跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詩雯
研究生(外文):Shih-Wen Wang
論文名稱:利用Rhodococcus erythropolis NTU-1細胞破乳化
論文名稱(外文):De-emulsification by Rhodococcus erythropolis NTU-1
指導教授:劉懷勝劉懷勝引用關係
口試委員:許駿發王孟菊賴進此
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:223
中文關鍵詞:破乳化Rhodococcus erythropolis NTU-1菌株原油回收量乳化液Tween80
外文關鍵詞:Emulsiontertiary oil recoveryde-emulsificationRhodococcus erythropolis NTU-1
相關次數:
  • 被引用被引用:3
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要探討R. erythropolis NTU-1之破乳化的特性,其能利用此菌株使油水乳化液在短時間內能分離出油。
以菌液破乳化的研究結果發現,乳化劑Tween80可以將正十六烷與水互相混合形成白色乳化液,利用NTU-1菌液可以在24小時內可以回收85%以上的正十六烷,破乳化效率也高達90%。同時發現在O/W/T為2~8/1/0.01,並不影響最適添加NTU-1菌液量(3 mL,OD600=1)。
若以烘乾經正十六烷培養的NTU-1結塊細胞破乳化,該細胞粉末雖然不具活性,但仍保有很高的疏水性,亦可以使破乳化效果在12小時內就達85%以上且回收85%以上的正十六烷。同時,在O/W/T為2~9/1/0.01,並不影響乾燥NTU-1結塊的最適添加量(0.03 g)。經實驗可估算出1 g的乾燥結塊約可以回收250 mL 的正十六烷。
實驗發現在低乳化劑濃度0.2%或油/水(O/W)比值越小或高破乳化溫度下,可以提高破乳化程度及縮短破乳化時間。另外,藉由改變不同乳化劑體積,發現最適添加NTU-1細胞(不論是菌液或是乾燥結塊)與Tween80體積存在面積比(量的n=2/3次方)的關係。
由此可知,NTU-1菌液或是烘乾後的NTU-1結塊皆具有很好的破乳化能力,可以在24小時就回收80%以上的正十六烷,此項成果確實在三級原油回收方面,提供一個相當具有競爭性及發展性的方法。


This report investigated the feasibility of applying Rhodococcus erythropolis NTU-1 that possessed de-emulsifying ability to recover oil from oil-in-water (O/W) emulsion.
Suspended NTU-1 cell reach de-emulsification efficiency up to 90% and recovered 85% oil in 24 hr. Besides, the optimal amount of NTU-1 cell addition was 3 mL (OD600=1) when Oil/Water/Tween80 was 2~8/1/0.01.
Heat-dried bioflocculi also were tested because of its convenience in practical application. Dried bioflocculi retained its high hydrophobicity, resulting in more than 85% de-emulsification and 85% oil recovery in 12hr. When Oil/Water/Tween80 volume is 2~9/1/0.01, the optimal amount of dried NTU-1 was 0.03 g. It was estimated and calculated that 250 mL oil might be recovered by 1 g dried bioflocculi.
Lower Tween80 concentration or O/W ratio and higher temperature, better de-emulsification and oil recovery in less time. In addition, the optimal amount of NTU-1 for de-emulsification, for both suspended and dried NTU-1, was proportional to the amount of Tween80 to the power of 2/3, indicating a surface area dependent behavior.
These experimental results showed that NTU-1 in MSM or dried bioflocculi had a potential role in enhancing tertiary oil recovery process.


