(3.235.108.188) 您好!臺灣時間:2021/03/03 20:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇暐婷
研究生(外文):Wei-Ting Su
論文名稱:新穎稠苯環化合物之設計、合成及有機電子材料應用
論文名稱(外文):Design and Synthesis of Novel Polyacenes and Applications in Organic Electronics
指導教授:周大新
口試委員:梁文傑劉陵崗孫世勝劉清揚張源杰
口試日期:2014-01-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:119
中文關鍵詞:稠苯環有機電子材料
外文關鍵詞:polyaceneorganic electronics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The electronics are surrounded in our lives. The interests of electronic materials have turned to organic materials for the possibility of making flexible, large area devices. We designed, synthesis organic materials based on polyacene skeleton and applied in organic field-effect transistors (OFET) and organic photovoltaic (OPV).We investigated the cycloaddition of hexacene with fullerene[60]. The products of this reaction were HC-1 and HC-2. With the addition of diiodooctane, the OPV quantum efficiency of HC-1can be promoted to 0.38%. The second part was synthesis of soluble hexacene precursor, 3-9 and applied in OFET. The mobility is 3.5 x 10-2 cm-2 V-1s-1, with Ion/Ioff 1 x 104 and a threshold voltage of -44 V.In the last part, we introduced furan into polyacene and synthesized 4-1aand4-1b. These compounds can be applied in both OFET and OPV. The OFET devices made with 4-1bhad a good hole mobility of0.11 cm2V-1s-1with an on/off ratio of 8.0x104 and undera threshold voltage of 18 V. The OPV performances were not satisfied due to poor morphology.



TABLE OF CONTENTS
Abstract…………………………………………………………………………………i
List of Figures…………………………………………………………………………iv
List of Schemes…………………………………...…………………………………..viii
List of Tables…………………………………………………………………………..ix
Chapter 1 Introduction of organic electronics...................................................................1
1-1 Introduction of organic electronics..........................................................................1
1-2 Organic Photovoltaics (OPVs)…………..……………………...………………4
1-3Organic Field-Effect Transistors (OFETs)……………….…...………………...10
1-4 References……………………………………………………………………...15
Chapter 2Cycloaddition of hexacene with fullerene[60] and applied the adducts in organic photovoltaics (OPVs)………………………………………………………...17
2-1 Background………………………...……………………………………………17
2-2 Synthesis and characterization……...…………………………………………...22
2-2-1 Synthesis………………................................................................................22
2-2-2 Characterization…………………………………………………………….27
2-2-3 Reactivity and selectivity of hexacene…………………………………...…35
2-3 OPV device……………………………………………….……………………..36
2-3-1 Effect of BCP………………................................................................... .....36
2-3-2 Effect of donor-acceptor ratio………………………………………………39
2-3-3 Effect of additives……………………………………………………...…39
2-4 Summary………………………………………………………………………...43
2-5 References……………………………………………………………...……...44
Chapter 3Soluble Hexacene Precursor and Applied in OFETs……………….......…...47
3-1 Background………………………..…………………………………….………47
3-2 Design and synthesis……...…………………………………………..................53
3-3 Characterize the conversion of SHP to hexacene…………………..…………..58
3-4 Device performance and discussion…………………….………….…………..64
3-4-1 Device modification…………….................................................................65
3-4-2 Stability test……………………………………..……………….……...…68
3-5 Summary…………………………………………………………...…………...72
3-6 References……………………………………………………………..………...73
Chapter 4 Solution-Processed Optoelectronic Properties of Functionalized
Anthradifuran.…………………………………………………………………………..75
4-1 Background………………………...……………………………………………75
4-2 Synthesis and characterization…………………………………………………..79
4-3 OFET performance……………………………………………………………....85
4-4 OPV performance………………………………………………………………..89
4-5 Results and discussion………………………………………………………...…91
4-6 Summary………………………………………………………………………...93
