跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳栢林
研究生(外文):Bai-Lin Chen
論文名稱:奈米氧化鈦的製備及其在氣體儲存與電化學電池上之應用
論文名稱(外文):Preparation of Titania Nanomaterials and Application to Gas Storage and Photoelectrochemical Cells
指導教授:簡淑華簡淑華引用關係
指導教授(外文):Shu-Hua Chien
口試委員:鄭淑芬呂光烈蘇昭瑾
口試委員(外文):Soofin ChengKuang-Lieh LuChao-Chin Su
口試日期:2014-07-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:氧化鈦奈米管二氧化鈦奈米顆粒二氧化鈦空心微米球二氧化碳儲存氫氣儲存硒化鎘/硫化鎘敏化太陽能電池太陽光水分解
外文關鍵詞:Titania nanotubesTitania nanoparticlesTitania hollow microspheres Carbon dioxide storageHydrogen storageCdSe/CdS sensitized solar cellsSolar water splitting.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用商用Merck TiO2粉末作為前驅物,在10 M 的氫氧化鈉水溶液中以水熱法製得氧化鈦奈米管(Tnt),並在製備過程中利用 0.1 M的硝酸水溶液進行不同次數之酸洗製備出Tnt-5、Tnt-7、Tnt-11以及Tnt-13四個樣品,數字部分為酸洗後之濾液的pH值。HRTEM影像顯示Tnt形貌為末端開口(open-end)且具有多層管壁(multi-layered)的一維管狀結構,其外管徑約8-10 nm,內管徑約3-5 nm,管長約為數百個奈米。EDX數據顯示,上述樣品之鈉含量會因酸洗次數增加而減少,由9.63 wt% (Tnt-13)下降到4.30 wt% (Tnt-5)。由氮氣等溫吸脫附結果得知,樣品的BET表面積會隨著酸洗次數的增加而變大,由168 m2/g (Tnt-13) 提升至291 m2/g (Tnt-5)。將Tnt應用於二氧化碳氣體吸附研究中發現,在298 K且32大氣壓下,吸附量分別為102.0 mg/g (Tnt-13)、109.0 mg/g (Tnt-11)、121.5 mg/g (Tnt-7)與136.2 mg/g (Tnt-5)。同時由二氧化碳脫附實驗結果中我們發現,二氧化碳之化學吸附比例會隨著鈉含量上升而增加,而物理吸附比例則隨著BET表面積增加而上升。其中以具有最大BET表面積之Tnt-5,在298 K且32大氣壓下有最高的二氧化碳吸附量表現。另外,研究中也利用光化學沉積法將鉑與鈀金屬奈米粒子沉積在有完整多層管壁結構之Tnt-13表面,並應用於氫氣儲存實驗。在298 K且32大氣壓下,樣品之氫氣吸附量分別為18.3 mg/g (Tnt-13)、68.0 mg/g (Pt/Tnt-13)以及87.5 mg/g (Pd/Tnt-13),結果顯示負載上貴重金屬之樣品Pt/Tnt-13及Pd/Tnt-13,其氫氣儲存量皆有明顯提升,其中以Pd/Tnt-13表現最佳。
在電化學電池之研究中,我們利用氧化鈦奈米管經由酸處理相轉換後所得到的二氧化鈦奈米顆粒(TNP)作為電子傳導層材料,並以兩步驟溶劑熱法製備二氧化鈦空心微米球(THMS)作為散射層材料。首先利用刮刀成膜(Doctor blade)法將二氧化鈦漿料塗佈於FTO上製備出二氧化鈦電極,再以連續離子層吸附與反應(SILAR)法將硫化鎘(CdS)以及硒化鎘(CdSe)敏化劑負載於二氧化鈦電極上,即得CdSe/CdS敏化太陽能電池之光陽極。本研究中所製備之光陽極皆以SILAR沉積上ZnS作為敏化劑之保護層。在AM 1.5模擬太陽光(100 mW/cm2)照射下進行太陽能電池測試,實驗結果顯示添加THMS作為散射層後,光電流密度(Jsc)有明顯的增加,由8.6 mA/cm2 (5CdSe/7CdS/3TNP)提升至13.1 mA/cm2 (5CdSe/7CdS/THMS/3TNP),而光電轉換效率(η)也由2.87%增加至3.99%。添加散射層之光陽極(5CdSe/7CdS/THMS/3TNP)其光電轉換效率相較於無添加散射層之光陽極(5CdSe/7CdS/3TNP)增加約40%。證實散射層確實可以延長入射光在光陽極中的光徑,增加入射光的利用率,並使得整體光電轉換效率提升。在太陽光水分解實驗中,我們利用SILAR法將CdSe 敏化劑負載於7CdS/THMS/3TNP光陽極上,製備出一系列的CdSe/CdS敏化光陽極。結果顯示,7CdS/THMS/3TNP光陽極之電流密度值為8.8 mA/cm2,而4CdSe/7CdS/THMS/3TNP光陽極的電流密度值為12.2 mA/cm2。結果顯示,添加CdSe作為光陽極的共敏化劑,可以有效增加長波長之可見光的利用,使整體效率獲得提升。


