(3.239.33.139) 您好!臺灣時間:2021/02/26 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王欣薇
研究生(外文):Hsin-Wei Wang
論文名稱:添加乙醯胺、環戊醇及1,3-二氧六環對於二氧化碳水合物熱力學與動力學之實驗量測
論文名稱(外文):Measurement of Thermosynamics and Kinetics of Carbon Dioxide Hydrate in the Presence of Acetamide, Cyclopentanol and 1,3-Dioxane
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
口試委員:陳立仁林祥泰陳柏淳
口試委員(外文):Li-Jen ChenShiang-Tai Lin
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:125
中文關鍵詞:二氧化碳水合物等容溫度循環法相平衡水合物生成動力學乙醯胺環戊醇13-二氧六環鹽水
外文關鍵詞:Carbon dioxide hydrateisochoric methoddissociation conditionbrine systemformation kineticsAcetamideCyclopentanol13-Dioxane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用一套高壓低溫的設備,進行二氧化碳水合物之熱力學與動力學實驗研究。採用等容溫度循環法量測二氧化碳+純水+添加劑之熱力學相平衡數據,以及在等容之系統中以升壓方式進行動力學實驗。本研究選用之添加劑為環醚類之1,3-二氧六環、醯胺類之乙醯胺及醇類之環戊醇。

由本研究之實驗結果顯示當添加1,3-二氧六環,對水合物的生成有促進之效果,使二氧化碳水合物穩定存在區域擴大。而其促進效果隨著添加之濃度增加而提升,20 wt% 之1,3-二氧六環平衡溫度最多可增加約7.8 K。另外,添加乙醯胺對二氧化碳水合物有抑制效果,抑制效果隨濃度增加而變大,在20 wt% 時最大,抑制溫度約5 K。此外,為了模擬海洋環境,本研究亦進行二氧化碳+鹽水+添加劑之水合物系統相平衡條件的量測,由實驗結果發現當添加1,3-二氧六環至鹽水系統中亦有促進二氧化碳水合物生成之效果;而添加抑制劑乙醯胺則是使二氧化碳水合物相平衡曲線往溫度更低和壓力更高的方向移動。由於受到鹽分的影響,其促進效果較添加至純水系統時為低;抑制效果較純水系統時為高。

另外,添加環戊醇於熱力學上促進效果不明顯,促進溫度最大只達2 K,但於熱力學實驗過程中發現,其在動力學水合物生成方面具有促進的效果,故以環戊醇作為添加劑進行動力學實驗。由實驗之結果證實,相較於純水系統而言,添加環戊醇可大幅縮短水合物生成之誘導時間並增加水合物生成之速率。


In this study, an apparatus which can be operated at high pressure and low temperature conditions was built and operated to measure the carbon dioxide hydrate of thermodynamics phase equilibrium and kinetics formation rate. In the thermodynamic part, this study used isochoric method to measure the carbon dioxide-hydrate-liquid water phase equilibrium boundary curve. In kinetics parts, using the pressurization in isochoric system to measure the formation rate and the amount of carbon dioxide hydrate. In this research, 1,3-Dioxane, Acetamide, and Cyclopentanol were chosen as additives.

In thermodynamic experimental results showed that the addition of 1,3-Dioxane in carbon dioxide system had effective promotion effects on formation of carbon dioxide in comparison with pure water system at a given pressure, and they could broaden the hydrates stability region. Furthermore, the promotion effect could increase as the concentration of additives increased. With the concentration of 20 wt% 1,3-Dioxane additives, the dissociation temperatures were increased about 7.8 K. With 20 wt% Acetamide, the equilibrium temperature decreased about 5 K at given pressure in comparisoon to that of pure water system. In addition, the hydrate dissociation conditions for brine systems with 3.5 wt% NaCl were also measured in this study. The promotion effect for carbon dioxide hydrate formation in brine environment was also observed with 1,3-Dioxane. However, the promotion effects in the presence of 1,3-Dioxane additives in the salt system was less than those in the pure water system. On the other hand, the inhibition effects were observed when adding Acetmaide in brine system, the equilibrium conditions shifted to higher pressure and lower temperature in comparison with pure water system.

