|
1.Voleti, V.B. and J.-P. Hubschman, Age-related eye disease. Maturitas, 2013. 75(1): p. 29-33. 2.Kingham, J.D., Cataract and abnormalities of the lens. Archives of Ophthalmology, 1976. 94(2): p. 340-340. 3.Hanson, S.R., et al., The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res, 2000. 71(2): p. 195-207. 4.Benedek, G.B., Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci, 1997. 38(10): p. 1911-21. 5.Onal, S. and T. Bavbek, Aging and the eye. Marmara Medical Journal, 2005. 18(1): p. 43-52. 6.Chylack, L.T., Jr., et al., The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol, 1993. 111(6): p. 831-6. 7.Wang, Y. and J.A. King, Cataract as a protein aggregation disease, in Protein Misfolding Diseases: Current and Emerging Principles and Therapies M. Ramirez-Alvarado, J.W. Kelly, and C.M. Dobson, Editors. 2010, John Wiley &; Sons, Inc.: Hoboken, New Jersey, USA. p. 487-515. 8.Reddy, M.A., et al., Molecular genetic basis of inherited cataract and associated phenotypes. Survey of Ophthalmology, 2004. 49(3): p. 300-315. 9.Giblin, F.J., et al., UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects. Exp Eye Res, 2002. 75(4): p. 445-58. 10.Sliney, D.H., How light reaches the eye and its components. Int J Toxicol, 2002. 21(6): p. 501-9. 11.Sasaki, H., et al., High prevalence of nuclear cataract in the population of tropical and subtropical areas. Dev Ophthalmol, 2002. 35: p. 60-9. 12.Lerman, S., Radiation cataractogenesis. N Y State J Med, 1962. 62: p. 3075-85. 13.Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature, 2001. 414(6865): p. 813-20. 14.Baynes, J.W. and S.R. Thorpe, Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999. 48(1): p. 1-9. 15.Resnikoff, S., et al., Global data on visual impairment in the year 2002. Bull World Health Organ, 2004. 82(11): p. 844-51. 16.McCarty, C.A., J.E. Keeffe, and H.R. Taylor, The need for cataract surgery: projections based on lens opacity, visual acuity, and personal concern. Br J Ophthalmol, 1999. 83(1): p. 62-5. 17.Klein, R., et al., The Beaver Dam Eye Study. Retinopathy in adults with newly discovered and previously diagnosed diabetes mellitus. Ophthalmology, 1992. 99(1): p. 58-62. 18.Moreau, K.L. and J.A. King, Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med, 2012. 18(5): p. 273-82. 19.Brian, G. and H. Taylor, Cataract blindness--challenges for the 21st century. Bull World Health Organ, 2001. 79(3): p. 249-56. 20.Murthy, G.V., et al., Prevalence of lens opacities in North India: the INDEYE feasibility study. Invest Ophthalmol Vis Sci, 2007. 48(1): p. 88-95. 21.Ashwin, P.T., S. Shah, and J.S. Wolffsohn, Advances in cataract surgery. Clin Exp Optom, 2009. 92(4): p. 333-42. 22.Oyster, C.W., in The Human Eye - Structure and Function1999, Sinauer Associates Inc.: Sunderland, MA, USA. 23.Delaye, M. and A. Tardieu, Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 1983. 302(5907): p. 415-7. 24.Piatigorsky, J., Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res, 1998. 17(2): p. 145-74. 25.Bloemendal, H. and W.W. Dejong, Lens Proteins and Their Genes. Progress in Nucleic Acid Research and Molecular Biology, 1991. 41: p. 259-281. 26.Horwitz, J., Alpha-crystallin. Exp Eye Res, 2003. 76(2): p. 145-53. 27.Siezen, R.J. and H. Berger, The quaternary structure of bovine alpha-crystallin. Size and shape studies by sedimentation, small-angle X-ray scattering and quasi-elastic light scattering. Eur J Biochem, 1978. 91(2): p. 397-405. 28.Veretout, F., M. Delaye, and A. Tardieu, Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. J Mol Biol, 1989. 205(4): p. 713-28. 29.Bhat, S.P. and C.N. Nagineni, alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun, 1989. 158(1): p. 319-25. 30.Haley, D.A., et al., Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol, 2000. 298(2): p. 261-72. 31.Haley, D.A., J. Horwitz, and P.L. Stewart, The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol, 1998. 277(1): p. 27-35. 32.Peschek, J., et al., The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A, 2009. 106(32): p. 13272-7. 33.Horwitz, J., Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A, 1992. 89(21): p. 10449-53. 34.Rao, P.V., et al., Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta, 1995. 1245(3): p. 439-47. 35.Derham, B.K. and J.J. Harding, Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res, 1999. 