(3.238.7.202) 您好!臺灣時間:2021/03/03 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳霈恩
研究生(外文):Pei-En Wu
論文名稱:利用液態氫源與雙功能鈀鈷的碳球在常溫常壓下製備2,5-二甲基喃
論文名稱(外文):Novel Synthesis of 2,5-Dimethylfuran under Ambient Conditions Utilizing ZIF-67 Derived Bifunctional Carbon Supported Palladium and Cobalt with Aqueous Hydrogen Source
指導教授:吳嘉文吳嘉文引用關係
指導教授(外文):Chia-Wen Wu
口試委員:小林 広和多湖 輝興中島 清隆横井 俊之
口試委員(外文):Hirokazu KobayashiTeruoki TagoKiyotaka NakajimaToshiyuki Yokoi
口試日期:2014-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:生質能源25-二甲基&;#21579;喃ZIF-67氫化反應雙官能化
外文關鍵詞:Biomass25-DimethylfuranZIF-67hydrogenationbifunctional
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於能源的需求越來越大,加上石油的供應終將面臨短缺,有再生能力並且環保的生質能源因此受到矚目。其中,由木質纖維素所製備的2,5-二甲基&;#21579;喃因性質接近汽油,因此可取代汽油或成為汽油添加物。藉由氫化可以將5-甲基糠醛轉換成2,5-二甲基&;#21579;喃。氫化反應大多需要高溫達成活化能與通入高壓氫氣提高氫氣於溶劑中的溶解值。在此,我們提供一反應系統在室溫與室壓下即能製備2,5-二甲基&;#21579;喃。
此實驗由ZIF-67(Zeolitic Imidazolate Framework)合成的雙功能鈀鈷奈米孔洞碳材,鈀能提供氫化反應所需的金屬表面並利用鈷催化氫硼化鈉可於液態產氫。鈀與鈷在同一材料上的協同作用使得我們可以在室溫與室壓下得到83.07% 產率的2,5-二甲基&;#21579;喃。


The ever increasing demand for energy combined with the diminishing supply of fossil fuel signals the need to search for an alternative energy source. 2,5-Dimethylfuran (DMF) is a green and renewable fuel due to its lignocellulosic origin. The production of DMF results from the hydrogenation and hydrogenolysis of 5-Hydroxymethylfurfural (HMF). Hydrogenation processes often require purging the system with high pressure hydrogen to increase the solubility of hydrogen in the solvent, all the while using high temperatures for the hydrogenation reactions to occur. Herein, we proposed a novel method in which DMF could be synthesized in high yields under atmospheric pressure and room temperature.
A bifunctional Pd/CoNC material of ZIF-67 descent was synthesized in which Palladium provides a hydrogenation surface and Cobalt catalyzes the production of hydrogen from an aqueous source, Sodium Borohydride (NaBH4). The synergetic effects of Cobalt and Palladium on the same support helped achieve 83.07% DMF yields.


