V versus Li/Li+, which ensures the highest energy density so it receives a lot of attention. In this research, the main purpose is to develop a high capacity cathode material with good cycling stability, consequently the inherent weaknesses of LiCoPO4 like low electronic conductivity, low Li-ion diffusivity and some irreversible structural transformation during cycling have to be conquered. Two synthetic method included spray drying method and sol-gel method was used. To achieve our purpose, a series of modifications like carbon coating, Fe doping and different stoichiometric ratio were adopted to improve the electrochemical performance.
At first, the influence of calcination atmosphere was investigated, and it was found that oxidizing atmosphere Air was helpful for creating porous secondary particle which can boost the diffusivity of lithium ion. Besides, adding H2O2 in the precursor solution also could create the porous structure by reacting with the carboxyl group of the citric acid, and also the Fenton-like reaction is helpful for decomposing the organic compound. With porous secondary particle, the electrochemical performance was improved.
To increase the low electronic conductivity, carbon coating method was adopted. Besides, large capacity fading of LiCoPO4 might result from the decomposition of the structure during charge and discharge process, hence Fe doping was attempted to stabilize the structure. Different heat-treatment conditions like calcination temperature and holding time were tried to find out the most suitable condition. Also, the ratio between Li and transition metal Co and Fe was adjusted. By these modifications, discharge capacity and cycling stability were improved gradually.
As the electrochemical performance could be improved by coating a carbon layer on the particle and by Fe doping, Li1.1Co0.8Fe0.2PO4, which means the sample with Fe doping, was coated by carbon to observe the influence. From charge-discharge curves, a plateau of LiFePO4 at around 3.5V could be observed. By X-ray absorption near edge structure (XANES) tests, it can be confirmed that with carbon coating the reactivity of LiFePO4 was activated. Consequently, except for the capacity devoted by LiCoPO4, LiFePO4 also contributed to some discharge capacity. The experimental results show that carbon coated Li1.1Co0.8Fe0.2PO4 calcined at 650°C for 12 hours in Air delivered highest discharge capacity and good cycling stability.


摘要 I
Abstract III
Table of Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction and Background 1
Chapter 2 Theory and Literature Review 3
2-1 Introduction to Lithium-ion Batteries 3
2-1-1 Historical Developments of Lithium-ion Batteries 3
2-1-2 Basic Concepts of Lithium-ion Batteries 6
2-2 Introduction to Cathode Material for Lithium-ion Batteries 10
2-2-1 Layered Structure 10
2-2-2 Spinel Structure 15
2-2-3 Olivine Structure 17
2-3 LiCoPO4 Cathode Material for Lithium Ion Batteries 21
2-3-1 Basic Features of Lithium Cobalt Phosphate 21
2-3-2 Synthesis of Lithium Cobalt Phosphate 26
2-3-3 Modifications of Lithium Cobalt Phosphate Powders 33
2-4 Experimental Technique: X-ray Absorption Spectroscopy 46
Chapter 3 Experimental 50
3-1 Materials and Chemicals 50
3-2 Synthesis of Lithium Cobalt Phosphate 52
3-2-1 Synthesis of LiCoPO4 by spray-drying method and Sol-gel method 52
3-2-2 The Carbon Coating Process by Glucose 53
3-3 Analysis and Characterizations 57
3-3-1 Thermogravimetry/ Differential Thermal Analysis Thermoanalyzer 57
3-3-2 X-ray Diffraction 57
3-3-3 Scanning Electron Microscopy 58
3-3-4 Elemental Analysis 59
3-3-5 X-ray Absorption Spectroscopy 60
3-4 Electrochemical Characterization 63
3-4-1 Cell Fabricating Process 63
3-4-2 Charge-Discharge Tests 64
Chapter 4 Results and Discussions 67
4-1 The Influence of Reducing and Oxidizing Atmosphere 67
4-2 Effect of Carbon Coating 73
4-3 Effect of Adding H2O2 into Precursor Solution 76
4-4 Effect of Fe Doping 82
4-5 Influence of Different Heat-treatment Conditions 87
