(3.235.11.178) 您好!臺灣時間:2021/03/05 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李達人
研究生(外文):Ta-Jen Li
論文名稱:化學修飾電極之製備以及其在生化感測器之應用
論文名稱(外文):Preparation of Chemically Modified Electrodes and Their Applications to Biochemical Sensors
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
口試委員:邱文英戴子安陳林祈周澤川許梅娟江偉宏
口試委員(外文):Wen-Yen ChiuChi-An DaiLin-Chi ChenTse-Chuan ChouMei-Jywan SyuWei-Hung Chiang
口試日期:2014-07-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:230
中文關鍵詞:碳材化學修飾電極導電高分子摻雜電化學式感測器氧化還原媒子
外文關鍵詞:Carbon materialChemically modified electrodeConducting polymerDopingElectrochemical sensorRedox mediator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們選擇不同的化學或生物分子,包含碘酸根、多巴胺(DA)、糖化血紅素(HbA1c)以及亞硝酸鹽,然後利用不同的材料製備化學修飾電極感測之。
碘酸根常添加於食鹽中以防止甲狀腺腫大。我們首次製備一導電高分子聚二氧乙烯&;#22139;吩(PEDOT)與氧化還原媒子核黃素腺嘌呤二核&;#33527;酸(FAD)複合薄膜以修飾玻璃碳電極(GCE)。此修飾電極定名為GCE/PEDOT-FAD。循環伏安法(CV)以及電化學式石英震盪微天秤(EQCM)實驗顯示,FAD在PEDOT聚合的過程中摻雜至其中。製備修飾電極的最佳鍍膜圈數決定為9圈。我們利用定電位法感測碘酸根,GCE/PEDOT-FAD的靈敏度為0.78 μA μM-1 cm-2,線性範圍為4-140 μM,而偵測下限(LOD)為0.16 μM。與文獻中單獨利用FAD感測碘酸根所得的結果比較,本研究將PEDOT與FAD結合改善了感測器的靈敏度與偵測下限。我們最後將此感測器應用於偵測鹽產品中的碘酸根。
DA為一重要的神經傳導物質,它的分泌異常將導致一些疾病如巴金森氏症及杭亭頓氏舞蹈症。我們利硼摻雜奈米碳管(BCNTs)修飾網印碳電極(SPCE)。BCNTs是利用一常壓的碳熱反應合成,其中氨氣(在氬氣的氛圍中)作為蝕刻氣體在多壁奈米碳管(MWCNT)中產生缺陷,三氧化二硼作為硼源。我們利用0.5wt.%的Nafion&;reg;溶液將奈米碳管分散以修飾SPCE。我們首度探討硼摻雜量與BCNT催化活性之間的關聯性,發現BCNT (B 2.1 at.%)對於DA有最佳的催化效果。旋轉盤電極分析顯示,摻雜2.1 at.%的硼於MWCNT中分別提升它的電活性面積(Ae)及標準速率常數(k0)約13%。我們利用BCNT (B 2.1 at.%)修飾的SPCE 感測DA,相較於利用CV,以微分脈衝伏安法(DPV)進行感測能夠得到較高的靈敏(35.65 μA cm-2 μM-1)與較低的偵測下限(0.017 μM)。干擾研究方面,我們探討抗壞血酸以及尿酸對於DA感測的影響。
HbA1c是評估長期糖尿病監控情形的重要指標。我們選擇網印金電極(SPGE)為電極基材,然後以滴覆的方式將Nafion&;reg;修飾其上當作選擇性物質。二茂鐵硼酸(FcBA)則用來辨識HbA1c並且提供氧化還原電流訊號。我們發現修飾Nafion&;reg;能夠防止血紅素(Hb)吸附於SPGE上,主要的原因為Nafion&;reg;與Hb之間的電性排斥。實驗上決定Nafion&;reg;的最佳修飾層數為3層。我們以人類全血進行真實樣品測試。我們也探討與HbA1c結合對於FcBA氧化還原峰電流造成的影響,並且證實與HbA1c結合是造成FcBA氧化還原峰電流下降的主因。此外,由於還原峰電流的下降量較氧化峰電流明顯,我們推論HbA1c與氧化態的FcBA(FcBA+)之間有較強的作用力。
亞硝酸鹽是評估泌尿道感染的重要指標。為了臨床應用的方便性,我們嘗試製備電化學式感測器以偵測不稀釋尿液中的亞硝酸鹽。我們利用導電高分子聚3,4-(2,2-二乙基丙烯)二氧基&;#22139;吩(PProDOT-Et2)修飾SPGE以提升它的性能表現。由於亞硝酸鹽不存在健康人的尿液中,我們將亞硝酸鹽添加於尿液樣品中進行偵測。我們發現利用CV在不稀釋的尿液中最低可偵測的濃度約為250 μM,此值較試紙呈色方法的最低可偵測濃度(20 μM)來得高。我們將利用不同的電極修飾物質以及不同的電化學感測方法改善感測器的性能表現。

In this dissertation, different chemical or biological molecules, including iodate, dopamine (DA), glycated hemoglobin (HbA1c), and nitrite were selected as the targets, and different materials were used to prepare the chemically modified electrodes (CMEs) for sensing them.
Iodate is often added in table salts to prevent goiter. A composite film composed of the conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) and the mediator, flavin adenine dinucleotide (FAD), was prepared for the first time for modifying the glassy carbon electrode (GCE). This modified electrode was designated as GCE/PEDOT-FAD. Cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) analyses revealed that FAD was doped into the PEDOT film during the electrodepositon process. The optimal cycle number for preparing the modified electrode was determined to be 9. The amperometric detection of iodate was performed; the GCE/PEDOT-FAD showed a sensitivity of 0.78 μA μM-1 cm-2, a linear range of 4-140 μM, and a limit of detection (LOD) of 0.16 μM for iodate. Compared with the results in the literature obtained by using single FAD for sensing iodate, it can be said that the combination of PEDOT with FAD significantly improved the sensitivity and LOD. Eventually, the GCE/PEDOT-FAD was applied to detect iodate in a salt product.
DA is a vital neurotransmitter; its abnormal transmission has been associated with several neurological disorders such as Parkinson’s disease and Huntington’s chorea. Boron doped carbon nanotubes (BCNTs) were utilized for modifying the screen printed carbon electrode (SPCE). The BCNTs were synthesized by an atmospheric carbothermal reaction, in which ammonia (in argon atmosphere) was used as the etching gas to create defects in the multi-walled carbon nanotubes (MWCNT), and boron trioxide was used as the boron source. Each CNT sample was dispersed in 0.5 wt.% Nafion&;reg; solution. The relationship between the boron doped amount and the electrocatalytic activity of the BCNT was explored for the first time; it was found that the oxidation peak current of DA is the highest on the BCNT (B 2.1 at.%) modified SPCE. Rotating disk electrode (RDE) analysis revealed that doping of 2.1 at.% boron into the MWCNT upgrades the electroactive surface area (Ae) and the standard rate constant (k0) by ca. 13%, respectively. DA sensing on the BCNT (B 2.1 at.%) modified SPCE was conducted; higher sensitivity (35.65 μA cm-2 μM-1) and lower LOD (0.017 μM) were obtained by using the differential pulse voltammetry (DPV), with respect to those obtained by using CV. The interfering effects of ascorbic acid and uric acid on DA sensing were also studied.
HbA1c is an important index for assessing the long-term condition of diabetes monitoring. Screen printed gold electrode (SPGE) was chosen as the substrate, and Nafion&;reg; was dropped coated onto it as a selective material. Ferroceneboronic acid (FcBA) was utilized for recognizing HbA1c and providing the redox signal. Experimental results showed that the modification of Nafion&;reg; film effectively blocked the adsorption of hemoglobin (Hb) onto the SPGE; the main reason could be charge repulsion between Hb and Nafion&;reg;. The optimal layer of Nafion&;reg; film for modifying the SPGE was determined to be 3. Human whole blood was used for real sample test. The effect of HbA1c binding on the redox signal of FcBA was also investigated. It was verified that the binding with HbA1c is the main reason for causing the decrement of the redox signal. Furthermore, since the decrement of the reduction peak current is larger than that of the anodic peak current, it was deduced that HbA1c has stronger interaction with the oxidized FcBA (FcBA+).
Nitrite is a significant index for assessing the urinary tract infection (UTI). For the convenience of clinical use, we tried to fabricate an electrochemical sensor to detect nitrite in the undiluted human urine samples. The conducting polymer, poly(3,4-(2’,2’-diethylpropylene)dioxythiophene) (PProDOT-Et2), was utilized to modify the SPGE to enhance its sensor performance. Since nitrite does not exist in the urine from healthy persons, nitrite was spiked into the urine samples for detection. It was found that the lowest concentration of nitrite that can be detect in the human urine by using the CV method is 250 μM, which is higher than the value can be achieved by the test paper coloring method, 20 μM. Different materials and different electrochemical sensing methods will be used to improve the sensor performance.

致謝 I
中文摘要 III
Abstract V
Table of contents VIII
List of tables XVII
List of figures XIX
Nomenclatures XXXI

Chapter 1 Introduction 1
1.1 Preface 1
1.2 Introduction to sensors 3
1.2.1 Recognition elements 5
1.2.2 Transducers 8
1.2.2.1 Electrochemical transducers 8
1.2.2.2 Optical transducers 11
1.3 Chemically modified electrodes 13
1.3.1 Polymers for modifying the electrodes 13
1.3.2 Carbon materials for modifying the electrodes 14
1.3.3 Redox mediators for modifying the electrodes 17
1.4 Scope of this dissertation 19

Chapter 2 Literature Review and Research Motivations 25
2.1 Electrochemical iodate sensor 25

2.1.1 Importance of iodate and traditional analytical methods for detecting it 25
2.1.2 Preparation of modified electrodes for the reduction reaction of iodate 25
2.1.3 Motivations of this research 26
2.2 Electrochemical DA sensor 28
2.2.1 Importance of DA and traditional analytical methods for detecting it 28
2.2.2 Preparation of modified electrodes for the reduction reaction of DA 28
2.2.3 Doping of carbon nanotubes to enhance their electrocatalytic activities 29
2.2.4 Motivations of this research 31
2.3 Electrochemical HbA1c sensor 33
2.3.1 Importance of HbA1c and traditional analytical methods for detecting it 33
2.3.2 Formation of HbA1c 34
2.3.3 Preparation of modified electrodes for detecting HbA1c or fructosyl valine 34
2.3.4 Motivations of this research 38
2.4 Electrochemical nitrite sensor 40
2.4.1 Importance of nitrite and traditional methods for detecting it 40
2.4.2 Urinary tract infection 41
2.4.3 Preparation of modified electrodes for oxidation sensing of nitrite 41
2.4.4 Motivations of this research 42

Chapter 3 General experimental descriptions 45
3.1 Materials 45
3.2 Instruments 50
3.3 Solutions 51
3.4 Instrumental analyses 52

