(18.210.12.229) 您好!臺灣時間:2021/02/26 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:石育旻
研究生(外文):Yu-Min Shih
論文名稱:含異參并苯與寡噻吩之二維共軛聚合物之合成、性質及應用至太陽能電池之研究
論文名稱(外文):Two-dimensional Conjugated Polymers Containing Isotruxene and Oligothiophene Moieties: Synthesis, Characterization and Application to solar cells
指導教授:楊吉水
指導教授(外文):Jye-Shane Yang
口試委員:梁文傑鄭彥如
口試委員(外文):Man-kit LeungYen-Ju Cheng
口試日期:2014-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:181
中文關鍵詞:異參&;#33562;并苯聚合物太陽能電池有機太陽能電池二維共軛聚合物
外文關鍵詞:isotruxenepolymer solar cellorganic solar celltwo-dimensional conjugated polymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:54
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  因為能源危機,以太陽能為替代能源的相關研究成為重要的課題,其中以聚&;#22139;吩及其衍生物具有寬的吸收光譜與高的導電能力,在聚合物太陽能電池的應用上具有相當的成果。近年來更發現,二維共軛的導電聚合物在載子移動率、導電能力與能隙等性質上均較一維共軛系統佳。在本研究中,我們將&;#22139;吩引入同時有鄰、間及對位二維共軛的異參&;#33562;并苯骨架,合成出一系列ITTn單體,並透過化學氧化聚合反應與Stille偶合聚合反應兩種方式將其製備成二維共軛聚合物PITTn與PITTnHT。此外,我們也合成對應的參&;#33562;并苯之聚合物PTT2HT,以與異參&;#33562;并苯聚合物做比較。
  結果顯示,由於單體之溶解度與立體效應影響,PITTn與PITTnHT兩系列聚合物在聚合度上有明顯的差異。其中以化學氧化聚合反應所獲得之PITTn的聚合度最低,無法將單體去除,只能獲得單體與寡聚物之混合物。而以Stille偶合聚合反應獲得之PITTnHT系列聚合物,其在聚合度、能隙之表現均較PITTn系列較佳。在太陽能電池元件中,PITTnHT系列最好表現之效率為1.00%,PITTn系列則為1.66%,PITT2HT則為0.98%,PTT2HT則為0.51%。
  透過PITT2HT與PTT2HT比較可知,在二維共軛聚合物太陽能電池中,一個材料之分子內電荷傳遞能力對太陽能電池之整體表現有重要影響;一個具有好的分子內電荷傳遞能力之材料在太陽能電池中,更可以透過增加分子間電荷傳遞之輔助,再適度提升其在元件之表現。

Polythiophene (PTs) is an important class of conducting polymers for polymer solar cells (PSCs) owing to its broad absorption range and high electronic conductivity. Recently, we introduced oligothiophene unit to the ortho-, para-conjugated isotruxene core to form two-dimensional conjugated oligomers and polymers. The ITTn (n=1-4) oligomers that contain an isotruxene core and oligothiophene arms. Then oligomers ITTn were converted to the two-dimensional polymers. Two different polymerization methods have been tested and compared. One method is the direct oxidative polymerization of ITTn using FeCl3 as oxidant to form PITTn. The other method is through Stille coupling reaction for ITTn and 3-hexylthiophene (HT) to form PITTnHT.
The results indicate that the degree of polymerization was controlled by the solubility and steric effect. Due to the similar solubility, the monomers can’t be removed from PITTn. PITTnHT have the lower band gap because of the higher degree of polymerization. When applied in PSCs, the PCE of PITTnHT/PCBM (1:2 % wt) is 1.00%, and that of the PITTn series reaches as PCE of 1.66%.
The comparison of PITT2HT and PTT2HT indicates that intramolecular charge transportation plays an important factor in determining the performance of PSCs. A material of excellent intramolecular charge transportation can significantly enhance the performance of PSCs.