摘要 I
Abstract II
目錄 I
圖目錄 V
表目錄 X
照片目錄 XI
第一章 &;#32214;論 1
1.1 前言 1
1.2 研究目的及論文綱要 2
第二章 文獻回顧 3
2.1 石油碳氫化合物簡介及其對環境和人類之影響 3
2.2 油水乳化液 6
2.2.1乳化液的形成 6
2.2.2乳化液的穩定 9
2.2.3界面活性劑 13
2.3 破乳化的方法 22
2.4生物處理油水乳化液 28
2.4.1生物破乳化簡介(Microbial de-emulsification) 28
2.4.2微生物提升碳氫化合物回收量之模式 33
2.5 破乳化之過程 40
2.5.1破乳化之機制 40
2.5.2 微生物影響破乳化程度之因素 43
2.6實驗菌株Rhodococcus erythropolis之介紹 50
2.6.1 Rhodococcus菌屬簡介 50
2.6.2 Rhodococcus erythropolis之特性及應用 53
2.7 微生物乾燥技術及應用 55
2.7.1 烘乾之原理及應用 55
第三章 實驗材料與方法 57
3.1 實驗菌株 57
3.2 培養基組成與配製 59
3.2.1 液態礦物培養基 59
3.2.2 菌株保存培養基 62
3.2.3 菌株活化培養基 63
3.2.4 計數平板培養基 63
3.3 實驗方法 64
3.3.3 利用NTU-1菌液進行O/W/T破乳化實驗 67
3.3.4不同條件下利用NTU-1菌液進行O/W/T破乳化實驗 69
3.3.5烘乾以正十六烷培養的NTU-1細菌結塊 70
3.3.6以正十六烷培養的NTU-1細菌結塊進行超音破震碎並烘乾 71
3.3.7利用乾燥後NTU-1結塊進行O/W/T破乳化實驗 71
3.3.8不同條件下利用乾燥後NTU-1結塊進行O/W/T破乳化實驗 72
3.3.9不同條件乾燥下NTU-1細菌結塊之細胞表面疏水性測定 73
3.4 實驗藥品與器材 74
3.4.1 實驗藥品 74
3.4.2 實驗儀器 75
第四章 實驗結果與討論 76
4.1利用NTU-1菌液對於O/W/T乳化液進行破乳化能力的影響 77
4.1.1穩定O/W/T乳化液的選擇 77
4.1.2以不同量之NTU-1菌液破乳化O/W/T 84
4.1.3利用添加相同NTU-1菌液量破乳化不同體積之正十六烷 91
4.1.4利用NTU-1菌液破乳化不同比例O/W/T 95
4.1.6利用不同濃度NTU-1菌液破乳化O/W/T 119
4.1.7討論 124
4.2利用正十六烷培養的NTU-1結塊經烘乾後再進行破乳化之能力探討 126
4.2.1以不同量之乾燥NTU-1結塊破乳化O/W/T 126
4.2.2利用添加相同重量的乾燥NTU-1結塊破乳化不同體積正十六烷 135
4.2.3利用乾燥NTU-1結塊破乳化不同比例O/W/T 139
4.2.4利用烘乾後NTU-1結塊破乳化不同濃度Tween80形成之O/W/T 146
4.2.5利用烘乾後NTU-1結塊在不同溫度破乳化O/W/T 163
4.2.6利用超音波震碎NTU-1結塊進行破乳化O/W/T 177
4.2.7利用不同烘乾溫度的NTU-1結塊破乳化O/W/T 183
4.2.8不同條件乾燥下NTU-1結塊表面疏水性測定 189
4.2.9討論 192
4.3 探討NTU-1細胞、正十六烷與Tween80三者之間的關係 194
4.3.1 NTU-1細胞與Tween80之間的關係 194
4.3.2 正十六烷、NTU-1細胞與Tween80之間的數量關係 197
4.3.3 NTU-1細胞進行破乳化實驗的機制 201
4.3.4 討論 206
第五章 結論 207
參考文獻 211
附錄1以乾燥NTU-1結塊破乳化正十六烷/水/Span80 220


Abdel Azim, A. A. A., A. R. M. Abdul-Raheim, R. K. Kamel &; M. E. Abdel-Raouf (2011) Demulsifier systems applied to breakdown petroleum sludge. Journal of Petroleum Science and Engineering, 78, 364-370.