3.4.1 Material characterizations 52
3.4.1.1 Atomic force microscopy 52
3.4.1.2 Raman spectroscopy 52
3.4.1.3 Scanning electron microscope-energy dispersive X-ray spectrometer 52
3.4.1.4 Transmission electron microscope-electron energy loss spectroscopy 52
3.4.1.5 X-ray photoelectron spectroscopy 53
3.4.2 Electrochemical analyses 53
3.4.2.1 Three-electrode system 53
3.4.2.2 Electrochemical quartz crystal microbalance analysis 53
3.4.2.3 Rotating disk electrode analysis 55
3.5 Principles of the electrochemical methods 56
3.5.1 Cyclic voltammetry 56
3.5.2 Differential pulse voltammetry 57
3.5.3 Chronoamperometry 58

Chapter 4 Modification of Glassy Carbon Electrode with a Polymer/Mediator Composite and Its Application for the Electrochemical Detection of Iodate 59
4.1 Overview of chapter 4 59
4.2 Experimental details of chapter 4 60
4.2.1 Electrodeposition of films of PEDOT-FAD and PEDOT on the GCE 60
4.2.2 Amperometric detection of iodate 61
4.2.3 EQCM analysis to study the effect of FAD on the electrodeposition of PEDOT 61

4.3 Results and discussion 62
4.3.1 Combination of PEDOT with FAD to modify the GCE 62
4.3.2 Electrodeposition of PEDOT with and without adding FAD: EQCM analysis 65
4.3.3 SEM characterization of the PEDOT and PEDOT-FAD films 68
4.3.4 AFM characterization of the PEDOT and PEDOT-FAD films 69
4.3.5 UV-vis characterization of the PEDOT and PEDOT-FAD films 70
4.3.6 Determination of the optimal cycle number for preparing the GCE/PEDOT-FAD 70
4.3.7 Estimation of the surface coverage of FAD 73
4.3.8 Effect of pH value on the electrochemical properties of the GCE/PEDOT-FAD 75
4.3.9 Amperometric detection of iodate 77
4.3.10 Long-term stability of the GCE/PEDOT-FAD 81
4.3.11 Interference studies and real sample analysis 82
4.4 Summary of chapter 4 84

Chapter 5 Controlling the Electrocatalytic Activity of Multi-walled Carbon Nanotubes by Boron Doping for Electrochemical Sensing of Dopamine 85
5.1 Overview of chapter 5 85
5.2 Experimental details of chapter 5 86
5.2.1 Synthesis of BCNTs with different boron doped amounts 86
5.2.2 Modification of the SPCE by Nafion&;reg; and CNT 86
5.2.3 Electrochemical sensing of DA by CV and DPV 87
5.2.4 Preparation of the modified electrodes for RDE analysis 87
5.3 Results and discussion 88

5.3.1 XPS analysis of the BCNTs 88
5.3.2 HRTEM and EELS analyses of the BCNTs 89
5.3.3 EELS elemental mapping of the BCNT 90
5.3.4 Dispersion of the CNTs and preparation of the modified electrodes 92
5.3.5 Roles of Nafion&;reg; and MWCNT playing in the electrocatalysis of DA oxidation 92
5.3.6 Electrocatalytic activities of the BCNTs toward DA oxidation 94
5.3.7 SEM observation of the bare SPCE and the modified SPCEs 98
5.3.8 RDE analysis for interpreting the enhancement of ipa by boron doping 99
5.3.9 Scan rate effect on the redox reaction of DA on the SPCE/Nafion&;reg;-BCNT 102
5.3.10 Reaction of DA on the SPCE/Nafion&;reg;-BCNT at different pH values 103
5.3.11 Voltammetric sensing of DA on the SPCE/Nafion&;reg;-BCNT 105
5.3.12 Interference studies 108
5.3.13 Repeatability, reproducibility and the long-term stability tests 110
5.4 Summary of chapter 5 112

Chapter 6 Electrochemical Sensing of Glycated Hemoglobin by Utilizing Ferroceneboronic Acid and Nafion&;reg; 113
6.1 Overview of chapter 6 113
6.2 Experimental details of chapter 6 114
6.2.1 Quantification of the total Hb in the human whole blood 114
6.2.2 Preparation of the Nafion&;reg; modified SPGE 114
6.2.3 Correlating the concentration of HbA1c with the cathodic peak of FcBA 114
6.2.4 Investigation of the effect of HbA1c binding on the redox peak current of FcBA 115

6.3 Results and discussion 116
6.3.1 Quantification of total Hb in the human whole blood 116
6.3.2 Electrochemical behaviors of FcBA on the bare SPGE 117
6.3.3 Illustration of the HbA1c sensing method developed in this study 119
6.3.4 Determination of the optimal Nafion&;reg; film layer 120
6.3.5 SEM observation of the thickness of Nafion&;reg; films 122
6.3.6 Sensing HbA1c in the human whole blood 124
6.3.7 Study the effect of HbA1c binding on the electrochemical property of FcBA 126
6.4 Summary of chapter 6 132

Chapter 7 Preparation of a Conducting Polymer Modified Screen Printed Gold Electrode for Sensing Nitrite in Undiluted Human Urine Samples 133
7.1 Overview of chapter 7 133
7.2 Experimental details of chapter 7 134
7.2.1 Preparation of the SPGE/PProDOT-Et2 134
7.2.2 Experimental setup of drop-in nitrite sensing 134
7.2.3 Electrochemical nitrite sensing in undiluted human urine samples 134
7.3 Results and discussion 136
7.3.1 Electrodeposition of PProDOT-Et2 onto the SPGE 136
7.3.2 Electrochemical oxidation of nitrite on the SPGE and SPGE/PProDOT-Et2 136
7.3.3 SEM observation of the bare SPGE and SPGE/PProDOT-Et2 138
7.3.4 Effect of pH value on nitrite sensing on the SPGE/PProDOT-Et2 139
7.3.5 Interference studies 139

7.3.6 Electrochemical sensing of nitrite in undiluted human urine samples 142
7.3.7 Traditional coloring method for sensing nitrite in undiluted human urine 143
7.3.8 Integrating the nitrite sensor with its corresponding readout circuit 143
7.4 Summary of chapter 7 144

Chapter 8 Conclusions and Suggestions 145
8.1 Conclusions 145
8.2 Suggestions 148

Chapter 9 References 151

Appendix A Preparation of a Novel Molecularly Imprinted Polymer by the Sol-gel Process for Sensing Creatinine 187
A.1 Introduction 187
A.1.1 Importance of creatinine and traditional methods for detecting it 187
A.1.2 Preparation of molecularly imprinted polymers for sensing creatinine 188
A.1.3 Motivations of this research 190
A.2 Experimental details of appendix A 192
A.2.1 Preparation of the molecularly imprinted polymer for Cre 192
A.2.2 Measurement of Al3+ in the extraction solutions of Cre
192
A.2.3 Determination of suitable adsorption time 192
A.2.4 Adsorption studies to evaluate the imprinting efficiency of the MIPCre 192
A.2.5 Interference studies to evaluate the selectivities of MIPCre and NIP 193

A.2.6 Measurement of the specific surface area of MIPCre 193
A.2.7 Cre desorption and re-adsorption experiments to assess the reusability of MIPCre 194
A.3 Results and discussion 194
A.3.1 Design and preparation of the MIPCre 194
A.3.2 Determination of suitable adsorption time 199
A.3.3 Cre adsorption studies to evaluate the imprinting efficiency of MIPCre 200
A.3.4 Interference studies to evaluate the selectivity of MIPCre and NIP 201
A.3.5 Effect of Al3+ concentration on the adsorbed amount of Cre by MIPCre 203
A.3.6 Confirmation of the Cre adsorption ability and reusability of MIPCre 206
A.3.7 Effect of TEOS concentration on the adsorbed amount of Cre by MIPCre 207
A.4 Summary of appendix A 208
A.5 References of appendix A 209

Appendix B Synthesizing Graphenes with Different Boron Doped Amounts and Exploring their Electrochemical Properties 213
B.1 Introduction 213
B.1.1 Using boron doped graphene to modify electrodes for electrochemical sensing 213
B.1.2 Motivations of this study 215
B.1 Experimental details of this appendix B 216
B.2.1 Synthesis of graphenes with different boron doped amounts 216
B.2.2 Dispersion of the graphene samples 216
B.2.3 SEM observation of the graphene samples 217
B.2.4 Preparation of the graphene modified SPCEs 217
B.2.5 Study the electrochemical property of the graphene samples 217

B.3 Results and discussion 217
B.3.1 Observation of the surface morphologies of the graphene samples 217
B.3.2 Background current of the graphene modified SPCEs 219
B.3.3 Redox reaction of Fe(CN)63-/4- on the graphene modified SPCEs 220
B.3.4 Redox reaction of DA on the graphene modified SPCEs 222
B.4 Summary of appendix B 223
B.5 References of appendix B 224