Titanate nanotubes (Tnts) were prepared by a hydrothermal method with Merck TiO2 powders immersed in concentrated NaOH solution. The white precipitate was washed with different times of 0.1 M HNO3(aq) in the preparation process. The prepared Tnts were denoted as Tnt-5, Tnt-7, Tnt-11, and Tnt-13 to signify the obtained pH values of the washing eluate at 5, 7, 11, and 13, respectively. The open-end and multi-layered feature of the Tnts with outer diameter in the range of 8-10 nm, inner diameter in the range of 3-5 nm, and up to several hundred nanometers in length can be observed by HRTEM. With increasing the cycles of acidic treatment, the sodium content decreased from 9.63 wt% in Tnt-13 to 4.30 wt% in Tnt-5, whereas the BET surface aera (SBET) increased from 168 m2/g in Tnt-13 to 291 m2/g in Tnt-5. In CO2 storage measurements, the CO2 storage capacity of Tnts, which based on the weight of adsorbent at 298 K and 32 atm, were 102.0 mg/g, 109.0 mg/g, 121.5 mg/g, and 136.2 mg/g for Tnt-5, Tnt-7, Tnt-11, and Tnt-13, respectively. The percentage of physisorption was mainly dependent on the SBET of the Tnts. Higher SBET corresponded to the higher amount of physisorption. The chemisorption proportion rised with increased the Na content. The Tnt-5 of the highest surface area was shown the best CO2 storage performance under 32 atm. In the H2 storage study, Pt/Tnt-13 and Pd/Tnt-13 with the noble metallic nanoparticles deposition on Tnt-13 was carried out by photochemical deposition method. The bare Tnt-13 presented 18.3 mg/g H2 storage capacity at 298 K and under 32 atm. The Pt/Tnt-13 and Pd/Tnt-13 sample shown the adsorption capacity were 68.0 mg/g and 87.5 mg/g, respectively.