4-7 References……………………………………………………………………...94
Chapter 5 Experimental section………………………………………………………...95
5-1 Device fabrication……………………………………………………………….95
5-2 Synthesis…………………………………………………………………………99
5-3 NMR spectra……………………………..…………………………………..…110



List ofFigures
Figure 1-1. (a) Left to right: Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa. Courtesy Alan J. Heeger. (b) the schematic illustration of conducting polyacetylene…..1
Figure 1-2. The distributions of published papers by year using ‘‘organic electronics’’,
‘‘OLEDs’’, ‘‘OFETs’’ and ‘‘Organic solar cell’’ as query keywords to search the Web of Science…………………………………………………………………………………...2
Figure 1-3. A blueprint of house made of OPVs………………………………………...4
Figure 1-4. Schematic diagram of photoinduced charge transfer between MEH-PPV and C60 derivatives blend. The acceptors used in Yu and co-workers’ system are [5,6]-
PC61BM and [6,6]-PC61BM (left). The device configuration is shown in the right……..6
Figure 1-5. The J-V curves before (No.1) and after thermal annealing at 110 oC for 10 min (No.2), 20 min (No.3) and 30 min (No.4)…………………………………………..7
Figure 1-6. The AFM spectrums of active layer (a) before and (b) after thermal annealing at 110 oC for 10 min…………………………………………………………..7
Figure 1-7. The Schematic illustration of J-V curve……………………………………..8
Figure 1-8. Schematic illustration of the working principle of OPV……………………9
Figure 1-9. The common configurations of OFET device (a) top-contact,bottom-gate, (b) bottom-contact, bottom-gate, (c) bottom-contact, top-gate……………………..….11
Figure 1-10. Working principle of OFET………………………………………………12
Figure 1-11. Typical characteristics of OFET.The boundary between linear and saturation regime isindicated by a grey curve…………………………………………12
Figure 1-12. The typical output and transport characteristics of an OFET device….....14
Figure 2-1. The most reactive positions of hexacene (arrows)……………. ……….17
Figure 2-2. Cs symmetric monoadduct2-4, syn-pentacene-C60bisadduct2-6, 2-7 and anti-pentacene-C60bisadduct2-8, 2-9…………………………………………………20
Figure 2-3. 1HNMR experiments during 0~24 hours ofthe reaction of hexacene with C60………………………………………………………………………………………23
Figure 2-4. Schematic illustration of the reaction of C60withcyclopentadiene in n-hexane………………………………………………………………………………...24
Figure 2-5 The 1H NMR spectrum of 2-1…..…………………………………...……...27
Figure 2-6. 1H-1H COSY NMR spectra of HC-1………………………………..……..29
Figure 2-7. 1H-1H COSY NMR spectra of HC-2………………………………………30
Figure 2-8. UV-vis spectra of HC-1 and HC-2 in chloroform…………………………31
Figure 2-9. CV plots of C60, PC61BM,HC-1 and HC-2 in o-dichlorobenzene………..32
Figure 2-10.TGA plots of HC-1 (a)and HC-2 (b) at nitrogen atmosphere…………...34
Figure 2-11. The relationship of Jsc values and thickness of the BCP layer……………37
Figure 2-12. Schematic device structure and the structures of donor and acceptors…...38
Figure 2-13. (a)Schematic depiction of the role of the processing additive in the self-assembly of bulk heterojunction blend materials and(b) structures of PCPDTBT,
C71-PCBM, and additives………………………………………………………………40
Figure 2-14.J-V curves of HC-1 (a) and HC-2 (b); dark currents of HC-1 (c) and HC-2 (d)………………………………………………………………………………………41
Figure 3-1. The soluble pentacene precursor 3-2 developed by IBM researches. (a) Synthesis route (b) typical output and (c) transfer characteristics……………………...49
Figure 3-2. 1H NMR of dimer of hexacene (inset: proposed structure) in CDCl3……..54
Figure 3-3. Absorption spectrum of 3-9 in THF (1.0 x 10-5M)………………………57
Figure3-4. The TGA of SHP between 50–600 oC in a N2 atmosphere………………...58
Figure 3-5. UV/vis spectrum of the thin-film 3-9before (blue line) and after (green line) heating at 240 oC………………………………………………………………….59
Figure 3-6. IR spectrums of 3-9 before (blue line), after heating at 240 oC (green line) and pure hexacene (red line)……………………………………………………………60
Figure 3-7. The high resolution MS (EI) spectrum of the product of heating 3-9……61