Al-Araji, L., R. N. Z. R. A. Rahman, M. Basri, A. B. Salleh, N. M. Nasaruddin, K. Harikrishna, R. Y. Othman, L. S. Hoon, J. A. Harikrishna &; N. Adnan (2007) Microbial surfactant. Asia Pacific Journal of Molecular Biology and Biotechnology, 15, 99-105.
Alloway, B., D. Ayres, B. Alloway &; D. Ayres (1998) Chemical principles of environmental pollution. Water Air and Soil Pollution, 102, 201-209.
Almeida, P., R. Moreira, R. Almeida, A. Guimaraes, A. Carvalho, C. Quintella, M. Esperidia &; C. Taft (2004) Selection and application of microorganisms to improve oil recovery. Engineering in Life Sciences, 4, 319-325.
Amirabadi, S. S., A. Jahanmiri, M. Rahimpour, P. Darvishi &; A. Niazi (2013) Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: Medium optimization to break heavy crude oil emulsion. Colloids and Surfaces B: Biointerfaces, 109,244-252.
Andre, V., N. Willenbacher, H. Debus, L. Borger, P. Fernandez, T. Frechen &; J. Rieger (2003) Prediction of emulsion stability: facts and myth. Cosmetics and Toiletries Manufacture Worldwide .
Araujo, E. A., N. J. de Andrade, L. H. M. da Silva, A. F. de Carvalho, C. A. de Sa Silva &; A. M. Ramos (2010) Control of microbial adhesion as a strategy for food and bioprocess technology. Food and Bioprocess Technology, 3, 321-332.
Banat, I. M. (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51, 1-12.
Banat, I. M., R. S. Makkar &; S. Cameotra (2000) Potential commercial applications of microbial surfactants. Applied microbiology and biotechnology, 53, 495-508.
Bell, K., J. Philp, D. Aw &; N. Christofi (1998) The genus Rhodococcus. Journal of Applied Microbiology, 85, 195-210.
Berny, J.-F. &; G. Hennebert (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia, 83,805-815.
Bhardwaj, A. &; S. Hartland (1994a) Dynamics of emulsification and demulsification of water in crude oil emulsions. Industrial &; Engineering Chemistry Research, 33, 1271-1279.
Bhardwaj, A. &; S. Hartland (1994b) Kinetics of coalescence of water droplets in water-in-crude oil emulsions. Journal of Dispersion Science And Technology, 15, 133-146.
Boyd, J. V., C. Parkinson &; P. Sherman (1972) Factors affecting emulsion stability, and the HLB concept. Journal of Colloid and Interface Science, 41, 359-370.
Cairns, W. L., D. G. Cooper, J. E. Zajic, J. M. Wood &; N. Kosaric (1982) Characterization of Nocardia amarae as a potent biological coalescing agent of water-oil emulsions. Applied and environmental microbiology, 43, 362-366.
Chang, W. N., C. W. Liu &; H.S. Liu (2009) Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis. Process Biochemistry, 44, 955-962.
Collins, M., M. Goodfellow &; D. Minnikin (1982) A survey of the structures of mycolic acids in Corynebacterium and related taxa. Journal of General Microbiology, 128, 129-149.
Cooney, J., S. Silver &; E. Beck (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microbial ecology, 11, 127-137.
Coutinho, J., M. Silva, P. Moraes, A. Monteiro, J. Barcelos, E. Siqueira &; V. Santos (2012) Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil. Bioresource Technology, 128,646-654.
Das, M. (2001) Characterization of de-emulsification capabilities of a Micrococcusspecies. Bioresource Technology, 79, 15-22.
de Carvalho, C. C., V. Fatal, S. S. Alves &; M. M. R. da Fonseca (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Applied Microbiology and Biotechnology, 76, 1423-1430.
Duvnjak, Z. &; N. Kosaric (1987) Deemulsification of petroleum W/O emulsions by selected bacterial and yeast cells. Biotechnology Letters, 9, 39-42.
Finnerty, W. &; M. Singer (1983) Microbial enhancement of oil recovery. Nature Biotechnology, 1, 47-54.