In the photoelectrochemical cells study, we prepared the TiO2 nanoparticles (TNP) as an electron-conducting layer material from the transformations of titanate nanotube in acidic environment, and the TiO2 hollow microspheres (THMS) as scattering layer material by two-step solvothermal method. The TiO2 electrodes were prepared by coating TiO2 paste onto FTO glass by doctor-blade method. Successive ionic layer adsorption and reaction (SILAR) method were used to assemble the CdSe/CdS sensitized photoanodes. All of the prepared photoanodes were deposition of ZnS as a passivation layer. The photocurrent density (Jsc) and the solar energy conversion efficiency (η) of CdSe/CdS sensitized solar cells were increased from 8.6 mA/cm2 and 2.87 % of 5CdSe/7CdS/3TNP to 13.1 mA/cm2 and 3.99 % of 5CdSe/7CdS/THMS/3TNP, respectively. The η of 5CdSe/7CdS/THMS/3TNP was significantly enhanced by nearly 40 % as compared to 5CdSe/7CdS/3TNP which without THMS layer under AM 1.5 simulated solar irradiation (100 mW/cm2). The result indicated the light scattering layer can elongate the path length of incident light in photoanodes. For solar water splitting study, the photocurrent density of 7CdS/THMS/3TNP which only sensitization with CdS sensitizer was 8.8 mA/cm2. The photocurrent density of 4CdSe/7CdS/THMS/3TNP was increased to 12.2 mA/cm2. The results confirmed that adding CdSe as a co-sensitizer, the absorption of visible light can be effectively increased and the overall efficiency was improved.


目錄

摘要 …………………………………………………………………………… -Ⅰ-
Abstract ………………………………………………………………………… -III-

目錄 …………………………………………………………………………… -Ⅴ-
圖索引 ………………………………………………………………………… -VII-

表索引 ………………………………………………………………………… -XII-

第一章 緒論 ………………………………………………………………… - 1 -
1.1 前言 ………………………………………………………………… - 1 -
1.2 二氧化鈦簡介 ……………………………………………………… - 3 -
1.3 二氧化碳儲存 ……………………………………………………… - 8 -
1.4 氫氣儲存 …………………………………………………………… - 10 -
1.5 太陽能電池 ………………………………………………………… - 12 -
1.6 太陽光水分解 ……………………………………………………… - 16 -
1.7 研究動機…………………………………………………………… - 18 -

第二章 實驗方法 …………………………………………………………… - 19 -
2.1 藥品、氣體及儀器 ………………………………………………… - 19 -
2.2 樣品製備 …………………………………………………………… - 22 -
2.2.1 氧化鈦奈米管 ……………………………………………… - 22 -
2.2.2 負載金屬之氧化鈦奈米管 ………………………………… - 23 -
2.2.3 二氧化鈦奈米顆粒…………………………………………… - 26 -
2.2.4 二氧化鈦空心微米球………………………………………… - 26 -
2.2.5 二氧化鈦工作電極…………………………………………… - 28 -
2.2.6 硒化鎘/硫化鎘敏化光陽極………………………………… - 29 -
2.3 材料特性分析……………………………………………………… - 31 -
2.3.1 場發射掃描式電子顯微鏡 (FE-SEM) ……………………… - 31 -
2.3.2 能量分散式X光光譜儀 (EDX) …………………………… - 31 -
2.3.3 高解析穿透式電子顯微鏡 (HRTEM) ……………………… - 31 -
2.3.4 X-射線繞射圖譜 (XRD) …………………………………… - 32 -
2.3.5 拉曼光譜 (Raman) ………………………………………… - 32 -
2.3.6 紫外光-可見光吸收光譜 (UV-vis) ………………………… - 32 -
2.3.7 氮氣等溫吸附與脫附(N2 sorption isotherm) ………………… - 32 -
2.3.8 X光光電子能譜 (XPS) ……………………………………… - 33 -
2.4 二氧化碳與氫氣儲存能力測試 …………………………………… - 33 -
2.5 硒化鎘/硫化鎘敏化太陽能電池封裝及測試 ……………………… - 34 -
2.6 太陽光水分解效率測試 …………………………………………… - 40 -
第三章 結果與討論 ………………………………………………………… - 43 -
3.1 二氧化碳儲存 ……………………………………………………… - 43 -
3.1.1 樣品特性分析 ……………………………………………… - 43 -
3.1.2 二氧化碳儲存能力測試 …………………………………… - 53 -
3.2 氫氣儲存 …………………………………………………………… - 59 -
3.2.1 樣品特性分析 ……………………………………………… - 59 -
3.2.2 氫氣儲存能力測試 ………………………………………… - 65 -
3.3 硒化鎘/硫化鎘敏化太陽能電池 …………………………………… - 67 -
3.3.1 光陽極製備與特性分析 …………………………………… - 67 -
3.3.2 硒化鎘/硫化鎘敏化太陽能電池效率測試 ………………… - 73 -
3.4 太陽光水分解 ……………………………………………………… - 97 -

第四章 結論………………………………………………………………… -101-

參考文獻 ……………………………………………………………………… -103-


1.Gratzel, M. ''Photoelectrochemical Cells'', Nature 2001, 414, 338-344.