Appendix C Curriculum Vitae 225

[1]B. R. Eggins, “Chemical Sensors and Biosensors,” John Wiley &; Sons, West Sussex, England (2002).
[2]T. Premkumar, K. E. Geckeler, “Graphene-DNA hybrid materials: assembly, applications, and prospects,” Prog. Polym. Sci., 37 (2012) 515-529.
[3]B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed., Garland Science, New York (2002).
[4]Q. Luo, Y. Guan, Y. Zhang, M. Siddiq, “Lead-sensitive PNIPAM microgels modified with crown ether groups,” J. Polym. Sci. Pol. Chem., 48 (2010) 4120-4127.
[5]C. Hou, A. M. Urbanec, H. Cao, “A rapid Hg2+ sensor based on aza-15-crown-5 ether functionalized 1,8-naphthalimide,” Tetrahedron Lett., 52 (2011) 4903-4905.
[6]D. V. Berdnikova, Y. V. Fedorov, O. A. Fedorova, “Azadithiacrown ether based ditopic receptors capable of simultaneous multi-ionic recognition of Ag+ and Hg2+,” Dyes Pigment., 96 (2013) 287-295.
[7]K. Haupt, K. Mosbach, “Molecularly imprinted polymers and their use in biomimetic sensors,” Chem. Rev., 100 (2000) 2495-2504.
[8]N. Karimian, M. Vagin, M. H. A. Zavar, M. Chamsaz, A. P. F. Turner, A. Tiwari, “An ultrasensitive molecularly-imprinted human cardiac troponin sensor,” Biosens. Bioelectron., 50 (2013) 492-498.
[9]T. Alizadeh, L. Allahyar, “Highly-selective determination of carcinogenic derivative of propranolol by using a carbon paste electrode incorporated with nano-sized propranolol-imprinted polymer,” Electrochim. Acta, 111 (2013) 663-673.
[10]B. B. Prasad, A. Prasad, M. P. Tiwari, R. Madhuri, “Multiwalled carbon nanotubes bearing ‘terminal monomeric unit’ for the fabrication of epinephrine imprinted polymer-based electrochemical sensor,” Biosens. Bioelectron., 45 (2013) 114-122.
[11]C. Zhou, J. Gao, L. Zhang, J. Zhou, “A 3,3’-dichlorobenzidine-imprinted polymer gel surface plasmonresonance sensor based on template-responsive shrinkage,” Anal. Chim. Acta, 812 (2014) 129-137.
[12]B. Osman, L. Uzun, N. Be&;#351;irli, A. Denizli, “Microcontact imprinted surface plasmon resonance sensor for myoglobin detection,” Mater. Sci. Eng. C-Mater. Biol. Appl., 33 (2013) 3609-3614.
[13]http://csrri.iit.edu/~howard/biochem/lectures/cofactors.html (Illinois Institute of Technology, Biological, Chemical, and Physical Science Department. Referred to this website on 2014/05/03)
[14]M. K. Campbell, S. O. Farrell. “Biochemistry,” 4th ed., Thomson/Brooks/Cole, Belmont, California (2003).
[15]J. Wang, “Analytical Electrochemistry,” 3rd ed., John Wiley &; Sons, Hoboken, New Jersey (2006).
[16]T. Osaka, S. Komaba, A. Amano, “Highly sensitive microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes,” J. Electrochem. Soc., 145 (1998) 406-408.
[17]H. Ciftci, U. Tamer, “Electrochemical determination of iodide by poly(3-aminophenylboronic acid) film electrode at moderately low pH ranges,” Anal. Chim. Acta, 687 (2011) 137-140.
[18]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd ed.; John Wiley &; Sons, New York (2000).
[19]R. S. Dey, C. R. Raj, “Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material,” J. Phys. Chem. C, 114 (2010) 21427-21433.
[20]J. Y. Park, B. Y. Chang, H. Nam, S. M. Park, “Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem., 80 (2008) 8035-8044.
[21]S. G. Patching, “Surface plasmon resonance spectroscopy for characterization of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta-Biomembr., 1838 (2014) 43-55.
[22]G. Bidan, “Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review,” Sens. Actuator B-Chem., 6 (1992) 45-56.
[23]R. Ramya, M. V. Sangaranarayanan, “Polypyrrole microfibres synthesized with Quillaja Saponin for sensing of catechol,” Sens. Actuator B-Chem., 173 (2012) 40-51.
[24]M. P. Massafera, S. I. C. d. Torresi, “Evaluating the performance of polypyrrole nanowires on the electrochemical sensing of ammonia in solution,” J. Electroanal. Chem., 669 (2012) 90-94.
[25]V. S. Vasantha, R. Thangamuthu, S. M. Chen, “Electrochemical polymerization of 3,4-ethylenedioxythiophene from aqueous solution containing hydroxypropyl-b-cyclodextrin and the electrocatalytic behavior of modified electrode towards oxidation of sulfur oxoanions and nitrite,” Electroanalysis, 20 (2008) 1754-1759.
[26]H. Mao, X. Liu, D. Chao, L. Cui, Y. Li, W. Zhang, C. Wang, “Preparation of unique PEDOT nanorods with a couple of cuspate tips by reverse interfacial polymerization and their electrocatalytic application to detect nitrite,” J. Mater. Chem., 20 (2010) 10277-10284.
[27]T. H. Tsai, K. C. Lin, S. M. Chen, “Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor,” Int. J. Electrochem. Sci., 6 (2011) 2672-2687.
[28]J. Mathiyarasu, S. Senthilkumar, K. L. N. Phani, V. Yegnaraman, “PEDOT-Au nanocomposite film for electrochemical sensing,” Mater. Lett., 62 (2008) 571-573.
[29]P. C. Nien, T. S. Tung, K. C. Ho, “Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film,” 18 (2006), 1408-1415.
[30]K. A. Mauritz, R. B. Moore, “State of understanding of Nafion,” Chem. Rev., 104 (2004) 4535-4585.
[31]J. M. Zen, I. L. Chen, “Voltammetric determination of dopamine in the presence of ascorbic acid at a chemically modified electrode,” Electroanalysis, 9 (1997) 537-540.
[32]C. E. Banks, R. R. Moore, T. J. Davies, R. G. Compton, “Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes,” Chem. Commun. (2004) 1804-1805.
[33]C. E. Banks, R. G. Compton, “Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study,” Analyst, 130 (2005) 1232-1239.
[34]C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, “Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites,” Chem. Commun. (2005) 829-841.
[35]E. J. Biddinger, U. S. Ozkan, “Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction,” J. Phys. Chem. C, 114 (2010) 15306-15314.
[36]E. C. Landis, K. L. Klein, A. Liao, E. Pop, D. K. Hensley, A. V. Melechko, R. J. Hamers, “Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: the importance of edge-plane sites,” Chem. Mater., 22 (2010) 2357-2366.
[37]C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, R. G. Compton, “Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes,” Angew. Chem. Int. Ed., 45 (2006) 2533-2537.
[38]S. Iijima, “Helical microtubules of graphite carbon,” Nature, 354 (1991) 56-58.
[39]B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y. Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, J. F. Douglas, “Effects of aspect ratio of MWCNT on the flammability properties of polymer nanocomposites,” Polymer, 48 (2007) 6086-6096.
[40]S. Subramoney, “Novel nanocarbons-structure, properties, and potential applications,” Adv. Mater., 10 (1998) 1157-1171.
[41]Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, K. Kaneto, “Physical properties of multiwalled carbon nanotubes,” Int. J. Inorg. Mater. 1 (1999) 77-82.
[42]I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, D. Shi, Smart Mater. Struct., 15 (2006) 737-748.
[43]J. Wang, M. Musameh, “Carbon nanotube/Teflon composite electrochemical sensors and biosensors,” Anal. Chem., 75 (2003) 2075-2079.
[44]B. Nigovic, M. Sadikovic, M. Sertic, “Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphin,” Talanta, 122 (2014) 187-194.
[45]L. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, “Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors,” Solid State Commun., 146 (2008) 380-383.
[46]A. Kaniyoor, S. Ramaprabhu, “Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode,” Electrochim. Acta, 72 (2012) 199-206.
[47]J. E. Benedetti, A. A. Correa, M. Carmello, L. C. P. Almeida, A. S. Goncalves, A. F. Nogueira, “Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells,” J. Power Sources, 208 (2012) 263-270.
[48]A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, “Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors,” Org. Electron., 10 (2009) 1556-1561.
[49]D. M. Sun, C. Liu, W. C. Ren, H. M. Cheng, “A review of carbon nanotube- and graphene-based flexible thin-film transistors,” Small, 9 (2013) 1188-1205.
[50]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306 (2004) 663-669.
[51]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater., 6 (2007) 183-191.
[52]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., 8 (2008) 902-907.
[53]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 321 (2008) 385-388.
[54]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-based ultracapacitors,” 8 (2008) 3498-3502.
[55]S. Alwarappan, A. Erdem, C. Liu, C. Z. Li, “Probing the electrochemical properties of graphene nanosheets for biosensing applications,” J. Phys. Chem. C, 113 (2009) 8853-8857.
[56]M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trac-Trends Anal. Chem., 29 (2010) 954-965.
[57]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. Bioelectron., 34 (2012) 70-76.
[58]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, “3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano, 6 (2012) 3206-3213.
[59]R. Jainz, A. Sinha, “A graphene based sensor for sensitive voltammetric quantification of cabergoline,” J. Electrochem. Soc., 160 (2014) H314-H320.
[60]L. J. Brennan, S. T. Barwich, A. Satti, A. Faure, Y. K. Gunko, “Graphene-ionic liquid electrolytes for dye sensitized solar cells,” J. Mater. Chem. A, 1 (2013) 8379-8384.
[61]K. H. Hung, C. H. Chan, H. W. Wang, “Flexible TCO-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti-Ti(III) acid solution,” Renew. Energy, 66 (2014) 150-158.
[62]G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, “Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes,” Chem. Commun., 47 (2011) 5976-5978.
[63]Z. Chen, D. Yu, W. Xiong, P. Liu, Y. Liu, L. Dai, “Graphene-based nanowire supercapacitors,” Langmuir, 30 (2014) 3567-3571.
[64]H. Wei, S. Omanovic, “Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface,” Chem. Biodivers., 5 (2008) 1622-1639.
[65]K. C. Lin, S. M. Chen, “The electrochemical preparation of FAD/ZnO with hemoglobin film-modified electrodes and their electroanalytical properties,” Biosens. Bioelectron., 21 (2006) 1737-1745.
[66]S. A. Kumar, S. M. Chen, “Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: a new potent electroanalysis of NADH and NAD+,” Sens. Actuator B-Chem., 123 (2007) 964-977.
[67]K. D. Wael, H. Buschop, H. A. Heering, L. D. Smet, J. V. Beeumen, B. Devreese, A. Adriaens, “Electrochemical determination of hydrogen peroxide using Rhodobacter capsulatus cytochrome c peroxidase at a gold electrode,” Microchim. Acta, 162 (2008) 65-71.
[68]Q. Chen, S. Aia, X. Zhu, H. Yin, Q. Ma, Y. Qiu, “A nitrite biosensor based on the immobilization of cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode,” Biosens. Bioelectron., 24 (2009) 2991-2996.
[69]M. Eguilaz, L. Agui, P. Yanez-Sedeno, J. M. Pingarron, “A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite,” J. Electroanal. Chem., 644 (2010) 30-35.
[70]G. V. Guerreiro, A. J. Zaitouna, R. Y. Lai, “Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry,” Anal. Chim. Acta, 810 (2014) 79-85.
[71]T. C. Canevari, R. C. S. Luz, Y. Gushikem, “Electrocatalytic determination of nitrite on a rigid disk electrode having cobalt phthalocyanine prepared in situ,” Electroanalysis, 20 (2008) 765-770.
[72]C. Y. Lin, A. Balamurugan, Y. H. Lai, K. C. Ho, “A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation,” Talanta, 82 (2010) 1905-1911.