Although the promotion effect of adding Cyclopentanol in carbon dioxide hydrate system was not good. It seemed that Cyclopentanol could increase the formation rate and decrease the induction time of carbon dioxide hydrates in thermodynamic experiments, so Cyclopentaonl was chosen as additive in kinetic experiments. The kinetic results proved Cyclopentaonl could reduce the induction time of forming carbon dioxide hydrates in comparison with pure water system, and the initial rate of hydrate formation was effectively increased by adding Cyclopentanol. In conclusion, Cyclopentaonl was effective kinetic promoter to form carbon dioxide hydrates in this work.


摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1-1 水合物介紹 2
1-2 二氧化碳水合物介紹及相關應用 4
1-3 二氧化碳捕捉與封存 (Carbon Dioxide Capture and Storage, CCS) 6
1-4 研究方向與目的 11
第二章 文獻回顧 13
2-1 水合物的相圖和相律 13
2-2 水合物生成機制 15
2-3 水合物結構之鑑定 17
2-4 水合物熱力學的相關研究 18
2-5 水合物動力學方面之研究 21
第三章 實驗方法 23
3-1 實驗設備與藥品 24
3-2 實驗步驟 25
3-2.1 熱力學實驗步驟 25
3-2.2 動力學實驗步驟 27
3-3 實驗數據分析 29
3-3.1 熱力學實驗數據分析 29
3-3.2 動力學實驗數據分析 30
第四章 結果與討論 31
A. 熱力學之水合物相平衡實驗 31
4A-1 溫度循環之流程 31
4A-2 純水對比實驗 32
4A-2.1二氧化碳水合物結構之預測 34
4A-3添加劑篩選及測試實驗 34
4A-4二氧化碳+純水+1,3-二氧六環之水合物系統相平衡數據 36
4A-4.1 二氧化碳+純水+1,3-二氧六環之水合物結構預測 37
4A-4.2 1,3-二氧六環與文獻添加劑比較 38
4A-5二氧化碳+純水+乙醯胺之水合物系統相平衡數據 39
4A-5.1 二氧化碳+純水+乙醯胺之水合物結構預測 40
4A-5.2 乙醯胺與文獻添加劑比較 40
4A-6二氧化碳+純水+環戊醇之水合物系統相平衡數據 41
4A-6.1 二氧化碳+純水+環戊醇之水合物結構預測 42
4A-6.2 環戊醇與文獻添加劑比較 42
4A-7二氧化碳+鹽水+添加劑之水合物系統相平衡數據 43
B. 動力學實驗數據量測 45
4B-1. 升壓方式之實驗流程 45
4B-2. 動力學實驗條件之選擇 46
4B-3. 動力學實驗結果討論 47
4B-3.1 純水系統與環戊醇系統之動力學實驗 47
4B-3.2 二氧化碳+純水+環戊醇系統之過冷溫度探討 48
4B-3.3二氧化碳+純水+環戊醇系統之攪拌速率探討 49
4B-3.4 二氧化碳+純水+環戊醇系統之操作壓力探討 50
第五章 結論 52
參考文獻 118


Adisasmito, S., Frank, R.J., Sloan, E.D. Hydrates of carbon dioxide and methane mixtures, Journal of Chemical &; Engineering Data, 36, 68-71 (1991)
Alavi, S., Takeya, S., Ohmura, R., Woo, K., Ripmeester, J.A. Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2-propanol+methane structure II clathrate hydrates, Journal of Chemical Physics, 133 (2010)
Bishnoi, P.R. and Dholabhai, P.D. Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions, Fluid Phase Equilibria, 83, 455-462 (1993)
Bruce JP, Frome M, Haites E, Janzen HH, Lal R, Paustian K. Carbon sequestration in soil. Soil and Water Conservation Society 54, 382–389 (1999)
Clarke, M.A., Majumdar, A. and Bishnoi, P.R. Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4, and CuSO4, Journal of Chemical &; Engineering Data, 49, 1436-1439 (2004)
Chatti, I., Delahaye, A., Fournaison, L. and Petitet, J.P. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest, Energ Conversion Management, 46 , 1333-1343 (2005)
Chen, Q., Yu, Y., Zeng, P., Yang,W., Liang, Q., Peng, X., Liu, Y. and Hu, Y. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate. Journal of Natural Gas Chemistry, 17, 264–267 (2008)
Chun, M.H. and Lee, H. Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose and fructose, Journal of Chemical &; Engineering Data, 44, 1081-1084 (1999)
Deroo, J.L., Peters, C.J., Lichtenthaler, R.N., Diepen, G.A.M. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium-chloride and water in dependence of temperature and pressure, AIChE Journal, 29, 651-657 (1983)
Dholabhai, P.D., Englezos, P., Kalogerakis, N. and Bishnoi, P.R. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions, Canadian Journal of Chemical Engineering, 69, 800-805 (1991)