18(4): p. 463-509. 36.Horwitz, J., et al., Lens alpha-crystallin: function and structure. Eye, 1999. 13: p. 403-408. 37.Clark, J.I. and P.J. Muchowski, Small heat-shock proteins and their potential role in human disease. Current Opinion in Structural Biology, 2000. 10(1): p. 52-59. 38.Brady, J.P., et al., Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A, 1997. 94(3): p. 884-9. 39.Wistow, G., et al., X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol, 1983. 170(1): p. 175-202. 40.Norledge, B.V., et al., The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins. Nat Struct Biol, 1996. 3(3): p. 267-74. 41.Slingsby, C. and O.A. Bateman, Quaternary Interactions in Eye Lens Beta-Crystallins - Basic and Acidic Subunits of Beta-Crystallins Favor Heterologous Association. Biochemistry, 1990. 29(28): p. 6592-6599. 42.Lampi, K.J., et al., Deamidation of human beta B1 alters the elongated structure of the dimer. Exp Eye Res, 2001. 72(3): p. 279-88. 43.Zigler, J.S., J. Horwitz, and J.H. Kinoshita, Human Beta-Crystallin .1. Comparative Studies on the Beta-1-Crystallins Beta-2-Crystallins and Beta-3-Crystallins. Experimental Eye Research, 1980. 31(1): p. 41-55. 44.Bindels, J.G., A. Koppers, and H.J. Hoenders, Structural Aspects of Bovine Beta-Crystallins - Physical Characterization Including Dissociation-Association Behavior. Experimental Eye Research, 1981. 33(3): p. 333-343. 45.Chiou, S.H., et al., Physicochemical Characterization of Beta-Crystallins from Bovine Lenses - Hydrodynamic and Aggregation Properties. Journal of Protein Chemistry, 1989. 8(1): p. 19-32. 46.Sharma, K.K. and P. Santhoshkumar, Lens aging: effects of crystallins. Biochim Biophys Acta, 2009. 1790(10): p. 1095-108. 47.Herbrink, P., H. Van Westreenen, and H. Bloemendal, Further studies on the polypeptide chains of beta-crystallin. Exp Eye Res, 1975. 20(6): p. 541-8. 48.Lampi, K.J., et al., Sequence analysis of betaA3, betaB3, and betaA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem, 1997. 272(4): p. 2268-75. 49.Berbers, G.A., et al., Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem, 1984. 139(3): p. 467-79. 50.Smith, M.A., et al., Mutation of interfaces in domain-swapped human betaB2-crystallin. Protein Sci, 2007. 16(4): p. 615-25. 51.Slingsby, C. and N.J. Clout, Structure of the crystallins. Eye, 1999. 13: p. 395-402. 52.Siezen, R.J., et al., Human lens gamma-crystallins: isolation, identification, and characterization of the expressed gene products. Proc Natl Acad Sci U S A, 1987. 84(17): p. 6088-92. 53.Basak, A., et al., High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J Mol Biol, 2003. 328(5): p. 1137-47. 54.Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85. 55.Laganowsky, A., et al., Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci, 2010. 19(5): p. 1031-43. 56.Laganowsky, A., et al., Atomic view of a toxic amyloid small oligomer. Science, 2012. 335(6073): p. 1228-31. 57.Braun, N., et al., Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A, 2011. 108(51): p. 20491-6. 58.Jehle, S., et al., Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol, 2010. 17(9): p. 1037-42. 59.Bagneris, C., et al., Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol, 2009. 392(5): p. 1242-52. 60.Van Montfort, R.L.M., et al., Crystal structure of truncated human beta B1-crystallin. Protein Science, 2003. 12(11): p. 2606-2612. 61.Ebersbach, H., et al., Affilin-novel binding molecules based on human gamma-B-crystallin, an all beta-sheet protein. J Mol Biol, 2007. 372(1): p. 172-85. 62.Wang, J., et al., Determination of multicomponent protein structures in solution using global orientation and shape restraints. J Am Chem Soc, 2009. 131(30): p. 10507-15. 63.Kmoch, S., et al., Link between a novel human gammaD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet, 2000. 9(12): p. 1779-86. 64.Kingsley, C.N., et al., Preferential and specific binding of human alphaB-crystallin to a cataract-related variant of gammaS-crystallin. Structure, 2013. 21(12): p. 2221-7. 65.Purkiss, A.G., et al., The x-ray crystal structure of human gamma S-crystallin C-terminal domain. Journal of Biological Chemistry, 2002. 277(6): p. 4199-4205. 66.Kosinski-Collins, M.S. and J. King, In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci, 2003. 12(3): p. 480-90. 67.Kosinski-Collins, M.S., S.L. Flaugh, and J. King, Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci, 2004. 