|
[1]B. R. Eggins, “Chemical Sensors and Biosensors,” John Wiley &; Sons, West Sussex, England (2002). [2]T. Premkumar, K. E. Geckeler, “Graphene-DNA hybrid materials: assembly, applications, and prospects,” Prog. Polym. Sci., 37 (2012) 515-529. [3]B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed., Garland Science, New York (2002). [4]Q. Luo, Y. Guan, Y. Zhang, M. Siddiq, “Lead-sensitive PNIPAM microgels modified with crown ether groups,” J. Polym. Sci. Pol. Chem., 48 (2010) 4120-4127. [5]C. Hou, A. M. Urbanec, H. Cao, “A rapid Hg2+ sensor based on aza-15-crown-5 ether functionalized 1,8-naphthalimide,” Tetrahedron Lett., 52 (2011) 4903-4905. [6]D. V. Berdnikova, Y. V. Fedorov, O. A. Fedorova, “Azadithiacrown ether based ditopic receptors capable of simultaneous multi-ionic recognition of Ag+ and Hg2+,” Dyes Pigment., 96 (2013) 287-295. [7]K. Haupt, K. Mosbach, “Molecularly imprinted polymers and their use in biomimetic sensors,” Chem. Rev., 100 (2000) 2495-2504. [8]N. Karimian, M. Vagin, M. H. A. Zavar, M. Chamsaz, A. P. F. Turner, A. Tiwari, “An ultrasensitive molecularly-imprinted human cardiac troponin sensor,” Biosens. Bioelectron., 50 (2013) 492-498. [9]T. Alizadeh, L. Allahyar, “Highly-selective determination of carcinogenic derivative of propranolol by using a carbon paste electrode incorporated with nano-sized propranolol-imprinted polymer,” Electrochim. Acta, 111 (2013) 663-673. [10]B. B. Prasad, A. Prasad, M. P. Tiwari, R. Madhuri, “Multiwalled carbon nanotubes bearing ‘terminal monomeric unit’ for the fabrication of epinephrine imprinted polymer-based electrochemical sensor,” Biosens. Bioelectron., 45 (2013) 114-122. [11]C. Zhou, J. Gao, L. Zhang, J. Zhou, “A 3,3’-dichlorobenzidine-imprinted polymer gel surface plasmonresonance sensor based on template-responsive shrinkage,” Anal. Chim. Acta, 812 (2014) 129-137. [12]B. Osman, L. Uzun, N. Be&;#351;irli, A. Denizli, “Microcontact imprinted surface plasmon resonance sensor for myoglobin detection,” Mater. Sci. Eng. C-Mater. Biol. Appl., 33 (2013) 3609-3614. [13]http://csrri.iit.edu/~howard/biochem/lectures/cofactors.html (Illinois Institute of Technology, Biological, Chemical, and Physical Science Department. Referred to this website on 2014/05/03) [14]M. K. Campbell, S. O. Farrell. “Biochemistry,” 4th ed., Thomson/Brooks/Cole, Belmont, California (2003). [15]J. Wang, “Analytical Electrochemistry,” 3rd ed., John Wiley &; Sons, Hoboken, New Jersey (2006). [16]T. Osaka, S. Komaba, A. Amano, “Highly sensitive microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes,” J. Electrochem. Soc., 145 (1998) 406-408. [17]H. Ciftci, U. Tamer, “Electrochemical determination of iodide by poly(3-aminophenylboronic acid) film electrode at moderately low pH ranges,” Anal. Chim. Acta, 687 (2011) 137-140. [18]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd ed.; John Wiley &; Sons, New York (2000). [19]R. S. Dey, C. R. Raj, “Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material,” J. Phys. Chem. C, 114 (2010) 21427-21433. [20]J. Y. Park, B. Y. Chang, H. Nam, S. M. Park, “Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem., 80 (2008) 8035-8044. [21]S. G. Patching, “Surface plasmon resonance spectroscopy for characterization of membrane protein-ligand interactions and its potential for drug discovery,” Biochim. Biophys. Acta-Biomembr., 1838 (2014) 43-55. [22]G. Bidan, “Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review,” Sens. Actuator B-Chem., 6 (1992) 45-56. [23]R. Ramya, M. V. Sangaranarayanan, “Polypyrrole microfibres synthesized with Quillaja Saponin for sensing of catechol,” Sens. Actuator B-Chem., 173 (2012) 40-51. [24]M. P. Massafera, S. I. C. d. Torresi, “Evaluating the performance of polypyrrole nanowires on the electrochemical sensing of ammonia in solution,” J. Electroanal. Chem., 669 (2012) 90-94. [25]V. S. Vasantha, R. Thangamuthu, S. M. Chen, “Electrochemical polymerization of 3,4-ethylenedioxythiophene from aqueous solution containing hydroxypropyl-b-cyclodextrin and the electrocatalytic behavior of modified electrode towards oxidation of sulfur oxoanions and nitrite,” Electroanalysis, 20 (2008) 1754-1759. [26]H. Mao, X. Liu, D. Chao, L. Cui, Y. Li, W. Zhang, C. Wang, “Preparation of unique PEDOT nanorods with a couple of cuspate tips by reverse interfacial polymerization and their electrocatalytic application to detect nitrite,” J. Mater. Chem., 20 (2010) 10277-10284. [27]T. H. Tsai, K. C. Lin, S. M. Chen, “Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor,” Int. J. Electrochem. Sci., 6 (2011) 2672-2687. [28]J. Mathiyarasu, S. Senthilkumar, K. L. N. Phani, V. Yegnaraman, “PEDOT-Au nanocomposite film for electrochemical sensing,” Mater. Lett., 62 (2008) 571-573. [29]P. C. Nien, T. S. Tung, K. C. Ho, “Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film,” 18 (2006), 1408-1415. [30]K. A. Mauritz, R. B. Moore, “State of understanding of Nafion,” Chem. Rev., 104 (2004) 4535-4585. [31]J. M. Zen, I. L. Chen, “Voltammetric determination of dopamine in the presence of ascorbic acid at a chemically modified electrode,” Electroanalysis, 9 (1997) 537-540. [32]C. E. Banks, R. R. Moore, T. J. Davies, R. G. Compton, “Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes,” Chem. Commun. (2004) 1804-1805. [33]C. E. Banks, R. G. Compton, “Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study,” Analyst, 130 (2005) 1232-1239. [34]C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, “Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites,” Chem. Commun. (2005) 829-841. [35]E. J. Biddinger, U. S. Ozkan, “Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction,” J. Phys. Chem. C, 114 (2010) 15306-15314. [36]E. C. Landis, K. L. Klein, A. Liao, E. Pop, D. K. Hensley, A. V. Melechko, R. J. Hamers, “Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: the importance of edge-plane sites,” Chem. Mater., 22 (2010) 2357-2366. [37]C. E. Banks, A. Crossley, C. Salter, S. J. Wilkins, R. G. Compton, “Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes,” Angew. Chem. Int. Ed., 45 (2006) 2533-2537. [38]S. Iijima, “Helical microtubules of graphite carbon,” Nature, 354 (1991) 56-58. [39]B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y. Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, J. F. Douglas, “Effects of aspect ratio of MWCNT on the flammability properties of polymer nanocomposites,” Polymer, 48 (2007) 6086-6096. [40]S. Subramoney, “Novel nanocarbons-structure, properties, and potential applications,” Adv. Mater., 10 (1998) 1157-1171. [41]Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, K. Kaneto, “Physical properties of multiwalled carbon nanotubes,” Int. J. Inorg. Mater. 1 (1999) 77-82. [42]I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, D. Shi, Smart Mater. Struct., 15 (2006) 737-748. [43]J. Wang, M. Musameh, “Carbon nanotube/Teflon composite electrochemical sensors and biosensors,” Anal. Chem., 75 (2003) 2075-2079. [44]B. Nigovic, M. Sadikovic, M. Sertic, “Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphin,” Talanta, 122 (2014) 187-194. [45]L. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, B. Ding, “Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors,” Solid State Commun., 146 (2008) 380-383. [46]A. Kaniyoor, S. Ramaprabhu, “Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode,” Electrochim. Acta, 72 (2012) 199-206. [47]J. E. Benedetti, A. A. Correa, M. Carmello, L. C. P. Almeida, A. S. Goncalves, A. F. Nogueira, “Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells,” J. Power Sources, 208 (2012) 263-270. [48]A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, “Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors,” Org. Electron., 10 (2009) 1556-1561. [49]D. M. Sun, C. Liu, W. C. Ren, H. M. Cheng, “A review of carbon nanotube- and graphene-based flexible thin-film transistors,” Small, 9 (2013) 1188-1205. [50]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306 (2004) 663-669. [51]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater., 6 (2007) 183-191. [52]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., 8 (2008) 902-907. [53]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 321 (2008) 385-388. [54]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-based ultracapacitors,” 8 (2008) 3498-3502. [55]S. Alwarappan, A. Erdem, C. Liu, C. Z. Li, “Probing the electrochemical properties of graphene nanosheets for biosensing applications,” J. Phys. Chem. C, 113 (2009) 8853-8857. [56]M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trac-Trends Anal. Chem., 29 (2010) 954-965. [57]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. Bioelectron., 34 (2012) 70-76. [58]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, “3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano, 6 (2012) 3206-3213. [59]R. Jainz, A. Sinha, “A graphene based sensor for sensitive voltammetric quantification of cabergoline,” J. Electrochem. Soc., 160 (2014) H314-H320. [60]L. J. Brennan, S. T. Barwich, A. Satti, A. Faure, Y. K. Gunko, “Graphene-ionic liquid electrolytes for dye sensitized solar cells,” J. Mater. Chem. A, 1 (2013) 8379-8384. [61]K. H. Hung, C. H. Chan, H. W. Wang, “Flexible TCO-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti-Ti(III) acid solution,” Renew. Energy, 66 (2014) 150-158. [62]G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, “Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes,” Chem. Commun., 47 (2011) 5976-5978. [63]Z. Chen, D. Yu, W. Xiong, P. Liu, Y. Liu, L. Dai, “Graphene-based nanowire supercapacitors,” Langmuir, 30 (2014) 3567-3571. [64]H. Wei, S. Omanovic, “Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface,” Chem. Biodivers., 5 (2008) 1622-1639. [65]K. C. Lin, S. M. Chen, “The electrochemical preparation of FAD/ZnO with hemoglobin film-modified electrodes and their electroanalytical properties,” Biosens. Bioelectron., 21 (2006) 1737-1745. [66]S. A. Kumar, S. M. Chen, “Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: a new potent electroanalysis of NADH and NAD+,” Sens. Actuator B-Chem., 123 (2007) 964-977. [67]K. D. Wael, H. Buschop, H. A. Heering, L. D. Smet, J. V. Beeumen, B. Devreese, A. Adriaens, “Electrochemical determination of hydrogen peroxide using Rhodobacter capsulatus cytochrome c peroxidase at a gold electrode,” Microchim. Acta, 162 (2008) 65-71. [68]Q. Chen, S. Aia, X. Zhu, H. Yin, Q. Ma, Y. Qiu, “A nitrite biosensor based on the immobilization of cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode,” Biosens. Bioelectron., 24 (2009) 2991-2996. [69]M. Eguilaz, L. Agui, P. Yanez-Sedeno, J. M. Pingarron, “A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite,” J. Electroanal. Chem., 644 (2010) 30-35. [70]G. V. Guerreiro, A. J. Zaitouna, R. Y. Lai, “Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry,” Anal. Chim. Acta, 810 (2014) 79-85. [71]T. C. Canevari, R. C. S. Luz, Y. Gushikem, “Electrocatalytic determination of nitrite on a rigid disk electrode having cobalt phthalocyanine prepared in situ,” Electroanalysis, 20 (2008) 765-770. [72]C. Y. Lin, A. Balamurugan, Y. H. Lai, K. C. Ho, “A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation,” Talanta, 82 (2010) 1905-1911. [73]A. G. Gilman, L. S. Goodman, T. W. Rad, F. Murad, “The Pharmacological Basis of Therapeutics,” 7th ed., MacMillan, New York (1985). [74]J. B. Stanbury, A. E. Ermans, P. Bourdoux, C. Todd, E. Oken, R. Tonglet, G. Vidor, L. E. Braverman, G. Medeiros-Neto, “Iodine-induced hyperthyroidism: occurrence and epidemiology,” Thyroid, 8 (1998) 83-104. [75]M. S. El-Shahawi, F. A. Al-Hashemi, “Spectrophotometric determination of periodate or iodate ions by liquid-liquid extraction as an ion-pair using tetramethylammonium iodide,” Talanta, 43 (1996) 2037-2043. [76]Y. Bichsel, U. V. Gunten, “Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/visible detection,” Anal. Chem., 71 (1999) 34-38. [77]W. Buchberger, W. Ahrer, “Combination of suppressed and non-suppressed ion chromatography with atmospheric pressure ionization mass spectrometry for the determination of anions,” J. Chromatogr. A, 850 (1999) 99-106. [78]O. V. Zui, A. V. Terletskaya, “Rapid chemiluminescence method for the determination of iodate traces,” Fresenius J. Anal. Chem., 351 (1995) 212-215. [79]X. Huang, Y. Li, Y. Chen, L. Wang, “Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode,” Sens. Actuator B-Chem., 134 (2008) 780-786. [80]Y. Li, Y. Zhou, H. Xian, L. Wang, J. Huo, “Electrochemical determination of nitrite and iodate based on Pt nanoparticles self-assembled on a chitosan modified glassy carbon electrode,” Anal. Sci., 27 (2011) 1223-1228. [81]L. Kosminsky, M. Bertotti, “Studies on the catalytic reduction of iodate at glassy carbon electrodes modified by molybdenum oxides,” J. Electroanal. Chem., 471 (1999) 37-41. [82]L. Kosminsky, M. Bertotti, “Determination of iodate in salt samples with amperometric detection at a molybdenum oxide modified electrode,” Electroanalysis, 11 (1999) 623-626. [83]L. Tian, L. Liu, L. Chen, N. Lu, H. Xu, “Fabrication of amorphous mixed-valent molybdenum oxide film electrodeposited on a glassy carbon electrode and its application as a electrochemistry sensor of iodate,” Sens. Actuator B-Chem., 105 (2005) 484-489. [84]L. Tian, L. Chen, L. Liu, N. Lu, H. Xu, “Fabrication of a novel LixMoOy film modified electrode and its application as an electrochemical sensor of iodate,” Anal. Bioanal. Chem., 381 (2005) 769-774. [85]J. R. C. d. Rocha, T. L. Ferreira, R. M. Torresi, M. Bertotti, “An analytical application of the electrocatalysis of the iodate reduction at tungsten oxide films,” Talanta, 69 (2006) 148-153. [86]B. X. Zou, X. X. Liu, D. Diamond, K. T. Lau, “Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate,” Electrochim. Acta, 55 (2010) 3915-3920. [87]A. Salimi, R. Hallaj, B. Kavosi, B. Hagighi, “Highly sensitive and selective amperometric sensors for nanomolar detection of iodate and periodate based on glassy carbon electrode modified with iridium oxide nanoparticles,” Anal. Chim. Acta, 661 (2010) 28-34. [88]F. Chatraei, H. R. Zare, “Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination,” Mater. Sci. Eng. C-Mater. Biol. Appl., 33 (2013) 721-726. [89]P. Putaj, F. Lefebvre, “Polyoxometalates containing late transition and noble metal atoms,” Coord. Chem. Rev., 255 (2011) 1642-1685. [90]W. Song, X. Chen, Y. Jiang, Y. Liu, C. Sun, X. Wang, “Fabrication of a chemically modified electrode containing 12-molybdophosphoric acid by the sol-gel technique and its application as an amperometric detector for iodate,” Anal. Chim. Acta, 394 (1999) 73-80. [91]L. Chen, X. Tian, L. Tian, L. Liu, W. Song, H. Xu, “Electrochemical reduction and flow detection of iodate on (Bu4N)2Mo6O19 self-assembled monolayer,” Anal. Bioanal. Chem., 382 (2005) 1187-1195. [92]Y. Li, W. Bu, L. Wu, C. Sun, “A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method,” Sens. Actuator B-Chem., 107 (2005) 921-928. [93]X. Lin, C. Jiang, “Self-assembly of molybdophosphate on a glassy carbon electrode covalently modified with choline and electrocatalytic reduction of iodate,” Anal. Sci., 22 (2006) 