4-6 Composition Effect: Different Ratio between Li vs. Co and Fe 95
4-7 Combination of Fe Doping and Carbon Coating 103
4-8 Influence of Different Synthetic Methods 119
Chapter 5 Conclusions 123
References 125


1.S. M. G. Yang, V. Aravindan, W. I. Cho, D. R. Chang, H. S. Kim, and Y. S. Lee, "Realizing the Performance of LiCoPO4 Cathodes by Fe Substitution with Off-Stoichiometry," J. Electrochem. Soc., 159, A1013-A1018 (2012)
2.J. L. Allen, T. R. Jow, and J. Wolfenstine, "Improved cycle life of Fe-substituted LiCoPO4," J. Power Sources, 196, 8656-8661 (2011)
3.C. Daniel and J. O. Besenhard, Handbook of battery materials, 2nd ed, Wiley-VCH Verlag, Weinheim (2011)
4.J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, 414, 359-367 (2001)
5.M. S. WHITTINGHAM, "Electrical Energy Storage and Intercalation Chemistry," Science, 192, 1126-1127 (1976)
6.D. W. Murphy, J. Broadhead, and B. C. H. Steele, Materials for advanced batteries, Plenum Press, New York (1980)
7.D. W. Murphy, F. J. Di Salvo, J. N. Carides, and J. V. Waszczak, "Topochemical reactions of rutile related structures with lithium," Mater. Res. Bull., 13, 1395-1402 (1978)
8.M. Lazzari and B. Scrosati, "A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes," J. Electrochem. Soc., 127, 773-774 (1980)
9.T. Nagaura and K. Tozawa, "Lithium ion rechargeable battery," Progress in Batteries &; Solar Cells, 9, 209 (1990)
10.I. Kelly, J. Owen, and B. Steele, "Poly (ethylene oxide) electrolytes for operation at near room temperature," J. Power Sources, 14, 13-21 (1985)
11.J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, "Performance of Bellcore''s plastic rechargeable Li-ion batteries," Solid State Ionics, 86–88, Part 1, 49-54 (1996)
12.V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy &; Environmental Science, 4, 3243-3262 (2011)
13.G. A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Springer, (2004)
14.M. Thackeray, "Lithium-ion batteries: An unexpected conductor," Nature materials, 1, 81-82 (2002)
15.K. Mizushima, P. Jones, P. Wiseman, and J. Goodenough, "LixCoO2(0< x&;#8804;1): A new cathode material for batteries of high energy density," Mater. Res. Bull., 15, 783-789 (1980)
16.T. Nagaura and K. Tozawa, Lithium Ion Rechargeable Battery, Progress in Batteries and Solar Cells, 9, 209 (1990)
17.W. van Schalkwijk and B. Scrosati, Advances in lithium-ion batteries, Springer, (2002)
18.J. N. Reimers and J. R. Dahn, "Electrochemical and In Situ X&;#8208;Ray Diffraction Studies of Lithium Intercalation in LixCoO2," J. Electrochem. Soc., 139, 2091-2097 (1992)
19.T. Ohzuku and A. Ueda, "Solid&;#8208;State Redox Reactions of LiCoO2 (R3¯m) for 4 Volt Secondary Lithium Cells," J. Electrochem. Soc., 141, 2972-2977 (1994)
20.H. Li, Z. Wang, L. Chen, and X. Huang, "Research on Advanced Materials for Li-ion Batteries," Adv. Mater., 21, 4593-4607 (2009)
21.Y. J. Kim, T.-J. Kim, J. W. Shin, B. Park, and J. Cho, "The Effect of Al2O3 Coating on the Cycle Life Performance in Thin-Film LiCoO2 Cathodes," J. Electrochem. Soc., 149, A1337-A1341 (2002)
22.L. Liu, L. Chen, X. Huang, X.-Q. Yang, W.-S. Yoon, H. S. Lee, and J. McBreen, "Electrochemical and In Situ Synchrotron XRD Studies on Al2O3-Coated LiCoO2 Cathode Material," J. Electrochem. Soc., 151, A1344-A1351 (2004)
23.K. Y. Chung, W.-S. Yoon, J. McBreen, X.-Q. Yang, S. H. Oh, H. C. Shin, W. I. Cho, and B. W. Cho, "Structural Studies on the Effects of ZrO2 Coating on LiCoO2 during Cycling Using In Situ X-Ray Diffraction Technique," J. Electrochem. Soc., 153, A2152-A2157 (2006)
24.J. Cho, C. S. Kim, and S. I. Yoo, "Improvement of Structural Stability of LiCoO2 Cathode during Electrochemical Cycling by Sol&;#8208;Gel Coating of SnO2," Electrochem. Solid-State Lett., 3, 362-365 (2000)
25.J. Cho, Y. J. Kim, and B. Park, "Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell," Chem. Mater., 12, 3788-3791 (2000)
26.T. Ohzuku, A. Ueda, and M. Nagayama, "Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells," J. Electrochem. Soc., 140, 1862-1870 (1993)