Duc, N.H., Chauvy, F., Herri, J.M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry, Energy Conversion and Management, 48 (4), 1313-1322 (2007)
Fan, S.S. and Guo, T.M. Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions, Journal of Chemical &; Engineering Data, 44, 829-832 (1999)
Goel, N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues, Journal of Petroleum Science and Engineering, 51, 169-184 (2006)
Han, F. X., Lindner, J. S., Wang, C. Making carbon dioxide sequestration a paying proposition, Naturwissenschaften, 94, 170-182 (2007)
Hatakeyama, T., Aida, E., Yokomori, T., Ohmura, R. and Ueda, T. Fire extinction using carbon dioxide hydrate, Industrial &; Engineering Chemistry Research, 48 4083-4087 (2009)
Herzog, H.J. What future for carbon capture and sequestration? Environmental Science &; Technology, 35, 148A–153A (2001)
Huo, Z.X., Hester, K., Slon, E.D., Miller, K.T., Methane hydrate nonstoichiometry and phase diagram, AIChE Journal, 49, 1300-1306 (2003)
IPCC Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK (2001b)
Jager, M.D., Peters, C. J. and Sloan, E.D. Experimental determination of methane hydrate stability in methanol and electrolyte solutions, Fluid Phase Equilibria, 193, 17-28 (2002)
Jeffrey, G.A. Hydrate inclusion compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1, 211-222 (1984)
John, A.R. and Christopher, I.R., The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest. Energy &; Fuels, 12, 197-200 (1998)
Kang, S.P. and Lee, H. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements, Environmental Science and Technology, 34, 4397-4400 (2000)
Karpinski, P. H., Crystallization as a mass transfer phenomenon. Chem. Engng Sci. 35,2321-2324 (1980)
Kelland, M.A. History of the development of low dosage hydrate inhibitors, Energy and Fuels, 20, 825-847 (2006)
Kempe, S. Carbon in the rock cycle. In: Bolin B, Degens ET, Kempe S (eds) The global carbon cycle. Wiley, Chichester, UK, 343–377 (1979)
Koh, C.A., Sum, A.K. and Sloan, E. D. Gas hydrates: Unlocking the energy from icy cages, Journal of Applied Physics, 106, 1061101-1 - 1061101-14 (2009)
Kubota, H., Shimizu, K., Tanaka,Y. and Makita, T. Thermodynamic Properties of R13 (CClF3), R23 (CHF3), R152a (C2H4F2), and Propane Hydrates for Desalination of Sea-Water, Journal Chemical Engineering Jpn, 17, 423-429 (1984)
Kuo, P.C., Chen, L.J., Lin, S.T., Chen, Y.P. Measurememts for the dissociation conditions of methane hydrate in the presence of 2-Methyl-2-propanol, Journal of Chemical &; Engineering Data, 550, 5036-5039 (2010)
Lederhos, J.P., Long, J.P., Sum, A., Christiansen, R.L. and Sloan, E.D., Effective kinetic inhibitors for natural gas hydrates, Chemical Engineering Science, 51, 1221-1229 (1996)
Lee, J.W., Lu,H. Moudrakovski, I.L., Ratcliffe, C.I. and Ripmeester, J.A. Thermodynamic and molecular-scale analysis of new systems of water-soluble hydrate formers + CH4 , Journal of Physical Chemistry B, 114, 13393–13398 (2010)
Lee, H., Seo, Y., Seo, Y.T., Moudrakovski, I.L., Ripmeester, J.A. Recovering methane from solid methane hydrate with carbon dioxide. Angewandte Chemie International Edition. 42, 5048 –5051 (2003)
Lee, Y., Lee, S., Park, S., Kim, Y., Lee, J.W., Seo, Y. 2-Propanol as a co-guest of structure II hydrate in the presence of help gases, Journal of Physical Chemistry B,117, 2449-2445 (2013)