[73]A. G. Gilman, L. S. Goodman, T. W. Rad, F. Murad, “The Pharmacological Basis of Therapeutics,” 7th ed., MacMillan, New York (1985).
[74]J. B. Stanbury, A. E. Ermans, P. Bourdoux, C. Todd, E. Oken, R. Tonglet, G. Vidor, L. E. Braverman, G. Medeiros-Neto, “Iodine-induced hyperthyroidism: occurrence and epidemiology,” Thyroid, 8 (1998) 83-104.
[75]M. S. El-Shahawi, F. A. Al-Hashemi, “Spectrophotometric determination of periodate or iodate ions by liquid-liquid extraction as an ion-pair using tetramethylammonium iodide,” Talanta, 43 (1996) 2037-2043.
[76]Y. Bichsel, U. V. Gunten, “Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/visible detection,” Anal. Chem., 71 (1999) 34-38.
[77]W. Buchberger, W. Ahrer, “Combination of suppressed and non-suppressed ion chromatography with atmospheric pressure ionization mass spectrometry for the determination of anions,” J. Chromatogr. A, 850 (1999) 99-106.
[78]O. V. Zui, A. V. Terletskaya, “Rapid chemiluminescence method for the determination of iodate traces,” Fresenius J. Anal. Chem., 351 (1995) 212-215.
[79]X. Huang, Y. Li, Y. Chen, L. Wang, “Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode,” Sens. Actuator B-Chem., 134 (2008) 780-786.
[80]Y. Li, Y. Zhou, H. Xian, L. Wang, J. Huo, “Electrochemical determination of nitrite and iodate based on Pt nanoparticles self-assembled on a chitosan modified glassy carbon electrode,” Anal. Sci., 27 (2011) 1223-1228.
[81]L. Kosminsky, M. Bertotti, “Studies on the catalytic reduction of iodate at glassy carbon electrodes modified by molybdenum oxides,” J. Electroanal. Chem., 471 (1999) 37-41.
[82]L. Kosminsky, M. Bertotti, “Determination of iodate in salt samples with amperometric detection at a molybdenum oxide modified electrode,” Electroanalysis, 11 (1999) 623-626.
[83]L. Tian, L. Liu, L. Chen, N. Lu, H. Xu, “Fabrication of amorphous mixed-valent molybdenum oxide film electrodeposited on a glassy carbon electrode and its application as a electrochemistry sensor of iodate,” Sens. Actuator B-Chem., 105 (2005) 484-489.
[84]L. Tian, L. Chen, L. Liu, N. Lu, H. Xu, “Fabrication of a novel LixMoOy film modified electrode and its application as an electrochemical sensor of iodate,” Anal. Bioanal. Chem., 381 (2005) 769-774.
[85]J. R. C. d. Rocha, T. L. Ferreira, R. M. Torresi, M. Bertotti, “An analytical application of the electrocatalysis of the iodate reduction at tungsten oxide films,” Talanta, 69 (2006) 148-153.
[86]B. X. Zou, X. X. Liu, D. Diamond, K. T. Lau, “Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate,” Electrochim. Acta, 55 (2010) 3915-3920.
[87]A. Salimi, R. Hallaj, B. Kavosi, B. Hagighi, “Highly sensitive and selective amperometric sensors for nanomolar detection of iodate and periodate based on glassy carbon electrode modified with iridium oxide nanoparticles,” Anal. Chim. Acta, 661 (2010) 28-34.
[88]F. Chatraei, H. R. Zare, “Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination,” Mater. Sci. Eng. C-Mater. Biol. Appl., 33 (2013) 721-726.
[89]P. Putaj, F. Lefebvre, “Polyoxometalates containing late transition and noble metal atoms,” Coord. Chem. Rev., 255 (2011) 1642-1685.
[90]W. Song, X. Chen, Y. Jiang, Y. Liu, C. Sun, X. Wang, “Fabrication of a chemically modified electrode containing 12-molybdophosphoric acid by the sol-gel technique and its application as an amperometric detector for iodate,” Anal. Chim. Acta, 394 (1999) 73-80.
[91]L. Chen, X. Tian, L. Tian, L. Liu, W. Song, H. Xu, “Electrochemical reduction and flow detection of iodate on (Bu4N)2Mo6O19 self-assembled monolayer,” Anal. Bioanal. Chem., 382 (2005) 1187-1195.
[92]Y. Li, W. Bu, L. Wu, C. Sun, “A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method,” Sens. Actuator B-Chem., 107 (2005) 921-928.
[93]X. Lin, C. Jiang, “Self-assembly of molybdophosphate on a glassy carbon electrode covalently modified with choline and electrocatalytic reduction of iodate,” Anal. Sci., 22 (2006) 697-700.
[94]S. M. Chen, J. L. Song, R. Thangamuthu, “Electrocatalytic behavior of mixed-valent RuO/Ru(CN)64-/SiMo12O404- hybrid film modified electrodes toward oxidation of neurotransmitters and iodate reduction,” J. Electrochem. Soc., 154 (2007) E153-E157.
[95]B. Haghighi, H. Hamidi, L. Gorton, “Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: toward sensitive and fast detection of hydrogen peroxide and iodate,” Electrochim. Acta, 55 (2010) 4750-4757.
[96]A. Manivel, R. Sivakumar, S. Anandan, M. Ashokkumar, “Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solutions,” Electrocatalysis, 3 (2012) 22-29.
[97]S. Kakhki, E. Shams, “A new bifunctional electrochemical sensor for oxidation of cysteine and reduction of iodate,” J. Electroanal. Chem., 704 (2013) 249-254.
[98]A. Salimi, H. Mamkhezri, S. Mohebbi, “Electroless deposition of vanadium-Schiff base complex onto carbon nanotubes modified glassy carbon electrode: application to the low potential detection of iodate, periodate, bromate and nitrite,” Electrochem. Commun., 8 (2006) 688-696.
[99]A. Balamurugan, S. M. Chen, “Flow injection analysis of iodate reduction on PEDOT modified electrode,” Electroanalysis, 20 (2008) 1873-1877.
[100]A. Balamurugan, C. Y. Lin, P. C. Nien, K. C. Ho, “Electrochemical preparation of a nanostructured poly(aminonapthalene sulfonic acid) electrode using CTAB as a soft template and its electrocatalytic application for the reduction of iodate,” Electroanalysis, 24 (2012) 325-331.
[101]D. Sun, L. Zhu, H. Huang, G. Zhu, “Fabrication of 9,10-phenanthrenequinone/carbon nanotubes composite modified electrode and its electrocatalytic property to the reduction of iodate,” J. Electroanal. Chem., 597 (2006) 39-42.
[102]A. Salimi, H. Mamkhezri, R. Hallaj, S. Zandi, “Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron (III)-porphyrin film: application to chlorate, bromate and iodate detection,” Electrochim. Acta, 52 (2007) 6097-6105.
[103]A. Salimi, B. Kavosi, A. Babaei, R. Hallaj, “Electrosorption of Os (III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate,” Anal. Chim. Acta, 618 (2008) 43-53.
[104]E. Marafon, L. T. Kubota, Y. Gushikem, “FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate,” J. Solid State Electrochem., 13 (2009) 377-383.
[105]S. Nellaiappan, A. S. Kumar, “Selective flow injection analysis of iodate in iodized table salts byriboflavin immobilized multiwalled carbon nanotubes chemically modified electrode,” Electrochim. Acta, 109 (2013) 59-66.
[106]A. Salimi, A. Noorbakhsh, M. Ghadermarzi, “Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes,” Sens. Actuator B-Chem., 123 (2007) 530-537.
[107]G. Heywang, F. Jonas, “Poly(alkylenedioxyt hiophene)s-new, very stable conducting polymers,” Adv. Mater., 4 (1992) 116-118.
[108]L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater., 12 (2000) 481-494.
[109]A. Balamurugan, S. M. Chen, “Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode,” Sens. Actuator B-Chem., 129 (2008) 850-858.
[110]X. Wang, P. Sjoberg-Eerola, K. Immonen, J. Bobacka, M. Bergelin, “Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices,” J. Power Sources, 196 (2011) 4957-4964.
[111]J. R. Cooper, F. E. Bloom, R. H. Roth, “The Biochemical Basis of Neuropharmacology,” 4th ed., Oxford University Press, New York (1982).
[112]V. Hefco, K. Yamada, A. Hefco, L. Hritcu, A. Tiron, T. Nabeshima, “Role of the mesotelencephalic dopamine system in learning and memory processes in the rat,” Eur. J. Pharmacol., 475 (2003) 55-60.
[113]K. Jackowska, P. Krysinski, “New trends in the electrochemical sensing of dopamine,” Anal. Bioanal. Chem., 405 (2013) 3753-3771.
[114]R. M. Wightman, L. J. May, A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem., 60 (1988) 769A-779A.
[115]T. Puumala, J. Sirvio, “Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task,” Neurosci., 83 (1998) 489-499.
[116]R. J. Jakel, W. F. Maragos, “Neuronal cell death in Huntington’s disease: a potential role for dopamine,” Trends Neurosci., 23 (2000) 239-245.
[117]B. Rubi, P. Maechler, “Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance,” Endocrinology, 151 (2010) 5570-5581.
[118]C. Muzzi, E. Bertocci, L. Terzuoli, B. Porcelli, I. Ciari, R. Pagani, R. Guerranti, “Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and a-methyldopa by HPLC,” Biomed. Pharmacother., 62 (2008) 253-258.
[119]V. Carrera, E. Sabater, E. Vilanova, M. A. Sogorb, “A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures,” J. Chromatogr. B, 847 (2007) 88-94.
[120]M. Karimi, J. L. Carl, S. Loftin, “Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid,” J. S. Perlmutter, J. Chromatogr. B, 836 (2006) 120-123.
[121]R. Su, J. M. Lin, F. Qu, Z. F. Chen, Y. H. Gao, M. Yamada, “Capillary electrophoresis microchip coupled with on-line chemiluminescence detection,” Anal. Chim. Acta, 508 (2004) 11-15.
[122]S. Zhao, Y. Huang, M. Shi, Y. M. Liu, “Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection,” J. Chromatogr. A, 1216 (2009) 5155-5159.
[123]S. Kumbhat, D. R. Shankaran, S. J. Kim, K. V. Gobi, V. Joshi, N. Miura, “Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule,” Biosens. Bioelectron., 23 (2007) 421-427.
[124]M. Ghita, D. W. M. Arrigan, “Dopamine voltammetry at overoxidised polyindole electrodes,” Electrochim. Acta, 49 (2004) 4743-4751.
[125]D. Lakshmi, M. J. Whitcombe, F. Davis, P. S. Sharma, B. B. Prasad, “Electrochemical detection of uric acid in mixed and clinical samples: a review,” Electroanalysis, 23 (2011) 305-320.
[126]X. H. Cao, L. X. Zhang, W. P. Cai, Y. Q. Li, “Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode,” Electrochem. Commun., 12 (2010) 540-543.
[127]P. Y. Chen, R. Vittal, P. C. Nien, K. C. Ho, “Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion&;reg;,” Biosens. Bioelectron., 24 (2009) 3504-3509.
[128]S. Sansuk, E. Bitziou, M. B. Joseph, J. A. Covington, M. G. Boutelle, P. R. Unwin, J. V. Macpherson, “Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode,” Anal. Chem., 85 (2013) 163-169.
[129]S. Cheemalapati, S. Palanisamy, V. Mani, S. M. Chen, “Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode,” Talanta, 117 (2013) 297-304.
[130]S. Q. Liu, W. H. Sun, F. T. Hu, “Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent,” Sens. Actuator B-Chem., 173 (2012) 497-504.
[131]C. L. Sun, C. T. Chang, H. H. Lee, J. Zhou, J. Wang, T. K. Sham, W. F. Pong, “Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid,” ACS Nano, 5 (2011) 7788-7795.
[132]X. Cao, N. Wang, L. Wang, L. Gao, “Synthesis of nanochain-assembled ZnO flowers and their application to dopamine sensing,” Sens. and Actuator B-Chem., 147 (2010) 629-634.
[133]X. Cao, X. Cai, N. Wang, “Selective sensing of dopamine at MnOOH nanobelt modified electrode,” Sens. and Actuator B-Chem., 160 (2011) 771-776.
[134]S. Reddy, B. E. K. Swamy, H. Jayadevappa, “CuO nanoparticle sensor for the electrochemical determination of dopamine,” Electrochim. Acta, 61 (2012) 78-86.
[135]Y. Huang, C. Cheng, X. Tian, B. Zheng, Y. Li, H. Yuan, D. Xiao, M. M. F. Choi, “Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode,” Electrochim. Acta, 89 (2013) 832-839.