27.G.-A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Springer, (2004)
28.C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, and L. Fournes, "An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties," Electrochim. Acta, 45, 243-253 (1999)
29.J. Morales, C. Perez-Vicente, and J. Tirado, "Cation distribution and chemical deintercalation of Li1-x Ni1+ xO2," Mater. Res. Bull., 25, 623-630 (1990)
30.T. Ohzuku, A. Ueda, and M. Kouguchi, "Synthesis and Characterization of LiAl1/4Ni3/4&;#8201;O2&;#8201;&;#8201;&;#8201;&;#8201;(&;#8201;&;#8201;R&;#8201;3&;#772;m&;#8201;)&;#8201; for Lithium&;#8208;Ion (Shuttlecock) Batteries," J. Electrochem. Soc., 142, 4033-4039 (1995)
31.W. Li, J. Currie, and J. Wolstenholme, "Influence of morphology on the stability of LiNiO2," J. Power Sources, 68, 565-569 (1997)
32.I. Saadoune and C. Delmas, "On the LixNi0.8Co0.2O2System," J. Solid State Chem., 136, 8-15 (1998)
33.C. Pouillerie, F. Perton, P. Biensan, J. Peres, M. Broussely, and C. Delmas, "Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide," J. Power Sources, 96, 293-302 (2001)
34.E. Rossen, C. D. W. Jones, and J. R. Dahn, "Structure and electrochemistry of LixMnyNi1&;#8722;yO2," Solid State Ionics, 57, 311-318 (1992)
35.Z. Liu, A. Yu, and J. Y. Lee, "Synthesis and characterization of LiNi1&;#8722;x&;#8722;yCoxMnyO2 as the cathode materials of secondary lithium batteries," J. Power Sources, 81–82, 416-419 (1999)
36.T. Ohzuku and Y. Makimura, "Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries," Chem. Lett., 30, 642-643 (2001)
37.N. Yabuuchi and T. Ohzuku, "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries," J. Power Sources, 119–121, 171-174 (2003)
38.M. E. Spahr, P. Novak, B. Schnyder, O. Haas, and R. Nesper, "Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials," J. Electrochem. Soc., 145, 1113-1121 (1998)
39.G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, and J. M. Tarascon, "The elevated temperature performance of the LiMn2O4/C system: failure and solutions," Electrochim. Acta, 45, 255-271 (1999)
40.Y.-M. Lin, H.-C. Wu, Y.-C. Yen, Z.-Z. Guo, M.-H. Yang, H.-M. Chen, H.-S. Sheu, and N.-L. Wu, "Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery," J. Electrochem. Soc., 152, A1526-A1532 (2005)
41.T. Ohzuku, M. Kitagawa, and T. Hirai, "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell: III . X&;#8208;Ray Diffractional Study on the Reduction of Spinel&;#8208;Related Manganese Dioxide," J. Electrochem. Soc., 137, 769-775 (1990)
42.D. H. Jang and S. M. Oh, "Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells," J. Electrochem. Soc., 144, 3342-3348 (1997)
43.L. Yang, M. Takahashi, and B. Wang, "A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling," Electrochim. Acta, 51, 3228-3234 (2006)
44.T. Inoue and M. Sano, "An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature," J. Electrochem. Soc., 145, 3704-3707 (1998)
45.Y. Xia, Y. Zhou, and M. Yoshio, "Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells," J. Electrochem. Soc., 144, 2593-2600 (1997)
46.Z. CHEN and K. AMINE, "Capacity fade of Li1+xMn2-xO4-based lithium-ion cells," J. Electrochem. Soc., 153, A316-A320 (2006)
47.H. Tsunekawa, a. Tanimoto, Satoshi, R. Marubayashi, M. Fujita, K. Kifune, and M. Sano, "Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries," J. Electrochem. Soc., 149, A1326-A1331 (2002)
48.B.-T. Yu, W.-H. Qiu, F.-S. Li, and L. Cheng, "Comparison of the electrochemical properties of LiBOB and LiPF6 in electrolytes for LiMn2O4/Li cells," J. Power Sources, 166, 499-502 (2007)
49.T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J.-i. Yamaki, "Degradation Mechanism and Life Prediction of Lithium-Ion Batteries," J. Electrochem. Soc., 153, A576-A582 (2006)
50.K. Takahashi, M. Saitoh, N. Asakura, T. Hibino, M. Sano, M. Fujita, and K. Kifune, "Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries," J. Power Sources, 136, 115-121 (2004)