Li, S., Fan, S., Wang, J., Lang, X. and Wang, Y. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride), Journal of Chemical &; Engineering Data, 55, 3212–3215 (2010)
Lino, K., Sakakibara, Y., Suginaka, T., Ohmura, R. Phase equilibria for the ionic semiclathrate hydrate formed with tetrabutylphosphonium chloride plus CO2, CH4, or N2, Journal of Chemical Thermodynamics, 71, 133-136 (2014)
Maekawa, T. Equilibrium conditions of clathrate hydrates formed from carbon dioxide and aqueous acetone solutions, Fluid Phase Equilibria, 303, 76–79 (2011)
Maekawa, T. Equilibrium conditions for carbon dioxide hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol, Journal of Chemical and Engineering Data, 55, 1280-1284 (2010)
Majumdar, A., Maini, B., Bishnoi, P.R., Clarke, M.A. Three-Phase Equilibrium Conditions of TiAAB Semiclathrates Formed from N2, CO2, and Their Mixtures, Journal of Chemical and Engineering Data, 57, 2322-2327 (2012)
Mayoufi, M., Dalmazzone, D., Furst, W., Delahaye, A., Fournaison, L. CO2 Enclathration in Hydrates of Peralkyl-(Ammonium/Phosphonium) Salts: Stability Conditions and Dissociation Enthalpies, Journal of Chemical and Engineering Data, 55, 1271-1275 (2010)
Metz, B., Davidson, O., Coninck, H.C.D., Loos, M. and Meyer, L.A. IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, (2005)
Meysel, P., Oellricha, L., Bishnoi, P.R. and Clarke, M.A. Experimental investigation of incipient equilibrium conditions for the formation of semi-clathrate hydrates from quaternary mixtures of (CO2 + N2 + TBAB + H2O). Journal of Chemical Thermodynamics, 43, 1475–1479 (2011)
Mohammadi, A.H. and Richon,D. Clathrate hydrate dissociation conditions for the methane plus cycloheptane/cyclooctane plus water and carbon dioxide plus cycloheptane/cyclooctane plus water systems, Chemical Engineering Science, 65, 3356-3361 (2010)
Mohammadi, A.H. and Richon,D. Clathrate hydrate of isopentane + carbon dioide and isopentane + methane: experimental measurements of dissociation conditions, Oil &; Gas Science and Technology - Rev. IFP Energies nouvelles, 65, 879-882 (2010)
Mohammadi, A.H. and Richon, D. Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane plus carbon dioxide, Chemical Engineering Science, 64, 5319-5322 (2009)
Mohammadi, A.H., Afzal, W. and Richon, D. Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions, Journal of Chemical Thermodynamics, 40, 1693-1697 (2008)
Mohammadi, A.H., Anderson, R., and Tohidi,B. Carbon Monoxide Clathrate Hydrates: Equilibrium Data and Thermodynamic Modeling. AIChE Journal October , 51, No. 10 (2005)
Mooijer-van den Heuvel, M.M., Witteman, R. and Peters, C.J. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane, Fluid Phase Equilibria, 182, 97-110 (2001)
Nago, A. and Nieto, A. Natural Gas Production from Methane Hydrate Deposits Using CO2 Clathrate Sequestration: State-of-the-Art Review and New Technical Approaches, Journal of Geological Research, (2011)
Ng, H.J. and Robinson, D.B. Hydrate formation in systems containing methane, ethane, propane, carbon-dioxide or hydrogen-sulfide in the presence of methanol, Fluid Phase Equilibria, 21, 145-155 (1985)
North,W.J., Blackwell,V.R. and Morgan,J.J. Studies of CO2 hydrate formation and dissolution. Environmental Science Technology, 32, 5, 6767–7681. (1998)
Ohgaki, K. Takano, K. Sangawa, H. Matsubara, T. and Nakano, S. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system, Journal of Chemical Engineering of Japan, 29, 478–483 (1996).