2.Choi, S.; Drese, J. H.; Jones, C. W. ''Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources'', ChemSusChem 2009, 2, 796-854.
3.Chen, X.; Mao, S. S. ''Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications'', Chem. Rev. 2007, 107, 2891-2959.
4.Salvador, A.; Pascual-Marti, M. C.; Adell, J. R.; Requeni, A.; March, J. G. ''Analytical Methodologies for Atomic Spectrometric Determination of Metallic Oxides in UV Sunscreen Creams'', J. Pharm. Biomed. Anal. 2000, 22, 301-306.
5.Zallen, R.; Moret, M. P. ''The Optical Absorption Edge of Brookite TiO2'', Solid State Commun. 2006, 137, 154-157.
6.Braun, J. H.; Baidins, A.; Marganski, R. E. ''TiO2 Pigment Technology: A review'', Prog. Org. Coat. 1992, 20, 105-138.
7.Fujishima, A.; Honda, K. ''Electrochemical Photolysis of Water at A Semiconductor Electrode'', Nature 1972, 238, 37-38.
8.Fujishima, A.; Rao, T. N.; Tryk, D. A. ''Titanium Dioxide Photocatalysis'', J. Photochem. Photobiol. C 2000, 1, 1-21.
9.Tryk, D. A.; Fujishima, A.; Honda, K. ''Recent Topics in Photoelectrochemistry: Achievements and Future Prospects'', Electrochim. Acta. 2000, 45, 2363-2376.
10.Hagfeldt, A.; Gratzel, M. ''Light-induced Redox Reactions in Nanocrystalline Systems'', Chem. Rev. 1995, 95, 49-68.
11.Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. ''Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results'', Chem. Rev. 1995, 95, 735-758.
12.Yuan, S. A.; Chen, W. H.; Hu, S. S. ''Fabrication of TiO2 Nanoparticles/surfactant Polymer Complex Film on Glassy Carbon Electrode and Its Application to Sensing Trace Dopamine'', Mater. Sci. Eng. C 2005, 25, 479-485.
13.Chien, S. H.; Liou, Y. C.; Kuo, M. C. ''Preparation and Characterization of Nanosized Pt/Au Particles on TiO2-nanotubes'', Synth. Met. 2005, 152, 333-336.
14.Idakieva, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L. ''Titanium Oxide Nanotubes as Supports of Nano-sized Gold Catalysts for Low Temperature Water-gas Shift Reaction'', Appl. Catal. A 2005, 281, 149-155.
15.Sun, X.; Li, Y. ''Synthesis and Characterization of Ion-exchangeable Titanate Nanotubes'', Chem. Eur. J. 2003, 9, 2229-2238.
16.Ma, R.; Sasaki, T.; Bando, Y. ''Alkali Metal Cation Intercalation Properties of Titanate Nanotubes'', Chem. Commun. 2005, 948-950.
17.Zhou, Y. K.; Cao, L.; Zhang, F. B.; He, B. L.; Li, H. L. ''Lithium Insertion into TiO2 Nanotube Prepared by The Hydrothermal Process'', J. Electrochem. Soc. 2003, 150, A1246-A1249.
18.Wei, M.; Konishi, Y.; Zhou, H.; Sugihara, H.; Arakawa, H. ''Utilization of Titanate Nanotubes as An Electrode Material in Dye-sensitized Solar Cells'', J. Electrochem. Soc. 2006, 153, A1232-A1236.