51.K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, and G. Henriksen, "Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications," J. Power Sources, 129, 14-19 (2004)
52.Z. Chen, Q. Wang, and K. Amine, "Improving the performance of soft carbon for lithium-ion batteries," Electrochim. Acta, 51, 3890-3894 (2006)
53.A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gerand, and J. M. Tarascon, "Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95O4 Electrodes," J. Electrochem. Soc., 146, 428-436 (1999)
54.J. Choa and M. M. Thackeray, "Structural Changes of LiMn2O4 Spinel Electrodes during Electrochemical Cycling," J. Electrochem. Soc., 146, 3577-3581 (1999)
55.M. Saitoh, M. Sano, M. Fujita, M. Sakata, M. Takata, and E. Nishibori, "Studies of Capacity Losses in Cycles and Storages for a Li1.1Mn1.9O4 Positive Electrode," J. Electrochem. Soc., 151, A17-A22 (2004)
56.H.-C. Wu, Z.-Z. Guo, H.-P. Wen, and M.-H. Yang, "Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials," J. Power Sources, 146, 736-740 (2005)
57.A. Robertson, S. Lu, W. Averill, and W. Howard, "M3+&;#8208;Modified LiMn2O4 Spinel Intercalation Cathodes I. Admetal Effects on Morphology and Electrochemical Performance," J. Electrochem. Soc., 144, 3500-3505 (1997)
58.Y. Sun, Z. Wang, L. Chen, and X. Huang, "Improved Electrochemical Performances of Surface-Modified Spinel LiMn2O4 for Long Cycle Life Lithium-Ion Batteries," J. Electrochem. Soc., 150, A1294-A1298 (2003)
59.J.-S. Kim, C. S. Johnson, J. T. Vaughey, S. A. Hackney, K. A. Walz, W. A. Zeltner, M. A. Anderson, and M. M. Thackeray, "The Electrochemical Stability of Spinel Electrodes Coated with ZrO2,&;#8201;Al2O3,&;#8201;and SiO2 from Colloidal Suspensions," J. Electrochem. Soc., 151, A1755-A1761 (2004)
60.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho&;#8208;olivines as Positive&;#8208;Electrode Materials for Rechargeable Lithium Batteries," J. Electrochem. Soc., 144, 1188-1194 (1997)
61.V. A. Streltsov, E. Belokoneva, V. Tsirelson, and N. Hansen, "Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data," Acta Crystallogr. Sect. B: Struct. Sci., 49, 147-153 (1993)
62.A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates," J. Electrochem. Soc., 144, 1609-1613 (1997)
63.C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures Li3Fe2(XO4)3 (X=P, As)," J. Solid State Chem., 135, 228-234 (1998)
64.A. K. Padhi, V. Manivannan, and J. B. Goodenough, "Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution," J. Electrochem. Soc., 145, 1518-1520 (1998)
65.A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, and K. Zaghib, "LiFePO4 water-soluble binder electrode for Li-ion batteries," J. Power Sources, 163, 1047-1052 (2007)
66.A. S. Andersson, B. Kalska, L. Haggstrom, and J. O. Thomas, "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study," Solid State Ionics, 130, 41-52 (2000)
67.F. Zhou, K. Kang, T. Maxisch, G. Ceder, and D. Morgan, "The electronic structure and band gap of LiFePO4 and LiMnPO4," Solid State Commun., 132, 181-186 (2004)
68.C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.-B. Leriche, M. Morcrette, J.-M. Tarascon, and C. Masquelier, "Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M= Fe, Mn) electrode materials," J. Electrochem. Soc., 152, A913-A921 (2005)
69.N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, "Electroactivity of natural and synthetic triphylite," J. Power Sources, 97–98, 503-507 (2001)
70.A. Manthiram, "Materials Challenges and Opportunities of Lithium Ion Batteries," The Journal of Physical Chemistry Letters, 2, 176-184 (2011)
71.N. N. Bramnik, K. Nikolowski, C. Baehtz, K. G. Bramnik, and H. Ehrenberg, "Phase transitions occurring upon lithium insertion-extraction of LiCoPO4," Chem. Mater., 19, 908-915 (2007)
72.A. Pujana, J. Pizarro, A. Goni, T. Rojo, and M. Arriortua. Synthesis and structural study of the Li1-3XFeXCoPO4 (X=0-0.10) solid solution related to the litiophylite-triphylite family. in An. Quim. 1998. Springer.