697-700. [94]S. M. Chen, J. L. Song, R. Thangamuthu, “Electrocatalytic behavior of mixed-valent RuO/Ru(CN)64-/SiMo12O404- hybrid film modified electrodes toward oxidation of neurotransmitters and iodate reduction,” J. Electrochem. Soc., 154 (2007) E153-E157. [95]B. Haghighi, H. Hamidi, L. Gorton, “Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: toward sensitive and fast detection of hydrogen peroxide and iodate,” Electrochim. Acta, 55 (2010) 4750-4757. [96]A. Manivel, R. Sivakumar, S. Anandan, M. Ashokkumar, “Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solutions,” Electrocatalysis, 3 (2012) 22-29. [97]S. Kakhki, E. Shams, “A new bifunctional electrochemical sensor for oxidation of cysteine and reduction of iodate,” J. Electroanal. Chem., 704 (2013) 249-254. [98]A. Salimi, H. Mamkhezri, S. Mohebbi, “Electroless deposition of vanadium-Schiff base complex onto carbon nanotubes modified glassy carbon electrode: application to the low potential detection of iodate, periodate, bromate and nitrite,” Electrochem. Commun., 8 (2006) 688-696. [99]A. Balamurugan, S. M. Chen, “Flow injection analysis of iodate reduction on PEDOT modified electrode,” Electroanalysis, 20 (2008) 1873-1877. [100]A. Balamurugan, C. Y. Lin, P. C. Nien, K. C. Ho, “Electrochemical preparation of a nanostructured poly(aminonapthalene sulfonic acid) electrode using CTAB as a soft template and its electrocatalytic application for the reduction of iodate,” Electroanalysis, 24 (2012) 325-331. [101]D. Sun, L. Zhu, H. Huang, G. Zhu, “Fabrication of 9,10-phenanthrenequinone/carbon nanotubes composite modified electrode and its electrocatalytic property to the reduction of iodate,” J. Electroanal. Chem., 597 (2006) 39-42. [102]A. Salimi, H. Mamkhezri, R. Hallaj, S. Zandi, “Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron (III)-porphyrin film: application to chlorate, bromate and iodate detection,” Electrochim. Acta, 52 (2007) 6097-6105. [103]A. Salimi, B. Kavosi, A. Babaei, R. Hallaj, “Electrosorption of Os (III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate,” Anal. Chim. Acta, 618 (2008) 43-53. [104]E. Marafon, L. T. Kubota, Y. Gushikem, “FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate,” J. Solid State Electrochem., 13 (2009) 377-383. [105]S. Nellaiappan, A. S. Kumar, “Selective flow injection analysis of iodate in iodized table salts byriboflavin immobilized multiwalled carbon nanotubes chemically modified electrode,” Electrochim. Acta, 109 (2013) 59-66. [106]A. Salimi, A. Noorbakhsh, M. Ghadermarzi, “Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes,” Sens. Actuator B-Chem., 123 (2007) 530-537. [107]G. Heywang, F. Jonas, “Poly(alkylenedioxyt hiophene)s-new, very stable conducting polymers,” Adv. Mater., 4 (1992) 116-118. [108]L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater., 12 (2000) 481-494. [109]A. Balamurugan, S. M. Chen, “Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode,” Sens. Actuator B-Chem., 129 (2008) 850-858. [110]X. Wang, P. Sjoberg-Eerola, K. Immonen, J. Bobacka, M. Bergelin, “Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices,” J. Power Sources, 196 (2011) 4957-4964. [111]J. R. Cooper, F. E. Bloom, R. H. Roth, “The Biochemical Basis of Neuropharmacology,” 4th ed., Oxford University Press, New York (1982). [112]V. Hefco, K. Yamada, A. Hefco, L. Hritcu, A. Tiron, T. Nabeshima, “Role of the mesotelencephalic dopamine system in learning and memory processes in the rat,” Eur. J. Pharmacol., 475 (2003) 55-60. [113]K. Jackowska, P. Krysinski, “New trends in the electrochemical sensing of dopamine,” Anal. Bioanal. Chem., 405 (2013) 3753-3771. [114]R. M. Wightman, L. J. May, A. C. Michael, “Detection of dopamine dynamics in the brain,” Anal. Chem., 60 (1988) 769A-779A. [115]T. Puumala, J. Sirvio, “Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task,” Neurosci., 83 (1998) 489-499. [116]R. J. Jakel, W. F. Maragos, “Neuronal cell death in Huntington’s disease: a potential role for dopamine,” Trends Neurosci., 23 (2000) 239-245. [117]B. Rubi, P. Maechler, “Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance,” Endocrinology, 151 (2010) 5570-5581. [118]C. Muzzi, E. Bertocci, L. Terzuoli, B. Porcelli, I. Ciari, R. Pagani, R. Guerranti, “Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and a-methyldopa by HPLC,” Biomed. Pharmacother., 62 (2008) 253-258. [119]V. Carrera, E. Sabater, E. Vilanova, M. A. Sogorb, “A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures,” J. Chromatogr. B, 847 (2007) 88-94. [120]M. Karimi, J. L. Carl, S. Loftin, “Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid,” J. S. Perlmutter, J. Chromatogr. B, 836 (2006) 120-123. [121]R. Su, J. M. Lin, F. Qu, Z. F. Chen, Y. H. Gao, M. Yamada, “Capillary electrophoresis microchip coupled with on-line chemiluminescence detection,” Anal. Chim. Acta, 508 (2004) 11-15. [122]S. Zhao, Y. Huang, M. Shi, Y. M. Liu, “Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection,” J. Chromatogr. A, 1216 (2009) 5155-5159. [123]S. Kumbhat, D. R. Shankaran, S. J. Kim, K. V. Gobi, V. Joshi, N. Miura, “Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule,” Biosens. Bioelectron., 23 (2007) 421-427. [124]M. Ghita, D. W. M. Arrigan, “Dopamine voltammetry at overoxidised polyindole electrodes,” Electrochim. Acta, 49 (2004) 4743-4751. [125]D. Lakshmi, M. J. Whitcombe, F. Davis, P. S. Sharma, B. B. Prasad, “Electrochemical detection of uric acid in mixed and clinical samples: a review,” Electroanalysis, 23 (2011) 305-320. [126]X. H. Cao, L. X. Zhang, W. P. Cai, Y. Q. Li, “Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode,” Electrochem. Commun., 12 (2010) 540-543. [127]P. Y. Chen, R. Vittal, P. C. Nien, K. C. Ho, “Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion&;reg;,” Biosens. Bioelectron., 24 (2009) 3504-3509. [128]S. Sansuk, E. Bitziou, M. B. Joseph, J. A. Covington, M. G. Boutelle, P. R. Unwin, J. V. Macpherson, “Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode,” Anal. Chem., 85 (2013) 163-169. [129]S. Cheemalapati, S. Palanisamy, V. Mani, S. M. Chen, “Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode,” Talanta, 117 (2013) 297-304. [130]S. Q. Liu, W. H. Sun, F. T. Hu, “Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent,” Sens. Actuator B-Chem., 173 (2012) 497-504. [131]C. L. Sun, C. T. Chang, H. H. Lee, J. Zhou, J. Wang, T. K. Sham, W. F. Pong, “Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid,” ACS Nano, 5 (2011) 7788-7795. [132]X. Cao, N. Wang, L. Wang, L. Gao, “Synthesis of nanochain-assembled ZnO flowers and their application to dopamine sensing,” Sens. and Actuator B-Chem., 147 (2010) 629-634. [133]X. Cao, X. Cai, N. Wang, “Selective sensing of dopamine at MnOOH nanobelt modified electrode,” Sens. and Actuator B-Chem., 160 (2011) 771-776. [134]S. Reddy, B. E. K. Swamy, H. Jayadevappa, “CuO nanoparticle sensor for the electrochemical determination of dopamine,” Electrochim. Acta, 61 (2012) 78-86. [135]Y. Huang, C. Cheng, X. Tian, B. Zheng, Y. Li, H. Yuan, D. Xiao, M. M. F. Choi, “Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode,” Electrochim. Acta, 89 (2013) 832-839. [136]M. D. Rubianes, G. A. Rivas, “Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer,” Anal. Chim. Acta, 440 (2001) 99-108. [137]A. Balamurugan, S. M. Chen, “Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid,” Anal. Chim. Acta, 596 (2007) 92-98. [138]P. C. Pandey, D. S. Chauhan, V. Singh, “Poly(indole-6-carboxylic acid) and tetracyanoquinodimethane-modified electrode for selective oxidation of dopamine,” Electrochim. Acta, 