1. INTRODUCTION 1
1.1. ENERGY CRISIS 1
1.2. BIOMASS DEVELOPMENT 4
1.3. BIOMASS CONVERSION 6
2. PAPER SURVEY 9
2.1. METAL ORGANIC FRAMEWORK (MOF) BASED CATALYSTS 9
2.2. INCIPIENT WETNESS IMPREGNATION37 11
2.3. PRODUCTION OF 2,5-DIMETHYLFURAN 15
3. OBJECTIVE 20
4. EXPERIMENTAL 22
4.1. CHEMICALS AND MATERIALS 22
4.2. EQUIPMENT 23
4.3. PROCEDURE FOR PRODUCTION OF 2,5-DIMETHYLFURAN 24
4.3.1. Batch Reactions 24
4.3.2. Semi-Batch Reactions 26
4.4. CATALYST SYNTHESIS 28
4.4.1. ZIF-67 Synthesis 28
4.4.2. ZIF-67 to Pd/CoNC Conversion 30
4.5. CHARACTERIZATION 31
4.5.1. Scanning Electron Microscope (SEM) 31
4.5.2. Transmission electron microscopy (TEM) 37
4.5.3. Specific Surface Area Analyzer 42
4.5.4. X-Ray Diffraction (XRD) 44
4.5.5. Thermogravimetric Analysis 46
4.5.6. Calibration Curve for DMF 48
4.5.7. Calibration Curve for MFAD 48
5. RESULTS AND DISCUSSION 49
5.1. HMF AS THE STARTING REACTANT 49
5.1.1. Effect of Catalyst Amount 49
5.1.2. Effect of Reaction Temperature 51
5.1.3. Effect of Reaction Time 51
5.1.4. Effect of NaOH addition 53
5.2. COMPARISON OF DIFFERENT STARTING REACTANTS 55
5.3. PALLADIUM AND COBALT ON SAME OR DIFFERENT SUPPORTS 57
5.4. REACTIONS STARTING WITH MFAD 58
5.4.1. With or Without Acid Addition 58
5.5. DIFFERENT STARTING REACTANTS UNDER OPTIMUM CONDITIONS 62
5.6. EFFECT OF ATM OR NON-ATM PRESSURE TESTS 63
5.7. SYNERGETIC EFFECTS OF COBALT AND PALLADIUM 64
6. CONCLUSION 66
7. FUTURE PROSPECTS 67
8. REFERENCE 69

(1)Organisation for Economic Co-operation and Development: http://www.oecd.org/.
(2)International Energy Agency: http://www.iea.org/.
(3)Enerdata: http://www.enerdata.net/.
(4)BP Statistical Review of World Energy: http://www.bp.com/.
(5)Ma, X.; Jiang, C.; Xu, H.; Shuai, S.; Ding, H. Energy &; Fuels 2013, 27, 6212.
(6)Wu, X.; Li, Q.; Fu, J.; Tang, C.; Huang, Z.; Daniel, R.; Tian, G.; Xu, H. Fuel 2012, 95, 234.
(7)Karp, S. G.; Woiciechowski, A. L.; Soccol, V. T.; Soccol, C. R. Brazilian Archives of Biology and Technology 2013, 56, 679.
(8)Dutta, S.; De, S.; Saha, B. Biomass and Bioenergy 2013, 55, 355.
(9)Sathitsuksanoh, N.; George, A.; Zhang, Y. H. P. Journal of Chemical Technology &; Biotechnology 2013, 88, 169.
(10)Pereira, A. N.; Mobedshahi, M.; Ladisch, M. R. In Methods in Enzymology; Willis A. Wood, S. T. K., Ed.; Academic Press: 1988; Vol. Volume 160, p 26.
(11)Bergius, F. Industrial &; Engineering Chemistry 1937, 29, 247.
(12)Maki-Arvela, P.; Salmi, T.; Holmbom, B.; Willfor, S.; Murzin, D. Y. Chemical Reviews 2011, 111, 5638.
(13)Sathitsuksanoh, N.; Zhu, Z.; Zhang, Y. H. P. Cellulose 2012, 19, 1161.
(14)Moxley, G.; Zhang, Y. H. P. Energy &; Fuels 2007, 21, 3684.
(15)Zhang, Y. H. P. Process Biochemistry 2011, 46, 2091.
(16)LADISCH, M. R.; LADISCH, C. M.; TSAO, G. T. Science 1978, 201, 743.
(17)Lee, Y.-C.; Chen, C.-T.; Chiu, Y.-T.; Wu, K. C. W. ChemCatChem 2013, 5, 2153.
(18)Karinen, R.; Vilonen, K.; Niemela, M. Chemsuschem 2011, 4, 1002.
(19)Wang, T. F.; Nolte, M. W.; Shanks, B. H. Green Chem 2014, 16, 548.