13(8): p. 2223-35. 68.Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Protein Sci, 2005. 14(3): p. 569-81. 69.Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Protein Sci, 2005. 14(8): p. 2030-43. 70.Flaugh, S.L., I.A. Mills, and J. King, Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding. J Biol Chem, 2006. 281(41): p. 30782-93. 71.Mills, I.A., et al., Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Protein Sci, 2007. 16(11): p. 2427-44. 72.Pande, A., et al., Molecular basis of a progressive juvenile-onset hereditary cataract. Proc Natl Acad Sci U S A, 2000. 97(5): p. 1993-8. 73.Pande, A., et al., Crystal cataracts: human genetic cataract caused by protein crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(11): p. 6116-6120. 74.Basak, A., et al., High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. Journal of Molecular Biology, 2003. 328(5): p. 1137-1147. 75.Talla, V., N. Srinivasan, and D. Balasubramanian, Visualization of in situ intracellular aggregation of two cataract-associated human gamma-crystallin mutants: lose a tail, lose transparency. Investigative Ophthalmology and Visual Science, 2008. 49(8): p. 3483-3490. 76.Evans, P., et al., The P23T cataract mutation causes loss of solubility of folded gamma D-crystallin. Journal of Molecular Biology, 2004. 343(2): p. 435-444. 77.Pande, A., et al., Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry, 2005. 44(7): p. 2491-2500. 78.Chen, J.J., et al., Mechanism of the highly efficient quenching of tryptophan fluorescence in human gamma D-crystallin. Biochemistry, 2006. 45(38): p. 11552-11563. 79.McManus, J.J., et al., Altered phase diagram due to a single point mutation in human gamma D-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(43): p. 16856-16861. 80.Papanikolopoulou, K., et al., Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Mol Vis, 2008. 14: p. 81-9. 81.Chen, J., et al., Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence. Biochemistry, 2008. 47(40): p. 10705-21. 82.Chen, J., P.R. Callis, and J. King, Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry, 2009. 48(17): p. 3708-16. 83.Jung, J., et al., The structure of the cataract-causing P23T mutant of human gamma D-crystallin exhibits distinctive local conformational and dynamic changes. Biochemistry, 2009. 48(12): p. 2597-2609. 84.Xu, J.H., et al., Femtosecond fluorescence spectra of tryptophan in human gamma-crystallin mutants: site-dependent ultrafast quenching. Journal of the American Chemical Society, 2009. 131(46): p. 16751-16757. 85.Pande, A., et al., NMR study of the cataract-linked P23T mutant of human gamma D-crystallin shows minor changes in hydrophobic patches that reflect its retrograde solubility. Biochemical and Biophysical Research Communications, 2009. 382(1): p. 196-199. 86.Moreau, K.L. and J. King, Hydrophobic core mutations associated with cataract development in mice destabilize human gamma D-crystallin. The Journal of Biological Chemistry, 2009. 284(48): p. 33285-33295. 87.Pande, A., et al., Increase in surface hydrophobicity of the cataract-associated P23T mutant of human gamma D-crystallin is responsible for its dramatically lower, retrograde solubility. Biochemistry (Moscow), 2010. 49(29): p. 6122-6129. 88.Vendra, V.P.R. and D. Balasubramanian, Structural and aggregation behavior of the human gamma D-crystallin mutant E107A, associated with congenital nuclear cataract. Molecular Vision, 2010. 16(301-02): p. 2822-2828. 89.Das, P., J.A. King, and R.H. Zhou, Beta-strand interactions at the domain interface critical for the stability of human lens gamma D-crystallin. Protein Science, 2010. 19(1): p. 131-140. 90.Acosta-Sampson, L. and J. King, Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. J Mol Biol, 2010. 401(1): p. 134-52. 91.Banerjee, P.R., et al., Increased hydrophobicity and decreased backbone flexibility explain the lower solubility of a cataract-linked mutant of YD-crystallin. Journal of Molecular Biology, 2011. 412(4): p. 647-659. 92.Banerjee, P.R., et al., Cataract-associated mutant E107A of human gamma D-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(2): p. 574-579. 93.Zhang, W., et al., The congenital cataract-linked G61C mutation destabilizes gamma D-crystallin and promotes non-native aggregation. PLoS One, 2011. 