54 (2009) 2266-2270. [139]C. C. Harley, A. D. Rooney, C. B. Breslin, “The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins,” Sens. Actuator B-Chem., 150 (2010) 498-504 [140]J. Chou, T. J. Ilgen, S. Gordon, A. D. Ranasinghe, E. W. McFarland, H. Metiu, S. K. Buratto, “Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion,” J. Electroanal. Chem., 632 (2009) 97-101. [141]P. Rattanarat, W. Dungchai, W. Siangproh, O. Chailapakul, C. S. Henry, “Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples,” Anal. Chim. Acta, 744 (2012) 1-7. [142]S. S. Shankar, B. E. K. Swamy, B. N. Chandrashekar, K. J. Gururaj, “Sodium do-decyl benzene sulfate modified carbon paste electrode as an electrochemical sensor for the simultaneous analysis of dopamine, ascorbic acid and uric acid: a voltammetric study,” J. Mol. Liq., 177 (2013) 32-39. [143]Y. Zhang, Y. Pan, S. Su, L. Zhang, S. Li, M. Shao, “A novel functionalized single-wall carbon nanotube modified electrode and its application in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid,” Electroanalysis, 19 (2007) 1695-1701. [144]Z. A. Alothman, N. Bukhari, S. M. Wabaidur, S. Haider, “Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode,” Sens. Actuator B-Chem., 146 (2010) 314-320. [145]B. Habibi, M. Jahanbakhshi, M. H. Pournaghi-Azar, “Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry,” Electrochim. Acta, 56 (2011) 2888-2894. [146]R. Cui, X. Wang, G. Zhang, C. Wang, “Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode,” Sens. Actuator B-Chem., 161 (2012) 1139-1143. [147]H. S. Wang, T. H. Li, W. L. Jia, H. Y. Xu, “Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode,” Biosens. Bioelectron., 22 (2006) 664-669. [148]A. Babaei, A. R. Taheri, “Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid,” Sens. Actuator B-Chem., 176 (2013) 543-551. [149]S. Yang, G. Li, Y. Yin, R. Yang, J. Li, L. Qu, “Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine,” J. Electroanal. Chem.,703 (2013) 45-51. [150]G. Xu, B. Li, X. T. Cui, L. Ling, X. Lao, “Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid,” Sens. Actuator B-Chem., 188 (2013) 405-410. [151]A. A. Ensafi, B. Arashpour, B. Rezaei, A. R. Allafchian, “Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe2O4 magnetic nanoparticles decorated with multiwall carbon nanotubes,” Mater. Sci. Eng. C-Mater. Biol. Appl., 39 (2014) 78-85. [152]D. Jana, C. L. Sun, L. C. Chen, K. H. Chen, “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes,” Prog. Mater. Sci., 58 (2013) 565-635. [153]S. S. Yu, W. T. Zheng, “Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons,” Nanoscale, 2 (2010) 1069-1082. [154]A. Lopez-Bezanilla, “Electronic and quantum transport properties of substitutionally doped double-walled carbon nanotubes,” J. Phys. Chem. C, 118 (2014) 1472-1477. [155]L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Z. Wang, Q. Wu, J. Ma, Y. W. Ma, Z. Hu, “Boron-doped carbon nanotubes as metal-Free electrocatalysts for the oxygen reduction reaction,” Angew. Chem. Int. Ed., 50 (2011) 7132-7135. [156]Z. Chen, D. Higgins, Z. Chen, “Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells,” Carbon, 48 (2010) 3057-3065. [157]H. Li, H. Liu, Z. Jong, W. Qu, D. Geng, X. Sun, H. Wang, “Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media,” Int. J. Hydrogen Energy, 36 (2011) 2258-2265. [158]Z. Mo, S. Liao, Y. Zhang, Z. Fu, “Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media,” Carbon, 50 (2012) 2620-2627. [159]Q. Liu, Z. Pu, C. Tang, A. M. Asiri, A. H. Qusti, A. O. Al-Youbi, X. Sun, “N-doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction,” Electrochem. Commun., 36 (2013) 57-61. [160]C. Deng, J. Chen, X. Chen, C. Xiao, L. Nie, S. Yao, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode,” Biosens. Bioelectron., 23 (2008) 1272-1277. [161]C. Deng, J. Chen, X. Chen, C. Xiao, Z. Nie, S. Yao, “Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH,” Electrochem. Commun., 10 (2008) 907-909. [162]X. Chen, J. Chen, C. Deng, C. Xiao, Y. Yang, Z. Nie, S. Yao, “Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode,” Talanta, 76 (2008) 763-767. [163]C. Deng, J. Chen, M. Wang, C. Xiao, Z. Nie, S. Yao, “A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode,” Biosens. Bioelectron., 24 (2009) 2091-2094. [164]C. Deng, J. Chen, X. Chen, M. Wang, Z. Nie, S. Yao, “Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode,” Electrochim. Acta, 54 (2009) 3298-3302. [165]C. Deng, Y. Xia, C. Xiao, Z. Nie, M. Yang. S. Si, “Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode,” Biosens. Bioelectron., 31 (2012) 469-474. [166]X. Xu, S. Jiang, Z. Hu, S. Liu, “Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing,” ACS Nano, 4 (2010) 4292-4298. [167]J. M. Goran, J. L. Lyon, K. J. Stevenson, “Amperometric detection of L-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase,” Anal. Chem., 83 (2011) 8123-8129. [168]J. M. Goran, C. A. Favela, K. J. Stevenson, “Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes,” Anal. Chem., 85 (2013) 9135-9141. [169]N. G. Tsierkezos, S. H. Othman, U. Ritter, “Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing,” Ionics, 19 (2013) 1897-1905. [170]J. P. Paraknowitsch, A. Thomas, “Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications,” Energy Environ. Sci., 6 (2013) 2839-2855. [171]C. E. Lowell, “Solid solution of boron in graphite,” J. Am. Ceram. Soc., 50 (1967) 142-144. [172]D. G. Gardner, D. Shoback, “Greenspan’s Basic and Clinical Endocrinology,” 9th ed., McGraw-Hill, New York (2011). [173]M. J. McDonald, R. Shapiro, M. Bleichman, J. Solway, H. F. Bunn, “Glycosylated minor components of human adult hemoglobin,” J. Biol. Chem., 253 (1978) 2327-2332. [174]D. Prome, Y. Blouquit, C. Ponthus, J. C. Prome, J. Rosa, “Structure of the human adult hemoglobin minor fraction A1b by electrospray and secondary ion mass spectrometry,” J. Biol. Chem., 266 (1991) 13050-13054. [175]H. F. Bunn, K. H. Gabbay, P. M. Gallop, “The glycosylation of hemoglobin: relevance to diabetes mellitus,” Science, 200 (1978) 21-27. [176]C. S. Pundir, S. Chawla, “Determination of glycated hemoglobin with special emphasis on biosensing methods,” Anal. Biochem., 444 (2014) 47-56. [177]M. Thevarajah, M. N. Nadzimah, Y. Y. Chew, “Interference of hemoglobin A1c (HbA1c) detection using ion-exchange high performance liquid chromatography (HPLC) method by clinically silent hemoglobin variant in University Malaya Medical Centre (UMMC)-a case report,” Clin. Biochem., 42 (2009) 430-434. [178]F. Frantzen, K. Grimsrud, D. E. Heggli, A. L. Faaren, T. Lovli, E. Sundrehagen, “Glycohemoglobin filter assay for doctors’ offices based on boronic acid affinity principle,” Clin. Chem., 43 (1997) 2390-2396. [179]Y. C. Li , J. O. Jeppsson, M. Jornten-Karlsson, E. L. Larsson, H. Jungvid, I. Y. Galaev, B. Mattiasson, “Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin,” J. Chromatogr. B, 776 (2002) 149-160. [180]T. Tanaka, T. Matsunaga, “Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles,” Biosens. Bioeectron., 16 (2001) 1089-1094. [181]D. Stollner, W. Stocklein, F. Scheller, A. Warsinke, “Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor,” Anal. Chim. Acta, 470 (2002) 111-119. [182]N. Wangoo, J. Kaushal, K. K. Bhasin, S. K. Mehta, C. R. Suri, “Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes,” Chem. Commun., 46 (2010) 5755-5757. [183]N. B. Roberts, A. B. Amara, M. Morris, B. N. Green, “Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin,” Clin. Chem., 47 (2001) 316-321. [184]M. Jenkins, S. Ratnaike, “Capillary electrophoresis