(20)Liu, M.; Jia, S. Y.; Li, C. Z.; Zhang, A. F.; Song, C. S.; Guo, X. W. Chin. J. Catal. 2014, 35, 723.
(21)Hu, L.; Wu, Z.; Xu, J. X.; Sun, Y.; Lin, L.; Liu, S. J. Chem Eng J 2014, 244, 137.
(22)Jimenez-Morales, I.; Moreno-Recio, M.; Santamaria-Gonzalez, J.; Maireles-Torres, P.; Jimenez-Lopez, A. Appl Catal B-Environ 2014, 154, 190.
(23)Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315.
(24)Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341.
(25)Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
(26)Liu, Y.; Xuan, W. M.; Cui, Y. Adv. Mater. 2010, 22, 4112.
(27)Ma, L. Q.; Lin, W. B. In Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis; Schroder, M., Ed.; Springer-Verlag Berlin: Berlin, 2010; Vol. 293, p 175.
(28)Falkowski, J. M.; Liu, S.; Lin, W. B. Isr. J. Chem. 2012, 52, 591.
(29)Doherty, C. M.; Buso, D.; Hill, A. J.; Furukawa, S.; Kitagawa, S.; Falcaro, P. Accounts Chem. Res. 2014, 47, 396.
(30)Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Accounts Chem. Res. 2009, 43, 58.
(31)Demirci, U. B.; Akdim, O.; Andrieux, J.; Hannauer, J.; Chamoun, R.; Miele, P. Fuel Cells 2010, 10, 335.
(32)Wu, R.; Qian, X.; Rui, X.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q.; Feng, X. Q.; Long, Y.; Wang, L.; Huang, Y. Small 2014.
(33)Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Small 2014.
(34)Gross, A. F.; Sherman, E.; Vajo, J. J. Dalton Trans. 2012, 41, 5458.
(35)Lu, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. ACS Appl. Mater. Interfaces 2014, 6, 4186.
(36)Yao, J. F.; He, M.; Wang, K.; Chen, R. Z.; Zhong, Z. X.; Wang, H. T. Crystengcomm 2013, 15, 3601.
(37)Marceau, E.; Carrier, X.; Che, M. In Synthesis of Solid Catalysts; Wiley-VCH Verlag GmbH &; Co. KGaA: 2009, p 59.
(38)Maitra, A. M.; Cant, N. W.; Trimm, D. L. Applied Catalysis 1986, 27, 9.
(39)Vincent, R. C.; Merrill, R. P. Journal of Catalysis 1974, 35, 206.
(40)Weisz, P. B. Transactions of the Faraday Society 1967, 63, 1801.
(41)Weisz, P. B.; Hicks, J. S. Transactions of the Faraday Society 1967, 63, 1807.
(42)Harriott, P. Journal of Catalysis 1969, 14, 43.
(43)Assaf, E. M.; Jesus, L. C.; Assaf, J. M. Chem Eng J 2003, 94, 93.
(44)Goula, M. A.; Kordulis, C.; Lycourghiotis, A. Journal of Catalysis 1992, 133, 486.
(45)Li, W. D.; Li, Y. W.; Qin, Z. F.; Chen, S. Y. Chemical Engineering Science 1994, 49, 4889.
(46)Papageorgiou, P.; Price, D. M.; Gavriilidis, A.; Varma, A. Journal of Catalysis 1996, 158, 439.
(47)Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447, 982.
(48)Zu, Y. H.; Yang, P. P.; Wang, J. J.; Liu, X. H.; Ren, J. W.; Lu, G. Z.; Wang, Y. Q. Appl Catal B-Environ 2014, 146, 244.
(49)De, S.; Dutta, S.; Saha, B. Chemsuschem 2012, 5, 1826.
(50)Binder, J. B.; Raines, R. T. Journal of the American Chemical Society 2009, 131, 1979.
(51)Chidambaram, M.; Bell, A. T. Green Chem 2010, 12, 1253.