19.Lin, C. J.; Lu, Y. T.; Hsieh, C. H.; Chien S. H. ''Surface Modi&;#64257;cation of Highly Ordered TiO2 Nanotube Arrays for Ef&;#64257;cient Photoelectrocatalytic Water Splitting'', Appl. Phys. Lett. 2009, 94, 113102-113105.
20.Iijima, S. ''Helical Microtubules of Graphitic Carbon'', Nature 1991, 354, 56-58.
21.Remskar, M. ''Inorganic Nanotubes'', Adv. Mater. 2004, 16, 1497-1504.
22.Adachi, M.; Murata, Y.; Harada, M.; Yoshikawa S. ''Formation of Titania Nanotubes with High Photo-catalytic Activity'', Chem. Lett. 2000, 29, 942-943.
23.Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa. S. ''Formation of Titania Nanotubes and Applications for Dye-sensitized Solar Cells'', J. Electrochem. Soc. 2003, 150, G488-G493.
24.Hoyer, P. ''Formation of A Titanium Dioxide Nanotube Array'', Langmuir 1996, 12, 1411-1413.
25.Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. ''Formation of Titanium Oxide Nanotube'', Langmuir 1998, 14, 3160-3163.
26.Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. ''Titania Nanotubes Prepared by Chemical Processing'', Adv. Mater. 1999, 11, 1307-1311.
27.Ma, R.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. ''Structural Features of Titanate Nanotubes/nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations'', J. Phys. Chem. B 2005, 109, 6210-6214.
28.Nakahira, A.; Kato, W.; Tamai, M.; Isshiki T.; Nishio, K. ''Synthesis of Nanotube from A Layered H2Ti4O9‧H2O in A Hydrothermal Treatment Using Various Titania Sources'', J. Mater. Sci. 2004, 39, 4239-4245.
29.Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M. ''The Structure of Trititanate Nanotubes'', Acta Cryst. 2002, B58, 587-593.
30.Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M. ''Trititanate Nanotubes Made via Single Alkali Treatment'', Adv. Mater. 2002, 14, 1208-1211.
31.Tsai, C. C.; Teng, H. S. ''Regulation of The Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment'', Chem. Mater. 2004, 16, 4352-4358.
32.Tsai, C. C.; Teng, H. S. ''Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-treatments'', Chem. Mater. 2006, 18, 367-373.
33.Yuan, Z. Y.; Su, B. L. ''Titanium Oxide Nanotubes, Nanofibers and Nanowires'', Colloid and Surfaces A: Phiscochem. Eng. Aspects. 2004, 241, 173-183.
34.Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C. ''The Effect of Hydrothermal Conditions on The Mesoporous Structure of TiO2 Nanotubes'', J. Mater. Chem. 2004, 14, 3370-3377.
35.Bavykin, D. V.; Friedrich, J. M.; Lapkin, A. A.; Walsh, F. C. ''Stability of Aqueous Suspensions of Titanate Nanotubes'', Chem. Mater. 2006, 18, 1124-1129.
36.Zhang, M.; Jin, Z. S.; Zhang, J. W.; Guo, X. Y.; Yang, J. J.; Li, W.; Wang, X. D.; Zhang, Z. J. ''Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotube H2Ti2O4(OH)2'', J. Mol. Catal. A 2004, 217, 203-210.
37.Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang. N. ''Formation Mechanism of TiO2 Nanotubes'', Appl. Phys. Lett. 2003, 82, 281-283.
38.Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. ''Laser Action in Strongly Scattering Media'', Nature 1994, 368, 436-438.
39.Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. ''Signi&;#64257;cant In&;#64258;uence of TiO2 Photoelectrode Morphology on The Energy Conversion Ef&;#64257;ciency of N719 Dye-sensitized Solar Cell'', Coordination Chemistry Reviews 2004, 248, 1381-1389.