of hemoglobin,” Clin. Chem. Lab. Med., 41 (2003) 747-754. [185]D. Koval, V. Kasicka, H. Cottet, “Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing,” Anal. Biochem., 413 (2011) 8-15. [186]L. A. Kaplan, A. J. Pesce, “Clinical Chemistry, Theory, Analysis, and Correlation,” 3rd ed., Mosby Book Inc., St. Louis, USA (1996). [187]G. Liu, S. M. Khor, S. G. Iyengar, J. J. Gooding, “Development of an electrochemical immunosensor for the detection of HbA1c in serum,” Analyst, 137 (2012) 829-832. [188]G. Liu, S. G. Iyengar, J. J. Gooding, “An electrochemical impedance immunosensor based on gold nanoparticle-modified electrodes for the detection of HbA1c in human blood,” Electroanalysis, 24 (2012) 1509-1516. [189]H. C. Chien, T. C. Chou, “Glassy carbon paste electrodes for the determination of fructosyl valine,” Electroanalysis, 22 (2010) 688-693. [190]H. C. Chien, T. C. Chou, “A nonenzymatic amperometric method for fructosyl-valine sensing using ferroceneboronic acid,” Electroanalysis, 23 (2011) 402-408. [191]K. Ogawa, D. Stollner, F. Scheller, A. Warsinke, F. Ishimura, W. Tsugawa, S. Ferri, K. Sode, “Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring,” Anal. Bioanal. Chem., 373 (2002) 211-214. [192]L. Fang, W. Li, Y. Zhou, C. C. Liu, “A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection,” Sens. Actuator B-Chem., 137 (2009) 235-238. [193]S. W. Chuang, J. Rick, and T. C. Chou, “Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound,” Biosens. Bioelectron., 24 (2009) 3170-3173. [194]T. Yamasaki, “An amperometric sensor based on gold electrode modified by soluble molecularly imprinted catalyst for fructosyl valine,” Electrochemistry, 80 (2012) 353-357. [195]G. Springsteen, B. Wang, “A detailed examination of boronic acid-diol complexation,” Tetrahedon, 58 (2002) 5291-5300. [196]S. Shinkai, M. Takeuchi. “Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions,” Biosens. Bioelectron., 20 (2004) 1250-1259. [197]Y. Egawa, T. Seki, S. Takahashi, J. I. Anzai, “Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives,” Mater. Sci. Eng. C-Mater. Biol. Appl., 31 (2011) 1257-1264. [198]S. U. Son, J. H. Seo, Y. H. Choi, and S. S. Lee, “Fabrication of a disposable biochip for measuring percent hemoglobin A1c (%HbA1c),” Sens. Actuator A-Phys., 130-131 (2006) 267-272. [199]D. M. Kim, Y. B. Shim, “Disposable amperometric glycated hemoglobin sensor for the finger prick blood test,” Anal. Chem., 85 (2013) 6536-6543. [200]J. Y. Wang, T. C. Chou, L. C. Chen, K. C. Ho, “Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c,” Biosens. Bioelectron., 63 (2015) 317-324. [201]J. Y. Park, B. Y. Chang, H. Nam, S. M. Park, “Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem., 80 (2008) 8035-8044. [202]Y. C. Chuang, K. C. Lan, K. M. Hsieh, L. S. Jang, M. K. Chen, “Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device,” Sens. Actuator B-Chem., 171-172 (2012) 1222-1230. [203]K. M. Hsieh, K. C. Lan, W. L. Hu, M. K. Chen, L. S. Jang, M. H. Wang, “Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement,” Biosens. Bioelectron., 49 (2013) 450-456. [204]W. L. Hu, L. S. Jang, K. M. Hsieh, C. W. Fan, M. K. Chen, M. H. Wang, “Ratio of HbA1c to hemoglobin on ring-shaped interdigital electrode arrays based on impedance measurement,” Sens. Actuator B-Chem., 203 (2014) 736-744. [205]S. Y. Song, H. C. Yoon, “Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing,” Sens. Actuator B-Chem., 140 (2009) 233-239. [206]S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron., 35 (2012) 355-362. [207]S. Liu, U. Wollenberger, M. Katterle, F. W. Scheller, “Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin,” Sens. Actuator B-Chem., 113 (2006) 623-629. [208]J. Halamek, U. Wollenberger, W. Stocklein, F. W. Scheller, “Development of a biosensor for glycated hemoglobin,” Electrochim. Acta, 53 (2007) 1127-1133. [209]S. Y. Son, Y. D. Han, K. H. Lee, H. C. Yoon, “Electrochemical assay for glycated hemoglobin based on the magnetic particle-supported concentration coupled to boronate-diol interactions,” Bull. Korean Chem. Soc., 31 (2010) 2103-2106. [210]W. Lijinsky, S. S. Epstein, “Nitrosamines as environmental carcinogens,” Nature, 225 (1970) 21-23. [211]K. Soropogui, M. Sigaud, O. Vittori, “A cobalt film electrode for nitrite determination in natural water,” Electroanalysis, 19 (2007) 2559-2564. [212]J. C. M. Gamboa, R. C. Pena, T. R. L. C. Paixao, A. S. Lima, M. Bertotti, “Activated copper cathodes as sensors for nitrite analysis,” Electroanalysis, 22 (2010) 2627-2632. [213]Guidelines for drinking-water quality, 4th ed., World Health Organization, Geneva, Switzerland (2011). [214]http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=172.175 (U.S. Food and Drug Administration, Code of Federal Regulations Tilie 21. Referred to this website on 2014/05/16) [215]M. J. Moorcroft, J. Davis, R. G. Compton, “Detection and determination of nitrate and nitrite: a review,” Talanta, 54 (2001) 785-803. [216]S. B. Butt, M. Riaz, M. Z. Iqbal, “Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography,” Talanta, 55 (2001) 789-797. [217]P. H. MacArthur, S. Shiva, M. T. Gladwin, “Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence,” J. Chromatogr. B, 851 (2007) 93-105. [218]N. Bord, G. Cretier, J. L. Rocca, C. Bailly, J. P. Souchez, “Simultaneous determination of inorganic anions and organic acids in amine solutions for sour gas treatment by capillary electrophoresis with indirect UV detection,” J. Chromatogr. A, 1100 (2005) 223-229. [219]W. Sun, S. Zhang, H. Liu, L. Jin, J. Kong, “Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium (II)-substituted Keggin type heteropolytungstate,” Anal. Chim. Acta, 388 (1999) 103-110. [220]W. J. R. Santos, P. R. Lima, A. A. Tanaka, S. M. C. N. Tanaka, L. T. Kubota, “Determination of nitrite in food samples by anodic voltammetry using a modified electrode,” Food Chem., 113 (2009) 1206-1211. [221]P. Li, Y. Ding, A. Wang, L. Zhou, S. H. Wei, Y. M. Zhou, Y. W. Tang, Y. Chen, C. X. Cai, T. H. Lu, “Self-assembly of tetrakis (3-trifluoromethylphenoxy) phthalocyaninato cobalt (II) on multiwalled carbon nanotubes and their amperometric sensing application for nitrite,” ACS Appl. Mater. Interfaces, 5 (2013) 2255-2260. [222]R. Guidelli, F. Pergola, G. Raspi, “Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media,” 44 (1972) 745-755. [223]Y. Liu, J. Zhou, J. Gong, W. P. Wu, N. Bao, Z. Q. Pan, H. Y. Gu, “The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite,” Electrochim. Acta, 111 (2013) 876-887. [224]J. Jiang, W. Fan, X. Du, “Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles,” Biosens. Bioelectron., 51 (2014) 343-348. [225]S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun, “Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection,” Analyst, 36 (2011) 4898-4902. [226]X. Cao, X. Cai, N. Wang, L. Guo, “Hierarchical CuO nanochains: synthesis and their electrocatalytic determination of nitrite,” Anal. Chim. Acta, 691 (2011) 43-47. [227]B. Sljukic, R. G. Compton, “Manganese dioxide graphite composite electrodes formed via a low temperature method: detection of hydrogen peroxide, ascorbic acid and nitrite,” Electroanalysis, 19 (2007) 1275-1280. [228]O. Zhang, Y. Wen, J. Xu, L. Lu, X. Duan, H. Yu, “One-step synthesis of poly(3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite,” Synth. Met., 164 (2013) 47-51. [229]G. R. Xu, G. Xu, M. L. Xu, Z. Zhang, Y. Tian, H. N. Choi, W. Y. Lee, “Amperometric determination of nitrite at poly(methylene blue)-modified glassy carbon electrode,” Bull. Korean Chem. Soc., 33 (2012) 