[136]M. D. Rubianes, G. A. Rivas, “Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer,” Anal. Chim. Acta, 440 (2001) 99-108.
[137]A. Balamurugan, S. M. Chen, “Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid,” Anal. Chim. Acta, 596 (2007) 92-98.
[138]P. C. Pandey, D. S. Chauhan, V. Singh, “Poly(indole-6-carboxylic acid) and tetracyanoquinodimethane-modified electrode for selective oxidation of dopamine,” Electrochim. Acta, 54 (2009) 2266-2270.
[139]C. C. Harley, A. D. Rooney, C. B. Breslin, “The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins,” Sens. Actuator B-Chem., 150 (2010) 498-504
[140]J. Chou, T. J. Ilgen, S. Gordon, A. D. Ranasinghe, E. W. McFarland, H. Metiu, S. K. Buratto, “Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion,” J. Electroanal. Chem., 632 (2009) 97-101.
[141]P. Rattanarat, W. Dungchai, W. Siangproh, O. Chailapakul, C. S. Henry, “Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples,” Anal. Chim. Acta, 744 (2012) 1-7.
[142]S. S. Shankar, B. E. K. Swamy, B. N. Chandrashekar, K. J. Gururaj, “Sodium do-decyl benzene sulfate modified carbon paste electrode as an electrochemical sensor for the simultaneous analysis of dopamine, ascorbic acid and uric acid: a voltammetric study,” J. Mol. Liq., 177 (2013) 32-39.
[143]Y. Zhang, Y. Pan, S. Su, L. Zhang, S. Li, M. Shao, “A novel functionalized single-wall carbon nanotube modified electrode and its application in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid,” Electroanalysis, 19 (2007) 1695-1701.
[144]Z. A. Alothman, N. Bukhari, S. M. Wabaidur, S. Haider, “Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode,” Sens. Actuator B-Chem., 146 (2010) 314-320.
[145]B. Habibi, M. Jahanbakhshi, M. H. Pournaghi-Azar, “Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry,” Electrochim. Acta, 56 (2011) 2888-2894.
[146]R. Cui, X. Wang, G. Zhang, C. Wang, “Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode,” Sens. Actuator B-Chem., 161 (2012) 1139-1143.
[147]H. S. Wang, T. H. Li, W. L. Jia, H. Y. Xu, “Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode,” Biosens. Bioelectron., 22 (2006) 664-669.
[148]A. Babaei, A. R. Taheri, “Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid,” Sens. Actuator B-Chem., 176 (2013) 543-551.
[149]S. Yang, G. Li, Y. Yin, R. Yang, J. Li, L. Qu, “Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine,” J. Electroanal. Chem.,703 (2013) 45-51.
[150]G. Xu, B. Li, X. T. Cui, L. Ling, X. Lao, “Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid,” Sens. Actuator B-Chem., 188 (2013) 405-410.
[151]A. A. Ensafi, B. Arashpour, B. Rezaei, A. R. Allafchian, “Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated with multiwall carbon nanotubes,” Mater. Sci. Eng. C-Mater. Biol. Appl., 39 (2014) 78-85.
[152]D. Jana, C. L. Sun, L. C. Chen, K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Prog. Mater. Sci., 58 (2013) 565-635.
[153]S. S. Yu, W. T. Zheng, “Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons,” Nanoscale, 2 (2010) 1069-1082.
[154]A. Lopez-Bezanilla, “Electronic and quantum transport properties of substitutionally doped double-walled carbon nanotubes,” J. Phys. Chem. C, 118 (2014) 1472-1477.
[155]L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Z. Wang, Q. Wu, J. Ma, Y. W. Ma, Z. Hu, “Boron-doped carbon nanotubes as metal-Free electrocatalysts for the oxygen reduction reaction,” Angew. Chem. Int. Ed., 50 (2011) 7132-7135.
[156]Z. Chen, D. Higgins, Z. Chen, “Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells,” Carbon, 48 (2010) 3057-3065.
[157]H. Li, H. Liu, Z. Jong, W. Qu, D. Geng, X. Sun, H. Wang, “Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media,” Int. J. Hydrogen Energy, 36 (2011) 2258-2265.
[158]Z. Mo, S. Liao, Y. Zhang, Z. Fu, “Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media,” Carbon, 50 (2012) 2620-2627.
[159]Q. Liu, Z. Pu, C. Tang, A. M. Asiri, A. H. Qusti, A. O. Al-Youbi, X. Sun, “N-doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction,” Electrochem. Commun., 36 (2013) 57-61.
[160]C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode,” Biosens. Bioelectron., 23 (2008) 1272-1277.
[161]C. Deng, J. Chen, X. Chen, C. Xiao, Z. Nie, S. Yao, “Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH,” Electrochem. Commun., 10 (2008) 907-909.
[162]X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, S. Yao, “Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode,” Talanta, 76 (2008) 763-767.
[163]C. Deng, J. Chen, M. Wang, C. Xiao, Z. Nie, S. Yao, “A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode,” Biosens. Bioelectron., 24 (2009) 2091-2094.
[164]C. Deng, J. Chen, X. Chen, M. Wang, Z. Nie, S. Yao, “Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode,” Electrochim. Acta, 54 (2009) 3298-3302.
[165]C. Deng, Y. Xia, C. Xiao, Z. Nie, M. Yang. S. Si, “Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode,” Biosens. Bioelectron., 31 (2012) 469-474.
[166]X. Xu, S. Jiang, Z. Hu, S. Liu, “Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing,” ACS Nano, 4 (2010) 4292-4298.
[167]J. M. Goran, J. L. Lyon, K. J. Stevenson, “Amperometric detection of L-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase,” Anal. Chem., 83 (2011) 8123-8129.
[168]J. M. Goran, C. A. Favela, K. J. Stevenson, “Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes,” Anal. Chem., 85 (2013) 9135-9141.
[169]N. G. Tsierkezos, S. H. Othman, U. Ritter, “Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing,” Ionics, 19 (2013) 1897-1905.
[170]J. P. Paraknowitsch, A. Thomas, “Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications,” Energy Environ. Sci., 6 (2013) 2839-2855.
[171]C. E. Lowell, “Solid solution of boron in graphite,” J. Am. Ceram. Soc., 50 (1967) 142-144.
[172]D. G. Gardner, D. Shoback, “Greenspan’s Basic and Clinical Endocrinology,” 9th ed., McGraw-Hill, New York (2011).
[173]M. J. McDonald, R. Shapiro, M. Bleichman, J. Solway, H. F. Bunn, “Glycosylated minor components of human adult hemoglobin,” J. Biol. Chem., 253 (1978) 2327-2332.
[174]D. Prome, Y. Blouquit, C. Ponthus, J. C. Prome, J. Rosa, “Structure of the human adult hemoglobin minor fraction A1b by electrospray and secondary ion mass spectrometry,” J. Biol. Chem., 266 (1991) 13050-13054.
[175]H. F. Bunn, K. H. Gabbay, P. M. Gallop, “The glycosylation of hemoglobin: relevance to diabetes mellitus,” Science, 200 (1978) 21-27.
[176]C. S. Pundir, S. Chawla, “Determination of glycated hemoglobin with special emphasis on biosensing methods,” Anal. Biochem., 444 (2014) 47-56.
[177]M. Thevarajah, M. N. Nadzimah, Y. Y. Chew, “Interference of hemoglobin A1c (HbA1c) detection using ion-exchange high performance liquid chromatography (HPLC) method by clinically silent hemoglobin variant in University Malaya Medical Centre (UMMC)-a case report,” Clin. Biochem., 42 (2009) 430-434.
[178]F. Frantzen, K. Grimsrud, D. E. Heggli, A. L. Faaren, T. Lovli, E. Sundrehagen, “Glycohemoglobin filter assay for doctors’ offices based on boronic acid affinity principle,” Clin. Chem., 43 (1997) 2390-2396.
[179]Y. C. Li , J. O. Jeppsson, M. Jornten-Karlsson, E. L. Larsson, H. Jungvid, I. Y. Galaev, B. Mattiasson, “Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin,” J. Chromatogr. B, 776 (2002) 149-160.
[180]T. Tanaka, T. Matsunaga, “Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles,” Biosens. Bioeectron., 16 (2001) 1089-1094.
[181]D. Stollner, W. Stocklein, F. Scheller, A. Warsinke, “Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor,” Anal. Chim. Acta, 470 (2002) 111-119.
[182]N. Wangoo, J. Kaushal, K. K. Bhasin, S. K. Mehta, C. R. Suri, “Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes,” Chem. Commun., 46 (2010) 5755-5757.
[183]N. B. Roberts, A. B. Amara, M. Morris, B. N. Green, “Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin,” Clin. Chem., 47 (2001) 316-321.
[184]M. Jenkins, S. Ratnaike, “Capillary electrophoresis of hemoglobin,” Clin. Chem. Lab. Med., 41 (2003) 747-754.
[185]D. Koval, V. Kasicka, H. Cottet, “Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing,” Anal. Biochem., 413 (2011) 8-15.
[186]L. A. Kaplan, A. J. Pesce, “Clinical Chemistry, Theory, Analysis, and Correlation,” 3rd ed., Mosby Book Inc., St. Louis, USA (1996).
[187]G. Liu, S. M. Khor, S. G. Iyengar, J. J. Gooding, “Development of an electrochemical immunosensor for the detection of HbA1c in serum,” Analyst, 137 (2012) 829-832.
[188]G. Liu, S. G. Iyengar, J. J. Gooding, “An electrochemical impedance immunosensor based on gold nanoparticle-modified electrodes for the detection of HbA1c in human blood,” Electroanalysis, 24 (2012) 1509-1516.
[189]H. C. Chien, T. C. Chou, “Glassy carbon paste electrodes for the determination of fructosyl valine,” Electroanalysis, 22 (2010) 688-693.
[190]H. C. Chien, T. C. Chou, “A nonenzymatic amperometric method for fructosyl-valine sensing using ferroceneboronic acid,” Electroanalysis, 23 (2011) 402-408.
[191]K. Ogawa, D. Stollner, F. Scheller, A. Warsinke, F. Ishimura, W. Tsugawa, S. Ferri, K. Sode, “Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring,” Anal. Bioanal. Chem., 373 (2002) 211-214.
[192]L. Fang, W. Li, Y. Zhou, C. C. Liu, “A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection,” Sens. Actuator B-Chem., 137 (2009) 235-238.
[193]S. W. Chuang, J. Rick, and T. C. Chou, “Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound,” Biosens. Bioelectron., 24 (2009) 3170-3173.
[194]T. Yamasaki, “An amperometric sensor based on gold electrode modified by soluble molecularly imprinted catalyst for fructosyl valine,” Electrochemistry, 80 (2012) 353-357.
[195]G. Springsteen, B. Wang, “A detailed examination of boronic acid-diol complexation,” Tetrahedon, 58 (2002) 5291-5300.
[196]S. Shinkai, M. Takeuchi. “Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions,” Biosens. Bioelectron., 20 (2004) 1250-1259.
[197]Y. Egawa, T. Seki, S. Takahashi, J. I. Anzai, “Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives,” Mater. Sci. Eng. C-Mater. Biol. Appl., 31 (2011) 1257-1264.
[198]S. U. Son, J. H. Seo, Y. H. Choi, and S. S. Lee, “Fabrication of a disposable biochip for measuring percent hemoglobin A1c (%HbA1c),” Sens. Actuator A-Phys., 130-131 (2006) 267-272.
[199]D. M. Kim, Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem., 85 (2013) 6536-6543.
[200]J. Y. Wang, T. C. Chou, L. C. Chen, K. C. Ho, “Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c,” Biosens. Bioelectron., 63 (2015) 317-324.
[201]J. Y. Park, B. Y. Chang, H. Nam, S. M. Park, “Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem., 80 (2008) 8035-8044.
[202]Y. C. Chuang, K. C. Lan, K. M. Hsieh, L. S. Jang, M. K. Chen, “Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device,” Sens. Actuator B-Chem., 171-172 (2012) 1222-1230.
[203]K. M. Hsieh, K. C. Lan, W. L. Hu, M. K. Chen, L. S. Jang, M. H. Wang, “Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement,” Biosens. Bioelectron., 49 (2013) 450-456.
[204]W. L. Hu, L. S. Jang, K. M. Hsieh, C. W. Fan, M. K. Chen, M. H. Wang, “Ratio of HbA1c to hemoglobin on ring-shaped interdigital electrode arrays based on impedance measurement,” Sens. Actuator B-Chem., 203 (2014) 736-744.