Figure 3-8. (a) The ORTEP drawing of two adjacent hexacene molecules; (b) the XRD spectrum of the thin-film of 3-9 on SiO2/Si substrate before (blue line) and after (green line) heating…………………………………………………………………………….62
Figure 3-9 Time-dependant thermal loading intensity of X-ray diffraction spectrum for annealing of 3-9………………………………………………………………………63
Figure 3-10. (a)The thin-film hexacene OFET device structure made from 3-9 and (b) it’s the typical output and (c)transfer characteristics………………………………...65
Figure 3-11. Proposed film structure of organic semiconductor on the suface of Au electrode (a) and thiol (b)………………………………………………………………66
Figure 3-12. Microscopic images of surface morphology during the multiple spin-heat of 3-7……………………………………………………………………………………67
Figure 3-13. The modified thin-film hexacene OFET device structure made from 3-9 (a) and it’s the typical output (b) and transfer (c) characteristics………………...…….68
Figure 3-14. Stability test………………………………………………………………69
Figure 4-1. The structure and crystalline order of TIPS pentacene…………………….75
Figure 4-2. Structures and crystalline arrangements of TES-ADT and TIPS-ADP…..76
Figure 4-3.Crystal structure of 4-1a and its packing pattern. Hydrogen atoms
are omitted for clarity. Ellipsoids set at 50% probability………………………………81
Figure 4-4.The XRD spectrum of 4-1b………………………………………………...81
Figure 4-5.(a)UV-vis spectra and PL spectra of 4-1a and 4-1b in THF. (b)CV plots of 4-1a and 4-1b in CH2Cl2 in the presence of Bu4NP 6 (0.1M)…………………………..82
Figure 4-6. TGA analysis of 4-1a and 4-1b…………………………………………….84
Figure 4-7. Time-dependent UV-vis spectrums of4-1a (left) and 4-1b (right) in THF (1x10-5M). Inset: Stationally measurement at 511 nm………………………………….84
Figure 4-8. (a) The schematically and (b) the optical microscopy image of the SC-OFETs made by 4-1a……………………………………………………………….85
Figure 4-9. (a) The schematically, (b) the optical image, (c) typical output and (d) transfer characteristics of the SC-OFETs made by 4-1a……………………………….87
Figure 4-10. (a) typical output and (b) transfer characteristics of the SC-OFETs made by 4-1a……………………………………………………………………………………..88
Figure 4-11. J-V curve of the4-1a,b:PC61BM blended hetero junction films under AM 1.5G illumination……………………………………………………………………….90
















List of Schemes
Scheme 2-1. Synthesis of C60-pentacene monoadduct2-1……………………………..19
Scheme 2-2. Synthetic scheme of pentacene with C60 under HSVM condition………..19
Scheme 2-3. Synthetic scheme of hexacene precursor…………………………………22
Scheme 2-4. Synthesis of HC-1 and HC-2…………………………………………….25
Scheme 3-1. The synthetic route of soluble pentacene precursor 3-1………………….48
Scheme 3-2. Synthetic route of 3-6…………………………………………………….51
Scheme 3-3. Synthetic route of 3-7…………………………………………………….52
Scheme 3-4. Schematic diagram for the formation of hexacene precursor 3-9………53
Scheme 4-1.The synthesis of 4-1a and 4-1b…………………………………………...80















List of Tables
Table 2-1. Summary of product ratio in different reaction conditions…………………26
Table 2-2. Half-Wave Reduction Potentials, HOMO and LUMO Energy Level of Fullerene Derivatives…………………………………………………...………………33
Table 2-3. Summary of the device Performances………………………………………42
Table 3-1. Summary of soluble pentacene precursors………………………………….50
Table 3-2 Synthetic conditions for hexacene precursor 3-9……………………….....56
Table 3-3 Comparison of hexacene and pentacene…………………………………….70
Table 4-1. The comparisons of furan and thiophene-containing heteroacenes…………78
Table 4-2.the electronic properties of 4-1a,b…………………………………………..83
Table 4-3. OPV performance of 4-1a and 4-1b………………………………………...90
Table 4-4.Comparison of 4-1a,b and their thiophene analogues……………………….91











1-4 References
1. Kinam, K.; Jae-Young, C.; Taek, K.; Seong-Ho, C.; Hyun-Jong, C. Nature2011, 479, 338.
2. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem.Soc. 1977, 0, 578.