Finnerty, W. R. (1992) The biology and genetics of the genus Rhodococcus. Annual Reviews in Microbiology, 46, 193-218.
Finnerty, W. R. (1994) Biosurfactants in environmental biotechnology. Current Opinion in Biotechnology, 5, 291-295.
Forgiarini, A., J. Esquena, C. Gonzalez &; C. Solans (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir, 17, 2076-2083.
Gurtler, V., B. C. Mayall &; R. Seviour (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus. Microbiology Reviews, 28, 377-403.
Gong, X. Y., Z. K. Luan, Y. S. Pei &; S. G. Wang (2003) Culture conditions for flocculant production by Paenibacillus polymyxa BY-28. Journal of Environmental Science and Health, Part A, 38, 657-669.
Goodfellow, M. (1987) The toxonomic status of Rhodococcus equi. Veterinary Microbiology, 14, 205-209.
Goodfellow, M., G. Alderson &; J. Chun (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek, 74, 3-20.
Gotchev, G., T. Kolarov, K. Khristov &; D. Exerowa (2011) Electrostatic and steric interactions in oil-in-water emulsion films from Pluronic surfactants. Advances in Colloid and Interface Science, 168, 79-84.
Greene, J. D. &; T. R. Klaenhammer (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Applied and Environmental Microbiology, 60, 4487-4494.
Gudina, E. J., J. F. B. Pereira, L. R. Rodrigues, J. A. Coutinho &; J. A. Teixeira (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery, 68,56-64.
Hadjoudja, S., V. Deluchat &; M. Baudu (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 342, 293-299.
Hirato, T., K. Koyama, T. Tanaka, Y. Awakura &; H. Majima (1991) Demulsification of water-in-oil emulsion by an electrostatic coalescence method. Materials Transactions, 32, 257-263.
Hua, Z., J. Chen, S. Lun &; X. Wang (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 37, 4143-4150.
Huang, X. F., W. Guan, J. Liu, L. J. Lu, J. C. Xu &; Q. Zhou (2010) Characterization and phylogenetic analysis of biodemulsifier-producing bacteria. Bioresource Technology, 101, 317-323.
Huang, X. F., M. X. Li, L. J. Lu, S. Yang &; J. Liu (2012) Relationship of cell-wall bound fatty acids and the demulsification efficiency of demulsifying bacteria Alcaligenes sp. S-XJ-1 cultured with vegetable oils. Bioresource Technology, 104, 530-536.
Huang, X. F., J. Liu, L. J. Lu, Y. Wen, J. C. Xu, D. H. Yang &; Q. Zhou (2009) Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp. Bioresource technology, 100, 1358-1365.
Jack, T. R. (1991) Microbial enhancement of oil recovery. Current Opinion in Biotechnology, 2, 444-449.
Janiyani, K., H. Purohit, R. Shanker &; P. Khanna (1994) De-emulsification of oil-in-water emulsions by Bacillus subtilis. World Journal of Microbiology and Biotechnology, 10, 452-456.
Liu, J. F., L. J. Ma, B. Z Mu, R. L. Liu, F. T. Ni, &; J. X. Zhou (2005) The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. Journal of Petroleum Science and Engineering, 48, 265-271.
Kashiwagi, H. &; T. Makita (1982) Viscosity of twelve hydrocarbon liquids in the temperature range 298–348 K at pressures up to 110 MPa. International Journal of Thermophysics, 3, 289-305.
Khire, J. (2010) Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR). Biosurfactants, 146-157. Springer.
Kim, Y. H., A. Nikolov, D. Wasan, H. Diaz-Arauzo &; C. Shelly (1996) Demulsification of water-in-crude oil emulsions: effects of film tension, elasticity, diffusivity and interfacial activity of demulsifier individual components and their blends. Journal of Dispersion Science and Technology, 17, 33-53.
Kim, Y. H. &; D. T. Wasan (1996) Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions. Industrial &; Engineering Chemistry Research, 35, 1141-1149.