[205]S. Y. Song, H. C. Yoon, “Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing,” Sens. Actuator B-Chem., 140 (2009) 233-239.
[206]S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron., 35 (2012) 355-362.
[207]S. Liu, U. Wollenberger, M. Katterle, F. W. Scheller, “Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin,” Sens. Actuator B-Chem., 113 (2006) 623-629.
[208]J. Halamek, U. Wollenberger, W. Stocklein, F. W. Scheller, “Development of a biosensor for glycated hemoglobin,” Electrochim. Acta, 53 (2007) 1127-1133.
[209]S. Y. Son, Y. D. Han, K. H. Lee, H. C. Yoon, “Electrochemical assay for glycated hemoglobin based on the magnetic particle-supported concentration coupled to boronate-diol interactions,” Bull. Korean Chem. Soc., 31 (2010) 2103-2106.
[210]W. Lijinsky, S. S. Epstein, “Nitrosamines as environmental carcinogens,” Nature, 225 (1970) 21-23.
[211]K. Soropogui, M. Sigaud, O. Vittori, “A cobalt film electrode for nitrite determination in natural water,” Electroanalysis, 19 (2007) 2559-2564.
[212]J. C. M. Gamboa, R. C. Pena, T. R. L. C. Paixao, A. S. Lima, M. Bertotti, “Activated copper cathodes as sensors for nitrite analysis,” Electroanalysis, 22 (2010) 2627-2632.
[213]Guidelines for drinking-water quality, 4th ed., World Health Organization, Geneva, Switzerland (2011).
[214]http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=172.175 (U.S. Food and Drug Administration, Code of Federal Regulations Tilie 21. Referred to this website on 2014/05/16)
[215]M. J. Moorcroft, J. Davis, R. G. Compton, “Detection and determination of nitrate and nitrite: a review,” Talanta, 54 (2001) 785-803.
[216]S. B. Butt, M. Riaz, M. Z. Iqbal, “Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography,” Talanta, 55 (2001) 789-797.
[217]P. H. MacArthur, S. Shiva, M. T. Gladwin, “Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence,” J. Chromatogr. B, 851 (2007) 93-105.
[218]N. Bord, G. Cretier, J. L. Rocca, C. Bailly, J. P. Souchez, “Simultaneous determination of inorganic anions and organic acids in amine solutions for sour gas treatment by capillary electrophoresis with indirect UV detection,” J. Chromatogr. A, 1100 (2005) 223-229.
[219]W. Sun, S. Zhang, H. Liu, L. Jin, J. Kong, “Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium (II)-substituted Keggin type heteropolytungstate,” Anal. Chim. Acta, 388 (1999) 103-110.
[220]W. J. R. Santos, P. R. Lima, A. A. Tanaka, S. M. C. N. Tanaka, L. T. Kubota, “Determination of nitrite in food samples by anodic voltammetry using a modified electrode,” Food Chem., 113 (2009) 1206-1211.
[221]P. Li, Y. Ding, A. Wang, L. Zhou, S. H. Wei, Y. M. Zhou, Y. W. Tang, Y. Chen, C. X. Cai, T. H. Lu, “Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt (II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite,” ACS Appl. Mater. Interfaces, 5 (2013) 2255-2260.
[222]R. Guidelli, F. Pergola, G. Raspi, “Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media,” 44 (1972) 745-755.
[223]Y. Liu, J. Zhou, J. Gong, W. P. Wu, N. Bao, Z. Q. Pan, H. Y. Gu, “The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite,” Electrochim. Acta, 111 (2013) 876-887.
[224]J. Jiang, W. Fan, X. Du, “Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles,” Biosens. Bioelectron., 51 (2014) 343-348.
[225]S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun, “Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection,” Analyst, 36 (2011) 4898-4902.
[226]X. Cao, X. Cai, N. Wang, L. Guo, “Hierarchical CuO nanochains: synthesis and their electrocatalytic determination of nitrite,” Anal. Chim. Acta, 691 (2011) 43-47.
[227]B. Sljukic, R. G. Compton, “Manganese dioxide graphite composite electrodes formed via a low temperature method: detection of hydrogen peroxide, ascorbic acid and nitrite,” Electroanalysis, 19 (2007) 1275-1280.
[228]O. Zhang, Y. Wen, J. Xu, L. Lu, X. Duan, H. Yu, “One-step synthesis of poly(3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite,” Synth. Met., 164 (2013) 47-51.
[229]G. R. Xu, G. Xu, M. L. Xu, Z. Zhang, Y. Tian, H. N. Choi, W. Y. Lee, “Amperometric determination of nitrite at poly(methylene blue)-modified glassy carbon electrode,” Bull. Korean Chem. Soc., 33 (2012) 415-419.
[230]A. S. Adekunle, J. Pillay, K. I. Ozoemena, “Probing the electrochemical behaviour of SWCNT-cobalt nanoparticles and their electrocatalytic activities towards the detection of nitrite at acidic and physiological pH conditions,” Electrochim. Acta, 55 (2010) 4319-4327.
[231]C. Y. Lin, V. S. Vasantha, K. C. Ho, “Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs,” Sens. Actuator B-Chem., 140 (2009) 51-57.
[232]C. Y. Lin, A. Balamurugam, Y. H. Lai, K. C. Ho, “A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation,” Talanta, 82 (2010) 1905-1911.
[233]Y. H. Cheng, C. W. Kung, L. Y. Chou, R. Vittal, K. C. Ho, “Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing,” Sens. Actuator B-Chem., 192 (2014) 762-768.
[234]Y. Zhang, R. Yuan, Y. Chai, W. Li, X. Zhong, H. Zhong, “Simultaneous voltammetric determination for DA, AA and NO2&;#8722; based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform,” Biosens. Bioelectron., 26 (2011) 3977-3980.
[235]C. Wang, R. Yuan, Y. Chai, Y. Zhang, F. Hu, M. Zhang, “Au-nanoclusters incorporated 3-amino-5-mercapto-1,2,4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Biosens. Bioelectron., 30 (2011) 315-319.
[236]C. Wang, R. Yuan, Y. Chai, S. Chen, Y. Zhang, F. Hu, M. Zhang, “Non-covalent iron (III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Electrochim. Acta, 62 (2012) 109-115.
[237]W. Zhang, R. Yuan, Y. Q. Chai, Y. Zhang, S. H. Chen, “A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Sens. Actuator B-Chem., 166-167 (2012) 601-607.
[238]Y. Zhang, R. Yuan, Y. Chai, X. Zhong, H. Zhong, “Carbon nanotubes incorporated with sol-gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite,” Colloid Surf. B-Biointerfaces, 100 (2012) 185-189.
[239]L. Zhang, L. Wang, “Poly(2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite,” J. Solid State Electrochem., 17 (2013) 691-700.
[240]L. Zhang, D. Yang, L. Wang, “Electrochemical synthesis of a novel thiazole-based copolymer and its use for the simultaneous determination of dopamine, uric acid and nitrite,” Electrochim. Acta, 111 (2013) 9-17.
[241]Y. J. Yang, W. Li, “CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Biosens. Bioelectron., 56 (2014) 300-306.
[242]C. W. Hu, K. M. Lee, J. H. Huang, C. Y. Hsu, T. H. Kuo, D. J. Yang, K. C. Ho, “Incorporation of a stable radical 2,2,6,6-Tetramethyl-1-Piperidinyloxy (TEMPO) in an electrochromic device,” Sol. Energy Mater. Sol. Cells, 93 (2009) 2102-2107.
[243]K. C. Chen, C. Y. Hsu, C. W. Hu, K. C. Ho, “A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency,” Sol. Energy Mater. Sol. Cells, 95 (2011) 2238-2245.
[244]C. H. Wu, C. Y. Hsu, K. C. Huang, P. C. Nien, J. T. Lin, K. C. Ho, “A photoelectrochromic device based on gel electrolyte with a fast switching rate,” Sol. Energy Mater. Sol. Cells, 99 (2012) 148-153.
[245]C. Y. Hsu, H. W. Chen, K. M. Lee, C. W. Hu, and K. C. Ho, “A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films,” J. Power Sources, 195 (2010) 6232-6238.
[246]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen, and K. C. Ho, “A high performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells,” J. Power Sources, 188, 313-318 (2009).
[247]M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal, and K. C. Ho, “A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells,” Electrochim. Acta, 56 (2011) 6157-6164.
[248]C. Dulgerbaki, A. U. Oksuz, S. Ahmad, “Electrochemically determined biosensing ability of DNA probed by using poly(propylenedioxythiophene),” Electrochim. Acta, 56 (2011) 6157-6164.
[249]S. Naveenraj, S. Anandan, “Binding of serum albumins with bioactive substances-nanoparticles to drugs,” J. Photochem. Photobiol. C-Photochem. Rev., 14 (2013) 53-71.
[250]J. T. Butcher, T. Johnson, J. Beers, L. Columbus, B. E. Isakson, “Hemoglobin α in the blood vessel wall,” Free Radic. Biol. Med., 73 (2014) 136-142.
[251]http://delloyd.50megs.com/moreinfo/buffers2.html (Delloyd’s Lab Tech, resources reagents and solutions. Referred to this website on 2014/04/15).
[252]http://home.fuse.net/clymer/buffers/phos2.html (Phosphate buffer calculator. Referred to this website on 2014/04/23).
[253]http://web2.tmu.edu.tw/keelun/jcp3577/01_04000000.htm.htm (Taipei Medical University, preparation of physiological saline. Referred to this website on 2014/03/28).
[254]S. H. Cho, H. J. Lee, Y. Ko, S. M. Park, “Electrochemistry of conductive polymers 47: effects of solubilizers on 3,4-ethylenedixoythiophene oxidation in aqueous media and properties of resulting films,” J. Phys. Chem. C, 115 (2011) 6545-6553.
[255]G. Sauerbrey, “Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung,” Z. Phys., 155 (1959) 206-222.
[256]S. Brukenstein, M. Shay, “Experimental aspects of use of the quartz crystal microbalance solution,” Electrochim. Acta, 30 (1985) 1295-1300.
[257]S. Chowdhuri, A. Chandra, “Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules,” J. Chem. Phys., 115 (2001) 3732-3741.
[258]L. M. Abrantes, C. M. Cordas, E. Vieil, “EQCM study of polypyrrole modified electrodes doped with Keggin-type heteropolyanion for cation detection,” Electrochim. Acta, 47 (2002) 1481-1487.
[259]E. Nasybulin, S. Wei, M. Cox, I. Kymissis, K. Levon, “Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication,” J. Phys. Chem. C, 111 (2007) 4553-4560.
[260]M. Yamashita, S. S. Rosatto, L. T. Kubota, “Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide,” J. Braz. Chem. Soc., 13 (2002) 635-641.
[261]M. Cable, E. T. Smith, “Identifying the n=2 reaction mechanism of FAD through voltammetric simulations,” Anal. Chim. Acta, 537 (2005) 299-306.
[262]Q. Chi, S. Dong, “Electrocatalytic reduction of dioxygen by an electrochemically polymerized flavin adenine dinucleotide film,” J. Electroanal. Chem., 369 (1994) 169-174.
[263]H. Hamidi, E. Shams, B. Yadollahi, F. K. Esfahani, “Fabrication of bulk-modified carbon paste electrode containing α-PW12O403- polyanion supported on modified silica gel: preparation, electrochemistry and electrocatalysis,” Talanta, 74 (2008) 909-914.
[264]R. Thangamuthu, Y. C. Pan, S. M. Chen, “Iodate sensing electrodes based on phosphotungstate-doped-glutaraldehyde-cross-linked poly-L-lysine coating,” Electroanalysis, 22 (2010) 1812-1816.
[265]B. Wang, Y. Ma, Y. Wu, N. Li, Y. Huang, Y, S. Chen, “Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties,” Carbon, 47 (2009) 2112-2115.
[266]G. Bepete, D. Voiry, M. Chhowalla, Z. Chiguvare, N. J. Coville, “Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas,” Nanoscale, 5 (2013) 6552-6557.
[267]Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N. B. Wong, “Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane,” Carbon, 57 (2013) 433-442.
[268]Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, “Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis,” Angew. Chem. Int. Ed., 52 (2013) 3110-3116.
[269]Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, “Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?,” J. Am. Chem. Soc., 135 (2013) 1201-1204.