40.Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K. K.; Park, N. G. ''Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-sensitized Solar Cells'', Adv. Mater. 2008, 20, 195-199.
41.Li, Y. T.; Song, C. H.; Hu, Y. Z.; Wei, Y. J.; Wei, Y. ''Facile Template-free Alcohothermal Route to Synthesize Hollow TiO2 Microspheres with Nanocrystal Grain Structure'', Chem. Lett. 2006, 35, 1344-1345.
42.Yu, J. G.; Guo, H. T.; Davis, S. A.; Mann, S. ''Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-transformation'', Adv. Funct. Mater. 16 (2006) 2035-2041.
43.Rochelle, G. T. ''Amine Scrubbing for CO2 Capture'', Science 2009, 325, 1652-1654.
44.Bacsik, Z.; Atluri, R.; Garcia-Bennett, A. E.; Hedin, N. ''Temperature-induced Uptake of CO2 and Formation of Carbamates in Mesocaged Silica Modified with n-Propylamines'', Langmuir 2010, 26, 10013-10024.
45.D’Alessandro, D. M.; Smit, B.; Long, J. R. ''Carbon Dioxide Capture: Prospects for New Materials'', Angew. Chem. Int. Ed. 2010, 49, 6058-6082.
46.Millward, A. R.; Yaghi, O. M. ''Metal-organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature'', J. Am. Chem. Soc. 2005, 127, 17998-17999.
47.Dillon, A. C.; Johns, K. M.; Bekkedahl, T. A.; Klang, C. H.; Bethune D. S.; Heben, M. J. ''Storage of Hydrogen in Single-walled Carbon Nanotubes'', Nature 1997, 386, 377-379.
48.Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M. ''Hydrogen Storage in Graphite Nanofibers'', J. Phys. Chem. B 1998, 102, 4253-4256.
49.Xu, W. C.; Takahashia, K.; Matsuoa, Y.; Hattoria, Y.; Kumagaia, M.; Ishiyamab, S.; Kanekoc K.; Iijima, S. ''Investigation of Hydrogen Storage Capacity of Various Carbon Materials'', Int. J. Hydrogen Energy 2007, 32, 2504-2512.
50.Nikitin, A.; Li, X.; Zhang, Z.; Ogasawara, H.; Dai, H.; Nilsson, A. ''Hydrogen Storage in Carbon Nanotubes through The Formation of Stable C&;#8722;H Bonds'', Nano Lett. 2008, 8,162-167.
51.Wang, L.; Yang, R. P. ''Hydrogen Storage on Carbon-based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover'', Catalysis Reviews: Science and Engineering 2010, 52, 411-461.
52.Chen, C. H.; Chung, T. Y.; Shen, C. C.; Yu, M. S.; Tsao, C. S.; Shi, G. N.; Huang, C. C.; Ger, M. D.; Lee, W. L. ''Hydrogen Storage Performance in Palladium-doped Graphene/Carbon Composites'', Int. J. Hydrogen Energy 2013, 38, 3681-3688.
53.Dibandjo, P.; Zlotea, C.; Gadiou, R.; Ghimbeu, C. M.; Cuevas, F.; Latroche, M.; Leroy, E.; Vix-Guterl, C. ''Hydrogen Storage in Hybrid Nanostructured Carbon/palladium Materials: In&;#64258;uence of Particle Size and Surface Chemistry'', Int. J. Hydrogen Energy 2013, 38, 952-965.
54.Schlapbach, L.; Zuttel, A. ''Hydrogen-storage Materials for Mobile Applications'', Science 2001, 414, 353-358.
55.Reyhani, A.; Mortazavi, S. Z.; Mirershadi, S.; Moshfegh, A. Z.; Parvin, P.; Golikand, A. N. ''Hydrogen Storage in Decorated Multiwalled Carbon Nanotubes by Ca,Co, Fe, Ni, and Pd Nanoparticles under Ambient Conditions'', J. Phys. Chem. C 2011, 115, 6994-7001
56.黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌 2003, 203期, 150.