Kos, B., J. &;#352;u&;#353;kovi&;#263;, S. Vukovi&;#263;, M. &;#352;impraga, J. Frece &; S. Mato&;#353;i&;#263; (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94, 981-987.
Kosaric, N. (1996) Biosurfactants. Biotechnology Set, Second Edition, 659-717.
Kosaric, N., Z. Duvnjak &; W. Cairns (1987) De&;#8208;Emulsification of complex petroleum emulsions by use of microbial biomass. Environmental Progress, 6, 33-38.
Krawczyk, M. A., D. T. Wasan &; C. Shetty (1991) Chemical demulsification of petroleum emulsions using oil-soluble demulsifiers. Industrial &; Engineering Chemistry Research, 30, 367-375.
Lake, L. W. &; P. B. Venuto (1990) A niche for enhanced oil recovery in the 1990s. Oil &; Gas Journal, 88, 62-67.
Lang, S. &; J. C. Philp (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek, 74, 59-70.
Langevin, D., S. Poteau, I. Henaut &; J. Argillier (2004) Crude oil emulsion properties and their application to heavy oil transportation. Oil &; Gas Science and Technology, 59, 511-521.
Larkin, M. J., L. A. Kulakov &; C. C. Allen (2005) Biodegradation and Rhodococcus–masters of catabolic versatility. Current opinion in Biotechnology, 16, 282-290.
Lazar, I., I. Petrisor &; T. Yen (2007) Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 25, 1353-1366.
Lee, J. C. &; K. Y. Lee (2000) Emulsification using environmental compatible emulsifiers and de-emulsification using DC field and immobilized Nocardia amarae. Biotechnology Letters, 22, 1157-1163.
Li, P., A. Ghosh, R. F. Wagner, S. Krill, Y. M. Joshi &; A. Serajuddin (2005) Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. International journal of pharmaceutics, 288, 27-34.
Li, X., J. X. Yang, F. Ma, C. Liu, J. N. Wang, N. Hou &; Y. Xu (2010) Study on Inter-Relationship of the Nutrients in Substrate and the Production of Demulsifying Compound by a Bacillus sp. Advanced Materials Research, 113, 974-979.
Lin, C., G. He, C. Dong, H. Liu, G. Xiao &; Y. Liu (2008) Effect of oil phase transition on freeze/thaw-induced demulsification of water-in-oil emulsions. Langmuir, 24, 5291-5298.
Liu, J., X. F. Huang, L.J. Lu, J.C. Xu, Y. Wen, D. H. Yang &; Q. Zhou (2009) Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S-JS-1. Bioresource Technology, 100, 6481-6487.
Liu, J., X. F. Huang, L.J. Lu, J.C. Xu, Y. Wen, D. H. Yang &; Q. Zhou (2010) Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion. Journal of hazardous materials, 183, 466-473.
Liu, J., L. J. Lu, X. F. Huang, J. J. Shang, M. X. Li, J. C. Xu &; H. P. Deng (2011) Relationship between surface physicochemical properties and its demulsifying ability of an alkaliphilic strain of Alcaligenes sp. S-XJ-1. Process Biochemistry, 46, 1456-1461.
Liu, W., D. Sun, C. Li, Q. Liu &; J. Xu (2006) Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 303, 557-563.
Mandal, A., A. Samanta, A. Bera &; K. Ojha. (2010) Role of oil-water emulsion in enhanced oil recovery. International Conference on Chemistry and Chemical Engineering, 190-194.
Mohammed, R., A. Bailey, P. Luckham &; S. Taylor (1994) Dewatering of crude oil emulsions 3. Emulsion resolution by chemical means. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 83, 261-271.
Mohebali, G., A. Kaytash &; N. Etemadi (2012) Efficient Breaking of Water/oil Emulsions by a Newly Isolated De-emulsifying Bacterium, Ochrobactrum anthropi Strain RIPI5-1. Colloids and Surfaces B: Biointerfaces, 98, 120-128.