Ohmura, R., Matsuda, S., Takeya, S., Ebinuma, T. and Narita, H. Phase equilibrium for structure-H hydrates formed with methane and methyl-substituted cyclic ether, International Journal of Thermophysics, 26, 1515-1523 (2005)
Ohmura, R., Uchida, T., Takeya, S., Nagao, J. Minagaea, H., Ebinuma, T., Narita, H. Phase Equilibrium for Structure-H Hydrates Formed with Methane and either Pinacolone (3,3-Dimethyl-2-butanone) or Pinacolyl Alcohol (3,3-Dimethyl-2-butanol), Journal of Chemical and Engineering Data, 48, 1337-1340 (2003)
Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith, R.L. and Inomata, H. Replacement of CH4 in the hydrate by use of liquid CO2. Energy Conversion and Management, 46, 1680–1691 (2005)
Peng, X., Hu, K., Liu, Y., Jin, C., Lin, H. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates, Journal of Natural Gas Chemistry, 19, 81–85 (2010)
Rehder G., Kirby S.H., Durhan W.B., Stern L.A., Peltzer E.T., Pinkston J., Brewer P.G. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochim Cosmochim Acta. 68, 2, 285–292, (2004)
Rochelle, C.A., Camps, A.P., Long, D., Milodowski, A., Bateman, K., Gunn, D., Jackson, P., Lovell, M.A. and Rees, J. Can CO2 hydrate assist in the underground storage of carbon dioxide?, Geological Society, London, Special Publications, 319, 171-183 (2009)
Sa, J.H., Lee, B.R., Park, D.H., Han, K., Chun, H.D. and Lee,K.H. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration, Environmental Science Technology, 45, 5885-5891 (2011)
Sabil, K.M., Duarte, A.R.C., Zevenbergen, J., Ahmad, M.M., Yusup, S., Omar, A.A. and Peters, C. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution. International Journal of Greenhouse Gas Control, 4, 798–805 (2010)
Sabil, K.M., Witkamp, G.J. and Peters, C.J. Phase equilibria in ternary (carbon dioxide + tetrahydrofuran + water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon, Journal of Chemical Thermodynamics, 42, 8–16 (2010)
Sabil, K.M., Witkamp, G.J. and Peters, C.J. Phase equilibria of mixed carbon dioxide and tetrahydrofuran hydrates in sodium chloride aqueous solutions. Fluid Phase Equilibria, 284, 38–43 (2009)
Servio, P., Lagers, F., Peters, C. and Englezos, P. Gas hydrate phase equilibrium in the system methane–carbon dioxide–neohexane and water, Fluid Phase Equilibria, 158–160, 795–800 (1999)
Seo, Y., Kang, S.P., Lee, S. and Lee, H. Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1,4-dioxane, Journal of Chemical and Engineering Data, 53, 2833–2837 (2008)
Shen, R., Tezuka, K., Uchida, T., Ohmura, R. Hydrate phase equilibrium in the system of (carbon dioxide + 2,2-dimethyl butane + water) at temperatures below freezing point of water, Journal of Chemical Thermodynamic, 53, 27-29 (2012)