57.郭明村, 薄膜太陽電池發展近況, 工業材料雜誌 2003, 203期, 138.
58.Kong, F.; Dai, S.; Wang, K. ''Review of Recent Progress in Dye-sensitized Solar Cells'', Advances in OptoElectronics 2007, 2007, 1-13.
59.Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau,W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. ''Porphyrin-sensitized Solar Cells with Cobalt (II/III)–based Redox Electrolyte Exceed 12 Percent Efficiency'', Science 2011, 334, 629-634.
60.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. ''Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells'', J. Am. Chem. Soc. 2009, 131, 6050-6051.
61.http://www.nrel.gov/ncpv/
62.Kongkanand, A., Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. ''Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe&;#8722;TiO2 Architecture'', J. Am. Chem. Soc. 2008, 130, 4007-4015.
63.Nozik, A. J. ''Quantum Dot Solar Cells'', Physica E 2002, 14, 115-120.
64.Zhang, J.; Sun, L.; Liao, C.; Yan, C. ''Size Control and Photoluminescence Enhancement of CdS Nanoparticles Prepared via Reverse Micelle Method'', Solid State Communications 2002, 124, 45-48
65.Robel, I.; Subramanian, V.; Kuno M.; Kamat, P. V. ''Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films'', J. Am. Chem. Soc. 2006, 128, 2385-2393.
66.Plass, R.; Pelet, S.; Krueger, J.; Gratzel, M. ''Quantum Dot Sensitization of Organic-inorganic Hybrid Solar Cells'', J. Phys. Chem. B 2002, 106, 7578-7580.
67.Mcdonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; L. Levina, L.; Sargrnt, E. H. ''Solution-processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics'', Nature Materials 2005, 4, 138-142.
68.Lee, J. W.; Son, D. Y.; Shin, H. W.; Kim, I. Y.; Hwang, S. J.; Ko, M. J.; Sul, S.; Han, H.; Park, N. G. ''Quantum-dot-sensitized Solar Cell with Unprecedentedly High Photocurrent'', Sci. Rep. 2013, 3, 1-8.
69.Shalom, M.; Dor, S.; Ruhle, S.; Grinis, L.; Zaban, A. ''Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating'', J. Phys. Chem.C 2009, 113, 3895-3898.
70.Tachibana, Y.; Akiyama, H. Y.; Ohtsuka, Y.; Torimoto, T.; Kuwabata, S. ''CdS Quantum Dots Sensitized TiO2 Sandwich Type Photoelectrochemical Solar Cells'', Chem. Lett., 2007, 36, 88-89.
71.Pedro, V. G.; Xu, X.; Mora-Sero, I.; Bisquert, J. ''Modeling High-efficiency Quantum Dot Sensitized Solar Cells'', ACS Nano 2010, 4, 5783-5790.
72.Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ''Supersensitization of CdS Quantum Dots with A Near-infrared Organic Dye: Toward The Design of Panchromatic Hybrid-Sensitized Solar Cells'', ACS Nano, 2010, 4, 9238-9245.
73.Hsu, S. H.; Hung, S. F.; Chien, S. H. ''CdS Sensitized Vertically Aligned Single Crystal TiO2 Nanorods on Transparent Conducting Glass with Improved Solar Cell Ef&;#64257;ciency and Stability Using ZnS Passivation Layer'', Journal of Power Sources 2013, 233, 236-243.
74.Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. ''The Transitional Heterojunction Behavior of PbS/ZnO Colloidal Quantum Dot Solar Cells'', Nano Lett. 2012, 12, 1522-1526.
75.Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. ''Effect of ZnS Coating on The Photovoltaic Properties of CdSe Quantum Dot-sensitized Solar Cells'', J. Appl. Phys., 2008, 103, 084304-084308.