3. Hu, W.; Bao, Z.; Muellen, K. J. Mater. Chem.2012, 22, 4134.
4. Becquerel, A. E. Comptes. Rendus. Hebdomadaires. Seances Academia. Science.1839, 561.
5. Smith, W. Nature1873, 7, 303.
6. Fritts, C. E. Am. J. Sci.1883, 26, 465.
7. Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. J. Phys.: Condens. Matter1994, 6, 1379.
8. Grossiord, N.; Kroon, J. M.; Andriessen, R.; Blom, P. W. M. Org. Electron.2012, 13, 432.
9. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science1995, 270, 1789.
10. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Materials2005, 4, 864.
11. Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett.1986, 49, 1210.
12. Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev.2008, 37, 827.
13. Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H. Appl. Phys. Lett.2006, 88, 162109.

2-5 References
1. Clar, E. Berichte der deutschen chemischen Gesellschaft (A and B Series)1942, 75, 1283.
2. Biermann, D.; Schmidt, W. J. Am. Chem. Soc.1980, 102, 3163.
3. Nijegorodov, N.; Ramachandran, V.; Winkoun, D. P. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy1997, 53, 1813.
4. Mondal, R.; Adhikari, R. M.; Shah, B. K.; Neckers, D. C. Org. Lett.2007, 9, 2505.
5. Briggs, J. B.; Miller, G. P. C. R. Acad. Sci., Ser.IIc: Chim.2006, 9, 916.
6. Mack, J.; Miller, G. P. Fullerene Sci. Technol.1997, 5, 607.
7. Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem.1999, 64, 3483.
8. Miller, G. P.; Mack, J. Org. Lett.2000, 2, 3979.
9. Miller, G. P.; Mack, J.; Briggs, J. Org. Lett.2000, 2, 3983.
10. Miller, G. P.; Briggs, J.; Mack, J.; Lord, P. A.; Olmstead, M. M.; Balch, A. L. Org. Lett.2003, 5, 4199.
11. Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; IslamMd, M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J. Nature Chemistry2012, 4, 574.
12. Minakata, S.; Nagamachi, T.; Nakayama, K.; Suzuki, T.; Tanaka, T. Chem. Commun.2011, 47, 6338.
13. Zhang, C.; Chen, S.; Xiao, Z.; Zuo, Q.; Ding, L. Org. Lett.2012, 14, 1508.
14. Choi, J. H.; Son, K.-I.; Kim, T.; Kim, K.; Ohkubo, K.; Fukuzumi, S. J. Mater. Chem.2010, 20, 475.
15. Prato, M.; Maggini, M. Acc. Chem. Res.1998, 31, 519.
16. Sarova, G. H.; Berberan-Santos, M. N. Chem. Phys. Lett.2004, 397, 402.
17. Schleyer, P. v. R.; Manoharan, M.; Jiao, H.; Stahl, F. Org. Lett.2001, 3, 3643.
18. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nature Materials2005, 4, 864.
19. Hong, Z. R.; Huang, Z. H.; Zeng, X. T. Thin Solid Films2007, 515, 3019.
20. Lo, M. F.; Ng, T. W.; Lai, S. L.; Wong, F. L.; Fung, M. K.; Lee, S. T.; Lee, C. S. Appl. Phys. Lett.2010, 97, 143304.
21. Peumans, P.; Forrest, S. R. Appl. Phys. Lett.2001, 79, 126.
22. Veldman, D.; I&;#775;pek, O. z.; Meskers, S. C. J.; Sweelssen, J. r.; Koetse, M. M.; Veenstra, S. C.; Kroon, J. M.; Bavel, S. S. v.; Loos, J.; Janssen, R. A. J. J.Am. Chem. Soc.2008, 130, 7721.
23. Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Nanotechnology2004, 15, 1317.