Morais, J. M., P. A. Rocha-Filho &; D. J. Burgess (2009) Influence of phase inversion on the formation and stability of one-step multiple emulsions. Langmuir, 25, 7954-7961.
Mukherjee, S., P. Das &; R. Sen (2006) Towards commercial production of microbial surfactants. Trends in Biotechnology, 24, 509-515.
Mulligan, C. N. (2005) Environmental applications for biosurfactants. Environmental pollution, 133, 183-198.
Mulligan, C. N. (2009) Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid &; Interface Science, 14, 372-378.
Nadarajah, N., A. Singh &; O. P. Ward (2002a) De-emulsification of petroleum oil emulsion by a mixed bacterial culture. Process biochemistry, 37, 1135-1141.
Nadarajah, N., A. Singh &; O. P. Ward (2002b) Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18, 435-440.
Neu, T. R. (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological Reviews, 60, 151.
Nielsen, S. M., A. A. Shapiro, M. L. Michelsen &; E. H. Stenby (2010) 1D simulations for microbial enhanced oil recovery with metabolite partitioning. Transport in porous media, 85, 785-802.
Park, S. H., J. H. Lee, S. H. Ko, D. S. Lee &; H. K. Lee (2000) Demulsification of oil-in-water emulsions by aerial spores of a Streptomyces sp. Biotechnology letters, 22, 1389-1395.
Pasquali, R. C., M. P. Taurozzi &; C. Bregni (2008) Some considerations about the hydrophilic–lipophilic balance system. International journal of pharmaceutics, 356, 44-51.
Rainey, F. A., J. Burghardt, R. M. Kroppenstedt, S. Klatte &; E. Stackebrandt (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology, 141, 523-528.
Rajakovi&;#263;, V. &; D. Skala (2006) Separation of water-in-oil emulsions by freeze/thaw method and microwave radiation. Separation and purification technology, 49, 192-196.
Rashedi, H., F. Yazdian &; S. Naghizadeh (2012) Microbial Enhanced Oil Recovery. Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites,71-88, InTech.
Razi, M., M. R. Rahimpour, A. Jahanmiri &; F. Azad (2011) Effect of a Different Formulation of Demulsifiers on the Efficiency of Chemical Demulsification of Heavy Crude Oil. Journal of Chemical and Engineering Data, 56, 2936-2945.
Rondon, M., P. Bouriat, J. Lachaise &; J. L. Salager (2006) Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action. Energy &; Fuels, 20, 1600-1604.
Rosenberg, E. &; E. Ron (1999) High-and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154-162.
Rosenberg, M. (2006) Microbial adhesion to hydrocarbons: twenty&;#8208;five years of doing MATH. FEMS Microbiology Letters, 262, 129-134.
Salehizadeh, H., A. Ranjbar &; K. Kennedy (2013) Demulsification capabilities of a Microbacterium species for breaking water-in-crude oil emulsions. African Journal of Biotechnology, 12, 2019-2026.
Schramm, L. (2000) Surfactants-Fundamentals and Application in Petroleum Industry. Cambridge: Cambridge University Press. viii.
Schulman, J. H., W. Stoeckenius &; L. M. Prince (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. The Journal of Physical Chemistry, 63, 1677-1680.
Sen, R. (2008) Biotechnology in petroleum recovery: the microbial EOR. Progress in Energy and Combustion Science, 34, 714-724.
Singh, A., J. D. Van Hamme &; O. P. Ward (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, 99-121.
Sjoblom, J., H. Soderlund, S. Lindblad, E. Johansen &; I. Skjarvo (1990) Water-in-crude oil emulsions from the Norwegian continental shelf. Colloid and Polymer Science, 268, 389-398.
Stewart, A., N. Gray, W. Cairns &; N. Kosaric (1983) Bacteria-induced de-emulsification of water-in-oil petroleum emulsions. Biotechnology Letters, 5, 725-730.