[270]B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, J. P. Zhang, A. K. Cheetham, C. N. R. Rao, “Boron-carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures,” Chem. Phys. Lett., 300 (1999) 473-477.
[271]T. Shirasaki, A. Derre, M. Menetrier, A. Tressaud, S. Flandrois, “Synthesis and characterization of boron-substituted carbons,” Carbon, 38 (2000) 1461-1467.
[272]P. Ayala, J. Reppert, M. Grobosch, M. Knupfer, T. Pichler, A. M. Rao, “Evidence for substitutional boron in doped single-walled carbon nanotubes,” Appl. Phys. Lett., 96 (2010) 183110 (1-3).
[273]W. Cermignani, T. E. Paulson, C. Onneby, C. G. Pantano, “Synthesis and characterization of boron-doped carbons,” Carbon, 33 (1995) 367-374.
[274]K. S. Park, D. Y. Lee, K. J. Kim, D. W. Moon, “Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition,” Appl. Phys. Lett., 70 (1997) 315-317.
[275]W. Han, Y. Bando, K. Kurashima, T. Sato, “Boron-doped carbon nanotubes prepared through a substitution reaction,” Chem. Phys. Lett., 299 (1999) 368-373.
[276]Y. Park, K. Y. Dong, J. Lee, J. Choi, G. N. Bae, B. K. Ju, “Development of an ozone gas sensor using single-walled carbon nanotubes,” Sens. Actuator B-Chem., 140 (2009) 407-411.
[277]Y. Wu, “Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes,” Food Chem., 121 (2010) 580-584.
[278]N. Nasirizadeh, Z. Shekari, H. R. Zare, M. R. Shishehbore, A. R. Fakhari, H. Ahmar, “Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface,” Biosens. Bioelectron., 41 (2013) 608-614.
[279]J. Wang, M. Musameh, Y. Lin, “Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors,” J. Am. Chem. Soc., 125 (2003) 2408-2409.
[280]G. A. Rivas, S. A. Miscoria, J. Desbrieres, G. D. Barrera, “New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes,” Talanta, 71 (2007) 270-275.
[281]Y. Umasankar, A. P. Periasamy, S. M. Chen, “Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor,” Talanta, 80 (2010) 1094-1101.
[282]E. Frackowiak, “Carbon materials for supercapacitor application,” Phys. Chem. Chem. Phys., 9 (2007) 1774-1785.
[283]P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, “Energy storage in electrochemical capacitors: designing functional materials to improve performance,” Energy Environ. Sci., 3 (2010) 1238-1251.
[284]N. G. Tsierkezos, U. J. Ritter, “Oxidation of dopamine on multi-walled carbon nanotubes,” J. Solid State Electrochem., 16 (2012) 2217-2226.
[285]A. Ciszewski, G. Milczarek, “Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid,” Anal. Chem., 71 (1999) 1055-1061.
[286]S. Hsieh, J. W. Jorgenson, “Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 μm,” Anal. Chem., 68 (1996) 1212-1217.
[287]X. Tu, Q. Xie, S. Jiang, S. Yao, “Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole-carbon nanotubes composite film for amperometric detection of dopamine,” Biosens. Bioelectron., 22 (2007) 2819-2826.
[288]D. Zheng, J. Ye, W. Zhang, “Some properties of sodium dodecyl sulfate functionalized multiwalled carbon nanotubes electrode and its application on detection of dopamine in the presence of ascorbic acid,” Electroanalysis, 20 (2008) 1811-1818.
[289]D. Zheng, J. Ye, L. Zhou, Y. Zhang, C. Yu, “Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film,” J. Electroanal. Chem., 625 (2009) 82-87.
[290]Z. Dursun, B. Gelmez, “Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE,” Electroanalysis, 22 (2010) 1106 -1114.
[291]B. Habibi, M. H. Pournaghi-Azar, “Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry,” Electrochim. Acta, 55 (2010) 5492-5498.
[292]P. Si, H. Chen, P. Kannan, D. H. Kim, “Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes,” Analyst, 136 (2011) 5134-5138.
[293]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. Bioelectron., 34 (2012) 70-76.
[294]Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, X. H. Xia, “Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid,” Biosens. Bioelectron., 34 (2012) 125-131.
[295]H. Y. Tsai, Z. H. Lin, H. T. Chang, “Tellurium-nanowire-coated glassy carbon electrodes for selective and sensitive detection of dopamine,” Biosens. Bioelectron., 35 (2012) 479-483.
[296]S. J. Li, J. Z. He, M. J. Zhang, R. X. Zhang, X. L. Lv, S. H. Li, H. Pang, H. “Electrochemical detection of dopamine using water-soluble sulfonated graphene,” Electrochim. Acta, 102 (2013) 58-65.
[297]H. Teymourian, A. Salimi, S. Khezrian, “Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform,” Biosens. Bioelectron., 49 (2013) 1-8.
[298]Y. Y. Ling, Q. A. Huang, M. S. Zhu, D. X. Feng, X. Z. Li, Y. Wei, “A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing,” J. Electroanal. Chem., 693 (2013) 9-15.
[299]P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, “Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid,” RSC Adv., 3 (2013) 14428-14437.
[300]Z. Wen, S. Ci, Y. Hou, J. Chen, “Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst,” Angew. Chem. Int. Ed., 53 (2014) 6496-6500.
[301]H. Wang, F. Ren, R. Yue, C. Wang, C. Zhai, Y. Du, “Macroporous flower-like graphene-nanosheet clusters used for electrochemical determination of dopamine,” Colloid Surf. A-Physicochem. Eng. Asp., 448 (2014) 181-185.
[302]T. E. M. Nancy, V. A. Kumary, “Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid,” Electrochim. Acta, 133 (2014) 233-240.
[303]Q. Lian, Z. He, Q. He, A. Luo, K. Yan, D. Zhang, X. Lu, X. Zhou, “Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene,” Anal. Chim. Acta, 823 (2014) 32-39.
[304]X. Niu, W. Yang, H. Guo, J. Ren, J. Gao, “Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode,” Biosens. Bioelectron., 41 (2013) 225-231.
[305]D. Micic, B. Sljukic, Z. Zujovic, J. Travas-Sejdic, G. Ciric-Marjanovic, “Electrocatalytic activity of carbonized nanostructured polyanilinesfor oxidation reactions: sensing of nitrite ions and ascorbic acid,” Electrochim. Acta, 120 (2014) 147-158.
[306]D. Shan, G. Cheng, D. Zhu, H. Xue, S, Cosnier, S. Ding, “Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H2O2,” Sens. Actuator B-Chem., 137 (2009) 259-265.
[307]Y. Ding, Y. Wang, B. Li, Y. Lei, “Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite,” Biosens. Bioelectron., 25 (2010) 2009-2015.
[308]D. H. Wilson, J. P. Bogacz, C. M. Forsythe, P. J. Turk, T. L. Lane, R. C. Gates, D. R. Brandt, “Fully automated assay of glycohemoglobin with the Abbott IMx&;reg; analyzer: novel approaches for separation and detection,” Clin. Chem., 39 (1993) 2090-2097.
[309]Md. Selim, A. S. Sadhu, K. K. Mukherjea, “Relaxation of the folding of globulin around heme of hemoglobin of Homo sapiens by the food-grade additive molecule chlorophyllin,” Mon. Chem., 141 (2010) 933-938.
[310]L. Messori, C. Gabbiani, A. Casini, M. Siragusa, F. F. Vincieri, A. R. Bilia, “The reaction of artemisinins with hemoglobin: a unified picture,” Bioorg. Med. Chem., 14 (2006) 2972-2977.
[311]D. Li, R. Gill, R. Freeman, I. Willner, “Probing of enzyme reactions by the biocatalyst-induced association or dissociation of redox labels linked to monolayer-functionalized electrodes,” Chem. Commun., (2006) 5027-5029.
[312]J. Ren, W. Shi, K. Li, Z. Ma, “Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and Nafion film,” Sens. Actuator B-Chem., 163 (2012) 115-120.
[313]A. N. J. Moore, D. D. M. Wayner, “Redox switching of carbohydrate binding to ferrocene boronic acid,” Can. J. Chem., 77 (1999) 681-686.
[314]F. Sekli-Belaidi, P. Temple-Boyer, P. Gros,“Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids”, J. Electroanal. Chem., 647 (2010) 159-168.
[315]Y. Zhou, N. Hu, Y. Zeng, J. F. Rusling, “Heme protein-clay films: direct electrochemistry and electrochemical catalysis,” Langmuir, 18 (2002) 211-219.
[316]Y. Xian, Y. Zhou, Y. Xian, L. Zhou, H. Wang, L. Jin, “Preparation of poly(vinylpyrrolidone)-protected Prussian blue nanoparticles-modified electrode and its electrocatalytic reduction for hemoglobin,” Anal. Chim. Acta, 546 (2005) 139-146.
[317]C. W. Kung, C. Y. Lin, Y. H. Lai, R. Vittal, K. C. Ho, “Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose,” Biosens. Bioelectron., 27 (2011) 125-131.
[318]K. Li, G. Fan, L. Yang, F. Li, “Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films,” Sens. Actuator B-Chem., 199 (2014) 175-182.
[319]T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, M. Li, “Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level,” Anal. Chem., 85 (2013) 10289-10295.
[320]K. J. Huang, J. Z. Zhang, Y. J. Liu, L. L. Wang, “Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles,” Sens. Actuator B-Chem., 194 (2014) 303-310.
[A1]S. Narayanan, H.D. Appleton, “Creatinine, a review,” Clin. Chem., 26 (1980) 1119-1126.
[A2]R. D. Perrone, N. E. Madias, A. S. Levey, “Serum creatinine as an index of renal function: new insights into old concepts,” Clin. Chem., 38 (1992) 1933-1953.
[A3]M. Wyss, R. Kaddurah-Daouk, “Creatine and creatinine metabolism,” Physiol. Rev., 80 (2000) 1107-1213.
[A4]K. G. Blass, “Reactivity of creatinine with alkaline 3,5-dinitrobenzoate: a new fluorescent kidney function test,” Clin. Biochem., 28 (1995) 107-111.
[A5]E. Mohabbati-Kalejahi,V. Azimirad, M. Bahrami, A. Ganbari, “A review on creatinine measurement techniques,” Talanta, 97 (2012) 1-8.
[A6]R. S. Hare, “Endogenous creatinine in serum and human urine,” Proc. Soc. Exp. Biol. Med., 74 (1950) 148-151.
[A7]T. Osaka, S. Komaba, A. Amano, “Highly sensitive microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes,” J. Electrochem. Soc., 145 (1998) 406-408.
[A8]T. Tsuchida, K. Yoda, “Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum,” Clin. Chem., 29 (1983) 51-55.
[A9]M. B. Madaras, I. C. Popescu, S. Ufer, R. P. Buck, “Microfabricated amperometric creatine and creatinine biosensors,” Anal. Chim. Acta, 319 (1996) 335-345.
[A10]G. F. Khan, W. Wernet, “A highly sensitive amperometric creatinine sensor,” Anal. Chim. Acta, 351 (1997) 151-158.
[A11]A. J. Killard, M. R. Smyth, “Creatinine biosensors: principles and designs,” Trends Biotechnol., 18 (2000) 433-437.
[A12]U. Lad, S. Khokhar, G. M. Kale, “Electrochemical creatinine biosensors,” Anal. Chem., 80 (2008) 7910-7917.
[A13]C. S. Pundir, S. Yadav, A. Kumar, “Creatinine sensors,” Trac-Trends Anal. Chem., 50 (2013) 42-52.
[A14]K. Sreenivasan, R. Sivakumar, “Interaction of molecularly imprinted polymers with creatinine,” J. Appl. Polym. Sci., 66 (1997) 2539-2542.
[A15]M. Subat, A. S. Borovik, B. Konig, “Synthetic creatinine receptor: imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its molecular recognition selectivity,” J. Am. Chem. Soc., 126 (2004) 3185-3190.
[A16]H. A. Tsai, M. J. Syu, “Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine,” Biomaterials, 26 (2005) 2759-2766.
[A17]R. Y. Hsieh, H. A. Tsai, M. J. Syu, “Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums,” Biomaterials, 27 (2006) 2083-2089.
[A18]H. A. Tsai, M. J. Syu, “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor,” Anal. Chim. Acta, 539 (2005) 107-116.
[A19]M. H. Lee, T. C. Tsai, J. L. Thomas, H. Y. Lin, “Recognition of creatinine by poly(ethylene-co-vinylalcohol) molecular imprinting membrane,” Desalination, 234 (2008) 126-133.
[A20]C. Y. Huang, T. C. Tsai, J. L. Thomas, M. H. Lee, B. D. Liu, H. Y. Lin, “Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors,” Biosens. Bioelectron., 24 (2009) 2611-2617.
[A21]D. Lakshmi, B. B. Prasad, P. S. Sharma, “Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode,” Talanta, 70 (2006) 272-280.
[A22]T. Panasyuk-Delaney, V. M. Mirsky, O. S. Wolfbeis, “Capacitive creatinine sensor based on a photografted molecularly imprinted polymer,” Electroanalysis, 14 (2002) 221-224.
[A23]S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. Chen, K. K. Karim, A. P. F. Turner, “Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine,” Biosens. Bioelectron., 16 (2001) 631-637.
[A24]M. J. Syu, T. J. Hsu, Z. K. Lin, “Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine,” Anal. Chem., 82 (2010) 8821-8829.
[A25]P. S. Sharma, D. Lakshmi, B. B. Prasad, “Highly sensitive and selective detection of creatinine by combined use of MISPE and a complementary MIP-sensor,” Chromatographia, 65 (2007) 419-427.
[A26]A. K. Patel, P. S. Sharma, B. B. Prasad, “Development of a creatinine sensor based on a molecularly imprinted polymer-modified sol-gel film on graphite electrode,” Electroanalysis, 20 (2008) 2102-2112.
[A27]Y. S. Chang, T. H. Ko, T. J. Hsu, M. J. Syu, “Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine,” Anal. Chem., 81 (2009) 2098-2105.
[A28]B. Gao, Y. Li, Z. Zhang, “Preparation and recognition performance of creatinine-imprinted material prepared with novel surface-imprinting technique,” J. Chromatogr. B, 878 (2010) 2077-2086.
[A29]H. A. Tsai, M. J. Syu, “Preparation of imprinted poly(tetraethoxysilanol) sol-gel for the specific uptake of creatinine,” Chem. Eng. J., 168 (2011) 1369-1376.
[A30]T. A. Sergeyeva, L. A. Gorbach, E. V. Piletska, S. A. Piletsky, O. O. Brovko, L. A. Honcharova, O. D. Lutsyk, L. M. Sergeeva, O. A. Zinchenko, A. V. El’skaya “Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes,” Anal. Chim. Acta, 770 (2013) 161-168.