415-419. [230]A. S. Adekunle, J. Pillay, K. I. Ozoemena, “Probing the electrochemical behaviour of SWCNT-cobalt nanoparticles and their electrocatalytic activities towards the detection of nitrite at acidic and physiological pH conditions,” Electrochim. Acta, 55 (2010) 4319-4327. [231]C. Y. Lin, V. S. Vasantha, K. C. Ho, “Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs,” Sens. Actuator B-Chem., 140 (2009) 51-57. [232]C. Y. Lin, A. Balamurugam, Y. H. Lai, K. C. Ho, “A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation,” Talanta, 82 (2010) 1905-1911. [233]Y. H. Cheng, C. W. Kung, L. Y. Chou, R. Vittal, K. C. Ho, “Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing,” Sens. Actuator B-Chem., 192 (2014) 762-768. [234]Y. Zhang, R. Yuan, Y. Chai, W. Li, X. Zhong, H. Zhong, “Simultaneous voltammetric determination for DA, AA and NO2&;#8722; based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform,” Biosens. Bioelectron., 26 (2011) 3977-3980. [235]C. Wang, R. Yuan, Y. Chai, Y. Zhang, F. Hu, M. Zhang, “Au-nanoclusters incorporated 3-amino-5-mercapto-1,2,4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Biosens. Bioelectron., 30 (2011) 315-319. [236]C. Wang, R. Yuan, Y. Chai, S. Chen, Y. Zhang, F. Hu, M. Zhang, “Non-covalent iron (III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Electrochim. Acta, 62 (2012) 109-115. [237]W. Zhang, R. Yuan, Y. Q. Chai, Y. Zhang, S. H. Chen, “A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Sens. Actuator B-Chem., 166-167 (2012) 601-607. [238]Y. Zhang, R. Yuan, Y. Chai, X. Zhong, H. Zhong, “Carbon nanotubes incorporated with sol-gel derived La(OH)3 nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite,” Colloid Surf. B-Biointerfaces, 100 (2012) 185-189. [239]L. Zhang, L. Wang, “Poly(2-amino-5-(4-pyridinyl)-1, 3, 4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite,” J. Solid State Electrochem., 17 (2013) 691-700. [240]L. Zhang, D. Yang, L. Wang, “Electrochemical synthesis of a novel thiazole-based copolymer and its use for the simultaneous determination of dopamine, uric acid and nitrite,” Electrochim. Acta, 111 (2013) 9-17. [241]Y. J. Yang, W. Li, “CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite,” Biosens. Bioelectron., 56 (2014) 300-306. [242]C. W. Hu, K. M. Lee, J. H. Huang, C. Y. Hsu, T. H. Kuo, D. J. Yang, K. C. Ho, “Incorporation of a stable radical 2,2,6,6-Tetramethyl-1-Piperidinyloxy (TEMPO) in an electrochromic device,” Sol. Energy Mater. Sol. Cells, 93 (2009) 2102-2107. [243]K. C. Chen, C. Y. Hsu, C. W. Hu, K. C. Ho, “A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency,” Sol. Energy Mater. Sol. Cells, 95 (2011) 2238-2245. [244]C. H. Wu, C. Y. Hsu, K. C. Huang, P. C. Nien, J. T. Lin, K. C. Ho, “A photoelectrochromic device based on gel electrolyte with a fast switching rate,” Sol. Energy Mater. Sol. Cells, 99 (2012) 148-153. [245]C. Y. Hsu, H. W. Chen, K. M. Lee, C. W. Hu, and K. C. Ho, “A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films,” J. Power Sources, 195 (2010) 6232-6238. [246]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen, and K. C. Ho, “A high performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells,” J. Power Sources, 188, 313-318 (2009). [247]M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal, and K. C. Ho, “A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells,” Electrochim. Acta, 56 (2011) 6157-6164. [248]C. Dulgerbaki, A. U. Oksuz, S. Ahmad, “Electrochemically determined biosensing ability of DNA probed by using poly(propylenedioxythiophene),” Electrochim. Acta, 56 (2011) 6157-6164. [249]S. Naveenraj, S. Anandan, “Binding of serum albumins with bioactive substances-nanoparticles to drugs,” J. Photochem. Photobiol. C-Photochem. Rev., 14 (2013) 53-71. [250]J. T. Butcher, T. Johnson, J. Beers, L. Columbus, B. E. Isakson, “Hemoglobin α in the blood vessel wall,” Free Radic. Biol. Med., 73 (2014) 136-142. [251]http://delloyd.50megs.com/moreinfo/buffers2.html (Delloyd’s Lab Tech, resources reagents and solutions. Referred to this website on 2014/04/15). [252]http://home.fuse.net/clymer/buffers/phos2.html (Phosphate buffer calculator. Referred to this website on 2014/04/23). [253]http://web2.tmu.edu.tw/keelun/jcp3577/01_04000000.htm.htm (Taipei Medical University, preparation of physiological saline. Referred to this website on 2014/03/28). [254]S. H. Cho, H. J. Lee, Y. Ko, S. M. Park, “Electrochemistry of conductive polymers 47: effects of solubilizers on 3,4-ethylenedixoythiophene oxidation in aqueous media and properties of resulting films,” J. Phys. Chem. C, 115 (2011) 6545-6553. [255]G. Sauerbrey, “Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung,” Z. Phys., 155 (1959) 206-222. [256]S. Brukenstein, M. Shay, “Experimental aspects of use of the quartz crystal microbalance solution,” Electrochim. Acta, 30 (1985) 1295-1300. [257]S. Chowdhuri, A. Chandra, “Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules,” J. Chem. Phys., 115 (2001) 3732-3741. [258]L. M. Abrantes, C. M. Cordas, E. Vieil, “EQCM study of polypyrrole modified electrodes doped with Keggin-type heteropolyanion for cation detection,” Electrochim. Acta, 47 (2002) 1481-1487. [259]E. Nasybulin, S. Wei, M. Cox, I. Kymissis, K. Levon, “Morphological and spectroscopic studies of electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer for organic photovoltaic device (OPVd) fabrication,” J. Phys. Chem. C, 111 (2007) 4553-4560. [260]M. Yamashita, S. S. Rosatto, L. T. Kubota, “Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide,” J. Braz. Chem. Soc., 13 (2002) 635-641. [261]M. Cable, E. T. Smith, “Identifying the n=2 reaction mechanism of FAD through voltammetric simulations,” Anal. Chim. Acta, 537 (2005) 299-306. [262]Q. Chi, S. Dong, “Electrocatalytic reduction of dioxygen by an electrochemically polymerized flavin adenine dinucleotide film,” J. Electroanal. Chem., 369 (1994) 169-174. [263]H. Hamidi, E. Shams, B. Yadollahi, F. K. Esfahani, “Fabrication of bulk-modified carbon paste electrode containing α-PW12O403- polyanion supported on modified silica gel: preparation, electrochemistry and electrocatalysis,” Talanta, 74 (2008) 909-914. [264]R. Thangamuthu, Y. C. Pan, S. M. Chen, “Iodate sensing electrodes based on phosphotungstate-doped-glutaraldehyde-cross-linked poly-L-lysine coating,” Electroanalysis, 22 (2010) 1812-1816. [265]B. Wang, Y. Ma, Y. Wu, N. Li, Y. Huang, Y, S. Chen, “Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties,” Carbon, 47 (2009) 2112-2115. [266]G. Bepete, D. Voiry, M. Chhowalla, Z. Chiguvare, N. J. Coville, “Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas,” Nanoscale, 5 (2013) 6552-6557. [267]Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N. B. Wong, “Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane,” Carbon, 57 (2013) 433-442. [268]Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, “Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis,” Angew. Chem. Int. Ed., 52 (2013) 3110-3116. [269]Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, “Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?,” J. Am. Chem. Soc., 135 (2013) 1201-1204.