(52)Thananatthanachon, T.; Rauchfuss, T. B. Angewandte Chemie 2010, 49, 6616.
(53)Jae, J.; Zheng, W. Q.; Lobo, R. F.; Vlachos, D. G. Chemsuschem 2013, 6, 1158.
(54)Zhang, J.; Lin, L.; Liu, S. Energy &; Fuels 2012, 26, 4560.
(55)Twigg, M. V.; Spencer, M. S. Applied Catalysis A: General 2001, 212, 161.
(56)Nishimura, S.; Ikeda, N.; Ebitani, K. Catalysis Today 2013.
(57)Huang, Y. B.; Chen, M. Y.; Yan, L.; Guo, Q. X.; Fu, Y. Chemsuschem 2014, 7, 1068.
(58)Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schuth, F. Nature materials 2014, 13, 293.
(59)Hansen, T. S.; Barta, K.; Anastas, P. T.; Ford, P. C.; Riisager, A. Green Chem 2012, 14, 2457.
(60)Chatterjee, M.; Ishizaka, T.; Kawanami, H. Green Chem 2014, 16, 1543.
(61)Ko, C. H.; Park, S. H.; Jeon, J. K.; Suh, D. J.; Jeong, K. E.; Park, Y. K. Korean J. Chem. Eng. 2012, 29, 1657.
(62)Karakhanov, E. A.; Maksimov, A. L.; Zolotukhina, A. V.; Kardasheva, Y. S. Russ. Chem. Bull. 2013, 62, 1465.
(63)Chen, Q. A.; Ye, Z. S.; Duan, Y.; Zhou, Y. G. Chem. Soc. Rev. 2013, 42, 497.
(64)Monguchi, Y.; Sajiki, H. J. Synth. Org. Chem. Jpn. 2012, 70, 711.
(65)Rylander, P. Catalytic Hydrogenation over Platinum Metals; Elsevier Science, 2012.
(66)Finley, A. J. Catalytic Transfer Hydrogenation of Aldehydes and Epoxides Using Raney Nickel and 2-propanol as a Hydrogen Donor; University of Tennessee at Chattanooga, Chemistry, 2005.
(67)Roth, P. Asymmetric Transfer Hydrogenation of Aromatic Ketones and Azirines with NH-ligands; Acta Universitatis Upsaliensis, 2002.
(68)Fernandes, V. R.; Pinto, A. M. F. R.; Rangel, C. M. International Journal of Hydrogen Energy 2010, 35, 9862.
(69)Kojima, Y.; Suzuki, K.-i.; Fukumoto, K.; Sasaki, M.; Yamamoto, T.; Kawai, Y.; Hayashi, H. International Journal of Hydrogen Energy 2002, 27, 1029.
(70)Kim, J.-H.; Lee, H.; Han, S.-C.; Kim, H.-S.; Song, M.-S.; Lee, J.-Y. International Journal of Hydrogen Energy 2004, 29, 263.
(71)Wu, C.; Wu, F.; Bai, Y.; Yi, B.; Zhang, H. Materials Letters 2005, 59, 1748.
(72)Ye, W.; Zhang, H.; Xu, D.; Ma, L.; Yi, B. Journal of Power Sources 2007, 164, 544.
(73)Jeong, S. U.; Kim, R. K.; Cho, E. A.; Kim, H. J.; Nam, S. W.; Oh, I. H.; Hong, S. A.; Kim, S. H. Journal of Power Sources 2005, 144, 129.
(74)Lu, Z.-H.; Yao, Q.; Zhang, Z.; Yang, Y.; Chen, X. Journal of Nanomaterials 2014, 2014, 1.
(75)Moussa, G.; Moury, R.; Demirci, U. B.; &;#350;ener, T.; Miele, P. International Journal of Energy Research 2013, 37, 825.
(76)Bullock, R. M. Science 2013, 342, 1054.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