76.Chidichimo, G.; Filippelli, L. ''Organic Solar Cells: Problems and Perspectives'', International Journal of Photoenergy 2010, 2010, 1-11.
77.Khan, S.; Al-Shahry, M.; Ingler Jr., W. B. ''Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2'', Science 2002, 297, 2243-2245.
78.Chen, H. M.; Chen, C. K.; Chang, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H. ''Quantum Dot Monolayer Sensitized ZnO Nanowire-array Photoelectrodes: True Efficiency for Water Splitting'', Angew. Chem. Int. Ed. 2010, 49, 5966-5969.
79.Hartmann, P.; Lee, D. K.; Smarsly, B. M.; Janek, J. ''Mesoporous TiO2 : Comparison of Classical Sol-gel and Nanoparticle Based Photoelectrodes for The Water Splitting Reaction'', ACS Nano 2010, 4, 3147-3154.
80.Liu, M.; De Leon Snapp, N.; Park, H. ''Water Photolysis with A Cross-linked Titanium Dioxide Nanowire Anode'', Chem. Sci. 2011, 2, 80-87.
81.Wolcott, A.; Smith, W. A.; Kuykendall, R. T.; Zhao, Y.; Zhang, J. Z. ''Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays'', Small 2009, 5, 104-111.
82.Wolcott, A.; Smith, W. A.; Kuykendall, R. T.; Zhao, Y.; Zhang, J. Z. ''Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting'', Adv. Funct. Mater. 2009, 19, 1849-1856.
83.Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenka&;#64256;, A.; Tucek, J.; Frydrych, J.; Gratzel, M. ''Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by A Solution-based Colloidal Approach'', J. Am. Chem. Soc. 2010, 132, 7436-7444.
84.Le Formal, F.; Gratzel, M.; Sivula, K. ''Controlling Photoactivity in Ultrathin Hematite Films for Solar Water Splitting'', Adv. Funct. Mater. 2010, 20, 1099-1107.
85.Kim, J. K.; Shin, K.; Cho, S. M.; Lee, T. W.; Park, J. H. ''Synthesis of Transparent Mesoporous Tungsten Trioxide Films with Enhanced Photoelectrochemical Response: Application to Unassisted Solar Water Splitting'', Energy Environ. Sci. 2011, 4, 1465-1470.
86.Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. ''Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties'', Nano Lett. 2011, 11, 203-208.
87.http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png
88.Kudo, A.; Miseki, Y. ''Heterogeneous Photocatalyst Materials for Water Splitting'', Chem. Soc. Rev. 2009, 38, 253-278.
89.Yu, K. P.; Yu, W. Y.; Kuo, M. C.; Liou, Y. C.; Chien, S. H. ''Pt/Titania-nanotube: A Potential Catalyst for CO2 Adsorption and Hydrogenation'', Applied Catalysis B: Environmental 2008, 84, 112-118.
90.葉育瑋。『以氧化鈦奈米管製備混相二氧化鈦光觸媒』。碩士論文,國立台灣大學化學系。台北,2006。
91.Balachandran, U.; Eror, N. G. ''Raman-spectra of Titanium-dioxide'', J. Solid. State Chem. 1982, 42, 276-282.
92.Kim, S. J.; Yun, Y. U.; Oh, H. J.; Hong, S. O.; Roberts, C. A.; Routray, K.; Wachs, I. E. ''Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and In Situ Raman Spectroscopy'', J. Phys. Chem. Lett. 2010, 1, 130-135.
93.Prins, R. ''Hydrogen Spillover. Facts and Fiction'', Chem. Rev. 2012, 112, 2714-2738.
94.Konopsky, V. N.; Basmanov, D. V.; Alieva, E. V.; Sotatskii, S. K. ''Size-dependent Hydrogen Uptake Behavior of Pd Nanoparticles Revealed by Photonic Crystal Surface Waves'', Appl. Phys. Lett. 2012, 100, 083108-083112.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top