[270]B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, J. P. Zhang, A. K. Cheetham, C. N. R. Rao, “Boron-carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures,” Chem. Phys. Lett., 300 (1999) 473-477. [271]T. Shirasaki, A. Derre, M. Menetrier, A. Tressaud, S. Flandrois, “Synthesis and characterization of boron-substituted carbons,” Carbon, 38 (2000) 1461-1467. [272]P. Ayala, J. Reppert, M. Grobosch, M. Knupfer, T. Pichler, A. M. Rao, “Evidence for substitutional boron in doped single-walled carbon nanotubes,” Appl. Phys. Lett., 96 (2010) 183110 (1-3). [273]W. Cermignani, T. E. Paulson, C. Onneby, C. G. Pantano, “Synthesis and characterization of boron-doped carbons,” Carbon, 33 (1995) 367-374. [274]K. S. Park, D. Y. Lee, K. J. Kim, D. W. Moon, “Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition,” Appl. Phys. Lett., 70 (1997) 315-317. [275]W. Han, Y. Bando, K. Kurashima, T. Sato, “Boron-doped carbon nanotubes prepared through a substitution reaction,” Chem. Phys. Lett., 299 (1999) 368-373. [276]Y. Park, K. Y. Dong, J. Lee, J. Choi, G. N. Bae, B. K. Ju, “Development of an ozone gas sensor using single-walled carbon nanotubes,” Sens. Actuator B-Chem., 140 (2009) 407-411. [277]Y. Wu, “Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes,” Food Chem., 121 (2010) 580-584. [278]N. Nasirizadeh, Z. Shekari, H. R. Zare, M. R. Shishehbore, A. R. Fakhari, H. Ahmar, “Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface,” Biosens. Bioelectron., 41 (2013) 608-614. [279]J. Wang, M. Musameh, Y. Lin, “Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors,” J. Am. Chem. Soc., 125 (2003) 2408-2409. [280]G. A. Rivas, S. A. Miscoria, J. Desbrieres, G. D. Barrera, “New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes,” Talanta, 71 (2007) 270-275. [281]Y. Umasankar, A. P. Periasamy, S. M. Chen, “Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor,” Talanta, 80 (2010) 1094-1101. [282]E. Frackowiak, “Carbon materials for supercapacitor application,” Phys. Chem. Chem. Phys., 9 (2007) 1774-1785. [283]P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, “Energy storage in electrochemical capacitors: designing functional materials to improve performance,” Energy Environ. Sci., 3 (2010) 1238-1251. [284]N. G. Tsierkezos, U. J. Ritter, “Oxidation of dopamine on multi-walled carbon nanotubes,” J. Solid State Electrochem., 16 (2012) 2217-2226. [285]A. Ciszewski, G. Milczarek, “Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid,” Anal. Chem., 71 (1999) 1055-1061. [286]S. Hsieh, J. W. Jorgenson, “Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 μm,” Anal. Chem., 68 (1996) 1212-1217. [287]X. Tu, Q. Xie, S. Jiang, S. Yao, “Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole-carbon nanotubes composite film for amperometric detection of dopamine,” Biosens. Bioelectron., 22 (2007) 2819-2826. [288]D. Zheng, J. Ye, W. Zhang, “Some properties of sodium dodecyl sulfate functionalized multiwalled carbon nanotubes electrode and its application on detection of dopamine in the presence of ascorbic acid,” Electroanalysis, 20 (2008) 1811-1818. [289]D. Zheng, J. Ye, L. Zhou, Y. Zhang, C. Yu, “Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film,” J. Electroanal. Chem., 625 (2009) 82-87. [290]Z. Dursun, B. Gelmez, “Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE,” Electroanalysis, 22 (2010) 1106 -1114. [291]B. Habibi, M. H. Pournaghi-Azar, “Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry,” Electrochim. Acta, 55 (2010) 5492-5498. [292]P. Si, H. Chen, P. Kannan, D. H. Kim, “Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes,” Analyst, 136 (2011) 5134-5138. [293]J. Ping, J. Wu, Y. Wang, Y. Ying, “Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode,” Biosens. Bioelectron., 34 (2012) 70-76. [294]Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, X. H. Xia, “Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid,” Biosens. Bioelectron., 34 (2012) 125-131. [295]H. Y. Tsai, Z. H. Lin, H. T. Chang, “Tellurium-nanowire-coated glassy carbon electrodes for selective and sensitive detection of dopamine,” Biosens. Bioelectron., 35 (2012) 479-483. [296]S. J. Li, J. Z. He, M. J. Zhang, R. X. Zhang, X. L. Lv, S. H. Li, H. Pang, H. “Electrochemical detection of dopamine using water-soluble sulfonated graphene,” Electrochim. Acta, 102 (2013) 58-65. [297]H. Teymourian, A. Salimi, S. Khezrian, “Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform,” Biosens. Bioelectron., 49 (2013) 1-8. [298]Y. Y. Ling, Q. A. Huang, M. S. Zhu, D. X. Feng, X. Z. Li, Y. Wei, “A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing,” J. Electroanal. Chem., 693 (2013) 9-15. [299]P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, “Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid,” RSC Adv., 3 (2013) 14428-14437. [300]Z. Wen, S. Ci, Y. Hou, J. Chen, “Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst,” Angew. Chem. Int. Ed., 53 (2014) 6496-6500. [301]H. Wang, F. Ren, R. Yue, C. Wang, C. Zhai, Y. Du, “Macroporous flower-like graphene-nanosheet clusters used for electrochemical determination of dopamine,” Colloid Surf. A-Physicochem. Eng. Asp., 448 (2014) 181-185. [302]T. E. M. Nancy, V. A. Kumary, “Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid,” Electrochim. Acta, 133 (2014) 233-240. [303]Q. Lian, Z. He, Q. He, A. Luo, K. Yan, D. Zhang, X. Lu, X. Zhou, “Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene,” Anal. Chim. Acta, 823 (2014) 32-39. [304]X. Niu, W. Yang, H. Guo, J. Ren, J. Gao, “Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode,” Biosens. Bioelectron., 41 (2013) 225-231. [305]D. Micic, B. Sljukic, Z. Zujovic, J. Travas-Sejdic, G. Ciric-Marjanovic, “Electrocatalytic activity of carbonized nanostructured polyanilinesfor oxidation reactions: sensing of nitrite ions and ascorbic acid,” Electrochim. Acta, 120 (2014) 147-158. [306]D. Shan, G. Cheng, D. Zhu, H. Xue, S, Cosnier, S. Ding, “Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H2O2,” Sens. Actuator B-Chem., 137 (2009) 259-265. [307]Y. Ding, Y. Wang, B. Li, Y. Lei, “Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite,” Biosens. Bioelectron., 25 (2010) 2009-2015. [308]D. H. Wilson, J. P. Bogacz, C. M. Forsythe, P. J. Turk, T. L. Lane, R. C. Gates, D. R. Brandt, “Fully automated assay of glycohemoglobin with the Abbott IMx&;reg; analyzer: novel approaches for separation and detection,” Clin. Chem., 39 (1993) 2090-2097. [309]Md. Selim, A. S. Sadhu, K. K. Mukherjea, “Relaxation of the folding of globulin around heme of hemoglobin of Homo sapiens by the food-grade additive molecule chlorophyllin,” Mon. Chem., 141 (2010) 933-938. [310]L. Messori, C. Gabbiani, A. Casini, M. Siragusa, F. F. Vincieri, A. R. Bilia, “The reaction of artemisinins with hemoglobin: a unified picture,” Bioorg. Med. Chem., 14 (2006) 2972-2977. [311]D. Li, R. Gill, R. Freeman, I. Willner, “Probing of enzyme reactions by the biocatalyst-induced association or dissociation of redox labels linked to monolayer-functionalized electrodes,” Chem. Commun., (2006) 5027-5029. [312]J. Ren, W. Shi, K. Li, Z. Ma, “Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and Nafion film,” Sens. Actuator B-Chem., 163 (2012) 115-120. [313]A. N. J. Moore, D. D. M. Wayner, “Redox switching of carbohydrate binding to ferrocene boronic acid,” Can. J. Chem., 77 (1999) 681-686. [314]F. Sekli-Belaidi, P. Temple-Boyer, P. Gros,“Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids”, J. Electroanal. Chem., 647 (2010) 159-168. [315]Y. Zhou, N. Hu, Y. Zeng, J. F. Rusling, “Heme protein-clay films: direct electrochemistry and electrochemical catalysis,” Langmuir, 18 (2002) 211-219. [316]Y. Xian, Y. Zhou, Y. Xian, L. Zhou, H. Wang, L. Jin, “Preparation of poly(vinylpyrrolidone)-protected Prussian blue nanoparticles-modified electrode and its electrocatalytic reduction for hemoglobin,” Anal. Chim. Acta, 546 (2005) 139-146. [317]C. W. Kung, C. Y. Lin, Y. H. Lai, R. Vittal, K. C. Ho, “Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose,” Biosens. Bioelectron., 