Sloan, E.D. and Koh, C.A. Clathrate Hydrates of Natural Gases, Third Edition,1-699 (2008)
Sloan, E.D. Fundamental principles and applications of natural gas hydrates, Nature, 426, 353-359 (2003)
Sloan, E.D. and Fleyfel, F. Hydrate dissociation enthalpy and guest size. Fluid Phase Equilibria, 76, 123-140 (1992)
Stewart, P.B. and Munjal, P. Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at -5 ℃ to 25 ℃ and 10 atm to 45 atm pressure, Journal of Chemical and Engineering Data, 15, 67-71 (1970)
Tezuka, K., Shen, R., Watanabe, T., Takeya, S., Alavi, S., Ripmeester, R.A., Ohmura, R., Synthesis and characterization of a structure H hydrate formed with carbon dioxide and 3,3-dimethyl-2-butanone, Chemical Communications, 49, 505 (2013)
Tohidi, B., Yang, J.H., Salehabadi, M., Anderson, R. and Chapoy, A., CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2, Environmental Science Technology, 44, 1509-1514 (2010)
Tohidi, B., Burgass, R.W., Danesh, A., Ostergaard, K.K. and Todd, A.C. Improving the accuracy of gas hydrate dissociation point measurements, Annals of the New York Academy of Science, 912, 924-931 (2000)
Uchida, T., Ikeda, I. Y., Takeya, S., Kamata, Y., Ohmura, R., Nagao, J., Zatsepina, O. Y., Buffett, B. A. Kinetics and Stability of CH4–CO2 Mixed Gas Hydrates during Formation and Long-Term Storage, ChemPhysChem, 6, 646-654 (2005)
Tumba, K., Reddy, P., et al, Naidoo, P. and Ramjugernath, D. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid, Journal of Chemical and Engineering Data, 56, 3620–3629 (2011)
Wendland, M., Hasse, H. and Maurer, G. Experimental pressure&;#8722;temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide&;#8722;water, Journal of Chemical &; Engineering Data, 44 , 901-906 (1999)
Zhang, J. and Lee, J.W. Enhanced kinetics of CO2 hydrate formation under static conditions. Industrial Engineering Chemimstry Research, 48, 5934–5942 (2009)
工業技術研究院 二氧化碳捕獲與封存技術 (2013) http://www.ccs.tw/
吳翊萍 添加環戊酮、環己酮及2-甲基-2-丙醇對於二氧化碳水合物分解狀態與動力學之實驗量測,國立台灣大學化學工程學研究所碩士論文 (2013)
許益嘉 添加1,3,5-三氧六環、2,5-二氫&;#21579;喃及1,3-二氧五環對於二氧化碳水合物分解狀態之實驗量測,國立台灣大學化學工程學研究所碩士論文 (2012)
歐陽湘 國際溫室氣體減量及二氧化碳捕獲與封存,經濟部能源期刊,10,4-9 (2011)
林殿順 台灣二氧化碳地質封存潛能及安全性,環保專欄(2010) http://basin.earth.ncu.edu.tw/publications/papers/LinAT_2010_CGS_Taiwan_Economic%20Outlook.pdf
朱少華 二氧化碳地質封存未來發展與中油公司可能扮演之角色,&;#37979;.冶第53卷第4期,7-13 (2009)
俞旗文 二氧化碳捕獲與封存,水利土木科技資訊季刊41期,27-32 (2008)
樊燕,劉道平,謝應明,鍾棟梁,肖楊 用CO2 置&;#25442;水合物沉&;#31215;&;#23618;中CH4 可行性分析,天然地球科學,18, No.2,317-320 (2007)
孫志高,石磊,樊栓獅,郭開華,王如竹 氣體水合物相平衡測定方法研究,
石油與天然氣化工,30,164-166 (2001)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