73.T. N. L. Doan and I. Taniguchi, "Preparation of LiCoPO4/C nanocomposite cathode of lithium batteries with high rate performance," J. Power Sources, 196, 5679-5684 (2011)
74.J. Liu, T. E. Conry, X. Song, L. Yang, M. M. Doeff, and T. J. Richardson, "Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries," J. Mater. Chem., 21, 9984 (2011)
75.J. Ni, W. Liu, J. Liu, L. Gao, and J. Chen, "Investigation on a 3.2V LiCoPO4/Li4Ti5O12 full battery," Electrochem. Commun., 35, 1-4 (2013)
76.N. N. Bramnik, K. G. Bramnik, C. Baehtz, and H. Ehrenberg, "Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4," J. Power Sources, 145, 74-81 (2005)
77.E. Markevich, R. Sharabi, H. Gottlieb, V. Borgel, K. Fridman, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, and C. Bruenig, "Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions," Electrochem. Commun., 15, 22-25 (2012)
78.R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, and C. Stinner, "Significantly improved cycling performance of LiCoPO4 cathodes," Electrochem. Commun., 13, 800-802 (2011)
79.J. Wolfenstine, "Electrical conductivity of doped LiCoPO4," J. Power Sources, 158, 1431-1435 (2006)
80.J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, and O. Yamamoto, "Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering," J. Power Sources, 192, 689-692 (2009)
81.I. Taniguchi, T. N. L. Doan, and B. Shao, "Synthesis and electrochemical characterization of LiCoxMn1&;#8722;xPO4/C nanocomposites," Electrochim. Acta, 56, 7680-7685 (2011)
82.A. von Cresce and K. Xu, "Electrolyte Additive in Support of 5 V Li Ion Chemistry," J. Electrochem. Soc., 158, A337-A342 (2011)
83.K. Amine, H. Yasuda, and M. Yamachi, "Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries," Electrochem. Solid-State Lett., 3, 178-179 (2000)
84.N. N. Bramnik, K. G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, and H. Fuess, "Electrochemical and structural study of LiCoPO4-based electrodes," J. Solid State Electrochem., 8, 558-564 (2004)
85.Q. Sun, J.-Y. Luo, and Z.-W. Fu, "Facile Synthesis and Electrochemical Properties of Carbon-Coated LiCoPO4 Submicron Particles as Positive Materials for Lithium Ion Batteries," Electrochem. Solid-State Lett., 14, A151 (2011)
86.M. E. Rabanal, M. C. Gutierrez, F. Garcia-Alvarado, E. C. Gonzalo, and M. E. Arroyo-de Dompablo, "Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling," J. Power Sources, 160, 523-528 (2006)
87.F. Wang, J. Yang, Y. NuLi, and J. Wang, "Highly promoted electrochemical performance of 5V LiCoPO4 cathode material by addition of vanadium," J. Power Sources, 195, 6884-6887 (2010)
88.Y. Zhao, S. Wang, C. Zhao, and D. Xia, "Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries," Rare metals, 28, 117-121 (2009)
89.X. Huang, J. Ma, P. Wu, Y. Hu, J. Dai, Z. Zhu, H. Chen, and H. Wang, "Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries," Mater. Lett., 59, 578-582 (2005)
90.M. Kotobuki, "Hydrothermal synthesis of carbon-coated LiCoPO4 cathode material from various Co sources," International Journal of Energy and Environmental Engineering, 4, 1-7 (2013)
91.M. Minakshi and S. Kandhasamy, "Influence of sol–gel derived lithium cobalt phosphate in alkaline rechargeable battery," J. Sol-Gel Sci. Technol., 64, 47-53 (2012)