27 (2011) 125-131. [318]K. Li, G. Fan, L. Yang, F. Li, “Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films,” Sens. Actuator B-Chem., 199 (2014) 175-182. [319]T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, M. Li, “Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level,” Anal. Chem., 85 (2013) 10289-10295. [320]K. J. Huang, J. Z. Zhang, Y. J. Liu, L. L. Wang, “Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles,” Sens. Actuator B-Chem., 194 (2014) 303-310. [A1]S. Narayanan, H.D. Appleton, “Creatinine, a review,” Clin. Chem., 26 (1980) 1119-1126. [A2]R. D. Perrone, N. E. Madias, A. S. Levey, “Serum creatinine as an index of renal function: new insights into old concepts,” Clin. Chem., 38 (1992) 1933-1953. [A3]M. Wyss, R. Kaddurah-Daouk, “Creatine and creatinine metabolism,” Physiol. Rev., 80 (2000) 1107-1213. [A4]K. G. Blass, “Reactivity of creatinine with alkaline 3,5-dinitrobenzoate: a new fluorescent kidney function test,” Clin. Biochem., 28 (1995) 107-111. [A5]E. Mohabbati-Kalejahi,V. Azimirad, M. Bahrami, A. Ganbari, “A review on creatinine measurement techniques,” Talanta, 97 (2012) 1-8. [A6]R. S. Hare, “Endogenous creatinine in serum and human urine,” Proc. Soc. Exp. Biol. Med., 74 (1950) 148-151. [A7]T. Osaka, S. Komaba, A. Amano, “Highly sensitive microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes,” J. Electrochem. Soc., 145 (1998) 406-408. [A8]T. Tsuchida, K. Yoda, “Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum,” Clin. Chem., 29 (1983) 51-55. [A9]M. B. Madaras, I. C. Popescu, S. Ufer, R. P. Buck, “Microfabricated amperometric creatine and creatinine biosensors,” Anal. Chim. Acta, 319 (1996) 335-345. [A10]G. F. Khan, W. Wernet, “A highly sensitive amperometric creatinine sensor,” Anal. Chim. Acta, 351 (1997) 151-158. [A11]A. J. Killard, M. R. Smyth, “Creatinine biosensors: principles and designs,” Trends Biotechnol., 18 (2000) 433-437. [A12]U. Lad, S. Khokhar, G. M. Kale, “Electrochemical creatinine biosensors,” Anal. Chem., 80 (2008) 7910-7917. [A13]C. S. Pundir, S. Yadav, A. Kumar, “Creatinine sensors,” Trac-Trends Anal. Chem., 50 (2013) 42-52. [A14]K. Sreenivasan, R. Sivakumar, “Interaction of molecularly imprinted polymers with creatinine,” J. Appl. Polym. Sci., 66 (1997) 2539-2542. [A15]M. Subat, A. S. Borovik, B. Konig, “Synthetic creatinine receptor: imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its molecular recognition selectivity,” J. Am. Chem. Soc., 126 (2004) 3185-3190. [A16]H. A. Tsai, M. J. Syu, “Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine,” Biomaterials, 26 (2005) 2759-2766. [A17]R. Y. Hsieh, H. A. Tsai, M. J. Syu, “Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums,” Biomaterials, 27 (2006) 2083-2089. [A18]H. A. Tsai, M. J. Syu, “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor,” Anal. Chim. Acta, 539 (2005) 107-116. [A19]M. H. Lee, T. C. Tsai, J. L. Thomas, H. Y. Lin, “Recognition of creatinine by poly(ethylene-co-vinylalcohol) molecular imprinting membrane,” Desalination, 234 (2008) 126-133. [A20]C. Y. Huang, T. C. Tsai, J. L. Thomas, M. H. Lee, B. D. Liu, H. Y. Lin, “Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors,” Biosens. Bioelectron., 24 (2009) 2611-2617. [A21]D. Lakshmi, B. B. Prasad, P. S. Sharma, “Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode,” Talanta, 70 (2006) 272-280. [A22]T. Panasyuk-Delaney, V. M. Mirsky, O. S. Wolfbeis, “Capacitive creatinine sensor based on a photografted molecularly imprinted polymer,” Electroanalysis, 14 (2002) 221-224. [A23]S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. Chen, K. K. Karim, A. P. F. Turner, “Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine,” Biosens. Bioelectron., 16 (2001) 631-637. [A24]M. J. Syu, T. J. Hsu, Z. K. Lin, “Synthesis of recognition matrix from 4-methylamino-N-allylnaphthal-imide with fluorescent effect for the imprinting of creatinine,” Anal. Chem., 82 (2010) 8821-8829. [A25]P. S. Sharma, D. Lakshmi, B. B. Prasad, “Highly sensitive and selective detection of creatinine by combined use of MISPE and a complementary MIP-sensor,” Chromatographia, 65 (2007) 419-427. [A26]A. K. Patel, P. S. Sharma, B. B. Prasad, “Development of a creatinine sensor based on a molecularly imprinted polymer-modified sol-gel film on graphite electrode,” Electroanalysis, 20 (2008) 2102-2112. [A27]Y. S. Chang, T. H. Ko, T. J. Hsu, M. J. Syu, “Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine,” Anal. Chem., 81 (2009) 2098-2105. [A28]B. Gao, Y. Li, Z. Zhang, “Preparation and recognition performance of creatinine-imprinted material prepared with novel surface-imprinting technique,” J. Chromatogr. B, 878 (2010) 2077-2086. [A29]H. A. Tsai, M. J. Syu, “Preparation of imprinted poly(tetraethoxysilanol) sol-gel for the specific uptake of creatinine,” Chem. Eng. J., 168 (2011) 1369-1376. [A30]T. A. Sergeyeva, L. A. Gorbach, E. V. Piletska, S. A. Piletsky, O. O. Brovko, L. A. Honcharova, O. D. Lutsyk, L. M. Sergeeva, O. A. Zinchenko, A. V. El’skaya “Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes,” Anal. Chim. Acta, 770 (2013) 161-168.
[A31]C. Miura, N. Funaya, H. Matsunaga, J. Haginaka, “Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine,” J. Pharm. Biomed. Anal., 85 (2013) 288-294. [A32]J. D. Wright, N. A. J. M. Sommerdijk, “Sol-gel materials: chemistry and applications,” Gordon and Breach Science Publishers, Amsterdam, The Netherlands (2001). [A33]K. J. Shea, D. A. Loy, “Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials,” Chem. Mater., 13 (2001) 3306-3319. [A34]T. Shimada, R. Hirose, K. Morihara, “Footprint catalysis. X. Surface modification of molecular footprint catalysts and its effects on their molecular recognition and catalysis,” Bull. Chem. Soc. Jpn., 67 (1994) 227-235. [A35]T. R. Ling, Y. Z. Syu, Y. C. Tsai, T. C. Chou, C. C. Liu, “Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel,” Biosens. Bioelectron., 21 (2005) 901-907. [A36]T. Matsuishi, T. Shimada, K. Morihara, “Footprint catalysis. IX. Molecular footprint catalytic cavities imprinted with chiral hydantoins; enantioselective hydantoinase mimics,” Bull. Chem. Soc. Jpn., 67 (1994) 748-756. [A37]X. Shen, L. Zhu, C. Huang, H. Tang, Z. Yu, F. Deng, “Inorganic molecular imprinted titanium dioxide photocatalyst: synthesis, characterization and its application for efficient and selective degradation of phthalate esters,” J. Mater. Chem., 19 (2009) 4843-4851. [A38]R. Paroni, I. Fermo, G. Cighetti, C. A. Ferrero, A. Carobene, F. Ceriotti, “Creatinine determination in serum by capillary electrophoresis,” Electrophoresis, 25 (2004) 463-468. [A39]R. Makote, M. M. Collinson, “Template recognition in inorganic-organic hybrid films prepared by the sol-gel process,” Chem. Mater., 10 (1998) 2440-2445. [B1]S. M. Tan, H. L. Poh, Z. Sofer, M. Pumera, “Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling,” Analyst, 485 (2013) 4885-4891. [B2]G. H. Yang, Y. H. Zhou, J. J. Wu, J. T. Cao, L. L. Li, H. Y. Liu, J. J. Zhu, “Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide,” RSC Adv., 3 (2013) 22597-22604. [B3]X. Bo, M. Li, C. Han, L. Gao, “The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts,” Electrochim. Acta, 114 (2013) 582-589. [B4]M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, G. V. Lier, J. C. Charlier, H. Terrones, M. Terrones, M. S. Dresselhaus, “Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes,” Nano. Lett., 5 (2005) 1099-1105. [B5]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd ed.; John Wiley &; Sons, New York (2000).
|