Sun, D., X. Duan, W. Li &; D. Zhou (1998) Demulsification of water-in-oil emulsion by using porous glass membrane. Journal of Membrane Science, 146, 65-72.
Urdahl, O. &; J. Sjoblom (1995) Water-in-crude oil emulsions from the Norwegian Continental Shelf. A stabilization and destabilization study. Journal of Dispersion Science and Technology, 16, 557-574.
Van der Mei, H., B. Van De Belt-Gritter, R. Doyle &; H. Busscher (2001) Cell surface analysis and adhesion of chemically modified streptococci. Journal of Colloid and Interface Science, 241, 327-332.
Van Hamme, J. D., A. Singh &; O. P. Ward (2003) Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503-549.
Volkering, F., A. Breure &; W. Rulkens (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401-417.
Ward, O. P. 2010. Microbial biosurfactants and biodegradation. Advances in Experimental Medicine and Biology, 672, 65-74. Springer.
Wen, Y., H. Cheng, L. J. Lu, J. Liu, Y. Feng, W. Guan, Q. Zhou &; X. F. Huang (2010) Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresource Technology, 101, 8315-8322.
Wi&;#261;cek, A. E. (2007) Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 20-27.
Wilkinson, M. &; D. Cooper (1985) Testing of microbial demulsifiers with heavy crude emulsions. Biotechnology Letters, 7, 406-408.
Xu, Y. &; M. Lu (2011) Microbially enhanced oil recovery at simulated reservoir conditions by use of engineered bacteria. Journal of Petroleum Science and Engineering, 78, 233-238.
Youssef, N., D. Simpson, K. Duncan, M. McInerney, M. Folmsbee, T. Fincher &; R. Knapp (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Applied and Environmental Microbiology, 73, 1239-1247.
Zaki, N. N. (1997) Surfactant stabilized crude oil-in-water emulsions for pipeline transportation of viscous crude oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 125, 19-25.
Zhang, F., Y. H. She, H. M. Li, X. T. Zhang, F. C. Shu, Z. L. Wang, L. J. Yu &; D.J. Hou (2012) Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir. Applied Microbiology and Biotechnology, 95, 811-821.
方鴻源. 1999. 環境微生物學 第六章. 中華民國環境工程學會.
張緯農. 2003. 利用混合菌株(TN-4)處理異十九烷之研究. In 化學工程研究所. 國立台灣大學.
張緯農.2009. 利用 Rhodococcus erythropolis 進行碳氫化合物生物降解與細胞聚集現象之研究. In 化學工程研究所. 國立台灣大學.
趙承琛. 2001. 界面科學基礎. 復文書局.
謝惠敏. 2011. 利用Rhodococcus erythropolis NTU-1細胞聚集現象移除正十六烷. In 化學工程研究所. 國立台灣大學.
梁茂實. 2007. 微生物生物復育時細胞聚集與氫離子釋放的應用. In 化學工程研究所. 國立台灣大學.
華苟根 &; 郭堅華 (2003) 紅球菌屬的分類及應用研究發展. 微生物學通報, 30, 107-111.
黃武良. 1999. 石油-大自然孕育千萬年的珍藏. In 地球科學園地. 地球科學文教基金會.
劉志文. 2007. 微生物生物復育過程中細胞聚集現象之研究. In 化學工程研究所. 國立台灣大學.
劉志文. 2011. Rhodococcus erythropolis NTU-1菌株對石油污染物之生物降解及生物吸附現象之應用In 化學工程研究所. 國立台灣大學.
盧至人. 2002. 現地生物復育技術. In 台灣土壤及地下水環境保護協會簡訊, 3-5.
盧曉鳳. 2000. 油品之生物分解--煉油廠廢水之實際應用. In 化學工程研究所. 國立台灣大學.
盧俊雄. 2000. 酸鹼度對可分割型界面活性劑所形成油/水乳液界面電位和粒徑的影響. In 化學工程研究所. 國立成功大學.
王鳳英. 1993. 界面活性劑的原理及應. 高立圖書.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top