92.Gangulibabu, D. Bhuvaneswari, N. Kalaiselvi, N. Jayaprakash, and P. Periasamy, "CAM sol–gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries," J. Sol-Gel Sci. Technol., 49, 137-144 (2009)
93.P. Deniard, A. M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, and S. Jobic, "High potential positive materials for lithium-ion batteries: transition metal phosphates," J. Phys. Chem. Solids, 65, 229-233 (2004)
94.H. Ehrenberg, N. N. Bramnik, A. Senyshyn, and H. Fuess, "Crystal and magnetic structures of electrochemically delithiated Li1&;#8722;xCoPO4 phases," Solid State Sciences, 11, 18-23 (2009)
95.S.-L. WANG, Z.-Y. TANG, O. SHA, and J. YAN, "Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method," Acta Physico-Chimica Sinica, 28, 343-348 (2012)
96.H. H. Li, J. Jin, J. P. Wei, Z. Zhou, and J. Yan, "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances," Electrochem. Commun., 11, 95-98 (2009)
97.F. Wang, J. Yang, Y. NuLi, and J. Wang, "Novel hedgehog-like 5V LiCoPO4 positive electrode material for rechargeable lithium battery," J. Power Sources, 196, 4806-4810 (2011)
98.J. F. Ni, Y. Han, J. Liu, H. Wang, and L. Gao, "Improving Electrochemical Properties of LiCoPO4 by Mn Substitution: A Case Research on LiCo0.5Mn0.5PO4," ECS Electrochemistry Letters, 2, A3-A5 (2012)
99.J. L. Allen, T. Thompson, J. Sakamoto, C. R. Becker, T. R. Jow, and J. Wolfenstine, "Transport properties of LiCoPO4 and Fe-substituted LiCoPO4," J. Power Sources, 254, 204-208 (2014)
100.H. Li, Y. Wang, X. Yang, L. Liu, L. Chen, and J. Wei, "Improved electrochemical performance of 5V LiCoPO4 cathode materials via yttrium doping," Solid State Ionics, 255, 84-88 (2014)
101.D.-W. Han, Y.-M. Kang, R.-Z. Yin, M.-S. Song, and H.-S. Kwon, "Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials," Electrochem. Commun., 11, 137-140 (2009)
102.D. Wang, Z. Wang, X. Huang, and L. Chen, "Continuous solid solutions LiFe1&;#8722;xCoxPO4 and its electrochemical performance," J. Power Sources, 146, 580-583 (2005)
103.A. Eftekhari, "Surface Modification of Thin-Film Based LiCoPO4 5 V Cathode with Metal Oxide," J. Electrochem. Soc., 151, A1456 (2004)
104."XAS Handbook: National Synchrotron Radiation Research Center.,"
105.D. Koningsberger and R. Prins, "X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES," (1988)
106."http://web.pdx.edu/~pmoeck/phy381/Topic5a-XRD.pdf"
107."http://antoine.frostburg.edu/engin/sem/workings.html"
108.Y.-M. Kang, Y.-I. Kim, M.-W. Oh, R.-Z. Yin, Y. Lee, D.-W. Han, H.-S. Kwon, J. H. Kim, and G. Ramanath, "Structurally stabilized olivine lithium phosphate cathodes with enhanced electrochemical properties through Fe doping," Energy &; Environmental Science, 4, 4978-4983 (2011)
109.M. Nakayama, S. Goto, Y. Uchimoto, M. Wakihara, Y. Kitajima, T. Miyanaga, and I. Watanabe, "X-ray Absorption Spectroscopic Study on the Electronic Structure of Li1-xCoPO4 Electrodes as 4.8 V Positive Electrodes for Rechargeable Lithium Ion Batteries," The Journal of Physical Chemistry B, 109, 11197-11203 (2005)
110.O. Haas, A. Deb, E. J. Cairns, and A. Wokaun, "Synchrotron X-Ray Absorption Study of LiFePO4 Electrodes," J. Electrochem. Soc., 152, A191-A196 (2005)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