[A31]C. Miura, N. Funaya, H. Matsunaga, J. Haginaka, “Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine,” J. Pharm. Biomed. Anal., 85 (2013) 288-294.
[A32]J. D. Wright, N. A. J. M. Sommerdijk, “Sol-gel materials: chemistry and applications,” Gordon and Breach Science Publishers, Amsterdam, The Netherlands (2001).
[A33]K. J. Shea, D. A. Loy, “Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials,” Chem. Mater., 13 (2001) 3306-3319.
[A34]T. Shimada, R. Hirose, K. Morihara, “Footprint catalysis. X. Surface modification of molecular footprint catalysts and its effects on their molecular recognition and catalysis,” Bull. Chem. Soc. Jpn., 67 (1994) 227-235.
[A35]T. R. Ling, Y. Z. Syu, Y. C. Tsai, T. C. Chou, C. C. Liu, “Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel,” Biosens. Bioelectron., 21 (2005) 901-907.
[A36]T. Matsuishi, T. Shimada, K. Morihara, “Footprint catalysis. IX. Molecular footprint catalytic cavities imprinted with chiral hydantoins; enantioselective hydantoinase mimics,” Bull. Chem. Soc. Jpn., 67 (1994) 748-756.
[A37]X. Shen, L. Zhu, C. Huang, H. Tang, Z. Yu, F. Deng, “Inorganic molecular imprinted titanium dioxide photocatalyst: synthesis, characterization and its application for efficient and selective degradation of phthalate esters,” J. Mater. Chem., 19 (2009) 4843-4851.
[A38]R. Paroni, I. Fermo, G. Cighetti, C. A. Ferrero, A. Carobene, F. Ceriotti, “Creatinine determination in serum by capillary electrophoresis,” Electrophoresis, 25 (2004) 463-468.
[A39]R. Makote, M. M. Collinson, “Template recognition in inorganic-organic hybrid films prepared by the sol-gel process,” Chem. Mater., 10 (1998) 2440-2445.
[B1]S. M. Tan, H. L. Poh, Z. Sofer, M. Pumera, “Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling,” Analyst, 485 (2013) 4885-4891.
[B2]G. H. Yang, Y. H. Zhou, J. J. Wu, J. T. Cao, L. L. Li, H. Y. Liu, J. J. Zhu, “Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide,” RSC Adv., 3 (2013) 22597-22604.
[B3]X. Bo, M. Li, C. Han, L. Gao, “The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts,” Electrochim. Acta, 114 (2013) 582-589.
[B4]M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, G. V. Lier, J. C. Charlier, H. Terrones, M. Terrones, M. S. Dresselhaus, “Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes,” Nano. Lett., 5 (2005) 1099-1105.
[B5]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd ed.; John Wiley &; Sons, New York (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