6(5). 94.Sahin, E., et al., Computational design and biophysical characterization of aggregation-resistant point mutations for gamma D crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Biochemistry, 2011. 50(5): p. 628-639. 95.Knee, K.M., et al., The group II chaperonin Mm-Cpn binds and refolds human gammaD crystallin. Protein Sci, 2011. 20(1): p. 30-41. 96.Kong, F.R. and J. King, Contributions of aromatic pairs to the folding and stability of long-lived human gamma D-crystallin. Protein Science, 2011. 20(3): p. 513-528. 97.Goulet, D.R., K.M. Knee, and J.A. King, Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Experimental Eye Research, 2011. 93(4): p. 371-381. 98.Das, P., J.A. King, and R. Zhou, Aggregation of gamma-crystallins associated with human cataracts via domain swapping at the C-terminal beta-strands. Proc Natl Acad Sci U S A, 2011. 108(26): p. 10514-9. 99.Mishra, S., R.A. Stein, and H.S. McHaourab, Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins. FEBS Letters, 2012. 586(4): p. 330-336. 100.Moreau, K.L. and J.A. King, Cataract-causing defect of a mutant gamma-crystallin proceeds through an aggregation pathway which bypasses recognition by the alpha-crystallin chaperone. PLoS One, 2012. 7(5): p. e37256. 101.Xia, Z., et al., UV-radiation induced disruption of dry-cavities in human gammaD-crystallin results in decreased stability and faster unfolding. Sci Rep, 2013. 3: p. 1560. 102.Schafheimer, N. and J. King, Tryptophan cluster protects human gammaD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol, 2013. 89(5): p. 1106-15. 103.Ji, F., et al., The human W42R gammaD-crystallin mutant structure provides a link between congenital and age-related cataracts. J Biol Chem, 2013. 288(1): p. 99-109. 104.Yang, Z., et al., Dissecting the contributions of beta-hairpin tyrosine pairs to the folding and stability of long-lived human gammaD-crystallins. Nanoscale, 2014. 6(3): p. 1797-807. 105.Schafheimer, N., et al., Tyrosine/Cysteine Cluster Sensitizing Human gammaD-Crystallin to Ultraviolet Radiation-Induced Photoaggregation in Vitro. Biochemistry, 2014. 53(6): p. 979-90. 106.Wen, W.-S., M.-C. Hsieh, and S.S.S. Wang, High-level expression and purification of human γD-crystallin in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 2011. 42(4): p. 547-555. 107.Farmer, B.T., et al., Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Mol Biol, 1996. 3(12): p. 995-997. 108.Wishart, D.S., Interpreting protein chemical shift data. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011. 58(1): p. 62-87. 109.Wishart, D.S., B.D. Sykes, and F.M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry, 1992. 31(6): p. 1647-1651. 110.Wishart, D. and B. Sykes, The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. Journal of Biomolecular NMR, 1994. 4(2): p. 171-180. 111.Berjanskii, M.V. and D.S. Wishart, A Simple Method To Predict Protein Flexibility Using Secondary Chemical Shifts. Journal of the American Chemical Society, 2005. 127(43): p. 14970-14971. 112.Xiang, S.Q., et al., N-H spin-spin couplings: probing hydrogen bonds in proteins. Angew Chem Int Ed Engl, 2013. 52(12): p. 3525-8. 113.Cordier, F. and S. Grzesiek, Direct Observation of Hydrogen Bonds in Proteins by Interresidue 3hJNC‘ Scalar Couplings. Journal of the American Chemical Society, 1999. 121(7): p. 1601-1602. 114.Yao, L., J. Ying, and A. Bax, Improved accuracy of 15N–1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins. Journal of Biomolecular NMR, 2009. 43(3): p. 161-170. 115.Shen, Y., et al., Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences, 2008. 105(12): p. 4685-4690. 116.Shen, Y., et al., De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR, 2009. 43(2): p. 63-78. 117.Shen, Y., et al., TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR, 2009. 44(4): p. 213-23. 118.Chou, J.J., et al., A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR, 2001. 21(4): p. 377-82. 119.Bax, A., G. Kontaxis, and N. Tjandra, Dipolar couplings in macromolecular structure determination. Methods Enzymol, 2001. 339: p. 127-74. 120.Schwieters, C.D., et al., The Xplor-NIH NMR molecular structure determination package. J Magn Reson, 2003. 160(1): p. 65-73. 121.Schwieters, C.D., J.J. Kuszewski, and G.M. Clore, Using Xplor-NIH for NMR Molecular Structure Determination. ChemInform, 2006. 37(44): p. no-no.
|