24. Kuhlmann, J.-C.; Bruyn, P. d.; Bouwer, R. K. M.; Meetsma, A.; Blom, P. W. M.; Hummelen, J. C. Chem. Commun.2010, 46, 7232.
25. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nature Materials2007, 6, 497.
26. Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc.2008, 130, 3619.
27. Takacs, C. J.; Sun, Y.; Welch, G. C.; Perez, L. A.; Liu, X.; Wen, W.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc.2012, 134, 16597.


3-6 References
1. Anthony, J. E. Angew. Chem. Int. Ed.2008, 47, 452-483.
2. Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev.2004, 104, 4891-4946.
3. Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H. Appl. Phys. Lett.2006, 88, 162109-3.
4. Herwig, P. T.; M&;uuml;llen, K. Adv. Mater.1999, 11, 480-483.
5.Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. J. Am. Chem. Soc.2002, 124, 8812-8813.
6. Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc.2004, 126, 12740-12741.
7. Afzali, A.; Kagan, C. R.; Traub, G. P. Synth. Met.2005, 155, 490-494.
8. Uoyama, H.; Yamada, H.; Okujima, T.; Uno, H. Tetrahedron2010, 66, 6889-6894.
9. Chen, K.-Y.; Hsieh, H.-H.; Wu, C.-C.; Hwang, J.-J.; Chow, T. J. Chem. Commun.2007, 10, 1065-1067.
10. Chao, T.-H.; Chang, M.-J.; Watanabe, M.; Luo, M.-H.; Chang, Y. J.; Fang, T.-C.; Chen, K.-Y.; Chow, T. J. Chem. Commun.2012, 48, 6148-6150.
11. Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; IslamMd, M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J. Nature Chemistry2012, 4, 574-578.
12. Mondal, R.; Adhikari, R. M.; Shah, B. K.; Neckers, D. C.Org. Lett.2007, 9, 2505-2508.
13. Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem.1999, 64, 3483-3488.
14. Lim, S. C.; Kim, S. H.; Lee, J. H.; Kim, M. K.; Kim, D. J.; Zyung, T. Synth. Met.2005, 148, 75-79.
15. DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Adv. Mater.2009, 21, 1407-1433.
16. Youn, J.; Dholakia, G. R.; Huang, H.; Hennek, J. W.; Facchetti, A.; Marks, T. J.Adv. Funct. Mater.2012, 22, 1856-1869.
17. Anthony, J. E. Chem. Rev.2006, 106, 5028-5048.


4-7 References
1. Anthony, J. E.: The Larger Acenes: Versatile Organic Semiconductors. Angew. Chem. Int. Ed.2008, 47, 452-483.
2. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev.2011, 112, 2208-2267.
3. Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson, T. N.J. Am. Chem. Soc.2005, 127, 4986-4987.
4. Nakano, M.; Mori, H.; Shinamura, S.; Takimiya, K.Chem. Mater.2011, 24, 190-198.
5. Liu, Y.-Y.; Song, C.-L.; Zeng, W.-J.; Zhou, K.-G.; Shi, Z.-F.; Ma, C.-B.; Yang, F.; Zhang, H.-L.; Gong, X.J. Am. Chem. Soc.2010, 132, 16349-16351.
6. Nakano, M.; Shinamura, S.; Houchin, Y.; Osaka, I.; Miyazaki, E.; Takimiya, K.Chem. Commun.2012, 48, 5671-5673.
7. Gidron, O.; Dadvand, A.; Sheynin, Y.; Bendikov, M.; Perepichka, D. F.Chem. Commun.2011, 47, 1976-1978.
8. Mitsui, C.; Soeda, J.; Miwa, K.; Tsuji, H.; Takeya, J.; Nakamura, E.J.Am. Chem. Soc.2012, 134, 5448-5451.
9. Kim, D. H.; Lee, D. Y.; Lee, H. S.; Lee, W. H.; Kim, Y. H.; Han, J. I.; Cho, K.Adv. Mater.2007, 19, 678-682.
10. Nakano, M.; Niimi, K.; Miyazaki, E.; Osaka, I.; Takimiya, K.J. Org. Chem.2012, 77, 8099-8111.
11. Schulze, K.; Bilkay, T.; Janietz, S.Appl. Phys. Lett.2012, 101, 043301-4.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