謝誌.................................................................................................................................i
摘要................................................................................................................................ii
Abstract........................................................................................................................ iii
目錄...............................................................................................................................iv
圖目錄..........................................................................................................................vii
表目錄........................................................................................................................ xiii
附圖目錄......................................................................................................................xv
第一章 序論................................................................................................................1
1-1 能源危機與替代能源.................................................................................1
1-2 有機太陽能電池(Organic Photovoltaics, OPVs) .....................................3
1-2-1 太陽能電池之專有名詞..................................................................4
1-2-2 有機太陽能電池結構......................................................................7
1-2-3 有機太陽能電池工作機制..............................................................9
1-3 主動層(Active layer) 材料.....................................................................12
1-3-1 電子受體(Acceptor).....................................................................12
1-3-2 電子予體(Donor) .........................................................................15
1-3-3 有機太陽能電池的結構形式........................................................16
1-4 主動層之形態學(Morphology) ..............................................................19
1-4-1 薄膜製備條件................................................................................21
1-4-2電子受體與電子予體.....................................................................22
1-4-3 退火處理(Annealing)...................................................................25
1-5 共軛聚合物(Conjugated Polymers)..........................................................29
1-5-1 一維共軛聚合物............................................................................29
1-5-2 聚&;#22139;吩(Polythiophene)與其衍生物............................................31
v
1-5-3 多維共軛聚合物............................................................................35
1-5-4 異參&;#33562;并苯(Isotruxene)及其衍生物...........................................38
1-6 研究動機...................................................................................................43
第二章結果與討論..................................................................................................47
2-1 化合物之合成...........................................................................................47
2-1-1 異參&;#33562;并苯之合成........................................................................47
2-1-2 合成策略........................................................................................47
2-1-3化合物ITXBr之合成討論.............................................................48
2-1-4 單體(ITTn及ITTnBr,n = 1-4)之合成討論..............................50
2-1-5 聚合物(PITTn及PITTnHT, n=1-4)之合成討論........................52
2-1-6 參&;#33562;并苯、TTn (n=1-2)與TTnBr (n=1-2)之合成討論...............55
2-2 單體(ITTn, n=1-4)光物理、電化學性質..............................................57
2-2-1 單體(ITTn, n=1-4)光物理性質....................................................57
2-2-2 單體ITTn (n = 1-4)電化學性質....................................................61
2-3 聚合物(PITTn、PITTnHT及PTT2HT,n = 1-4)分子量分布及光物理、電化學性質........................................................................................................64
2-3-1 聚合物(PITTn及PITTnHT,n = 1-4)分子量分布....................64
2-3-2 聚合物(PITTn、PITTnHT及PTT2HT,n = 1-4)光物理性質.69
2-3-3 聚合物(PITTnHT及PTT2HT,n = 1-4)電化學性質................73
2-4 化合物薄膜之性質...................................................................................77
2-4-1 單體ITTn (n = 1-4)薄膜之性質....................................................77
2-4-1 聚合物PITTnHT (n = 1-4)與PTT2HT薄膜之性質....................79
2-4-3 ITTn (n = 1-4)與PITTnHT (n = 1-4)薄膜之形態學......................81
2-5 有機太陽能電池製備及轉換效率...........................................................83
2-5-1 單體ITTn (n = 1-4)之太陽能電池元件效率................................83
vi
2-5-2 聚合物PITTnHT (n = 1-4)、PTT2HT與PITTn (n = 1-2)之太陽能電池元件效率...........................................................................................84
第三章結論..............................................................................................................87
第四章 實驗部份......................................................................................................88
4-1 實驗藥品...................................................................................................88
4-2 實驗儀器與方法.......................................................................................91
4-2-1 化合物結構的鑑定........................................................................91
4-2-2 溶劑純化系統(SPBT-103 of LC Technology Solutions Inc equipped with SP-505 column) .................................................................93
4-2-3 化合物光物理、電化學性質之量測............................................93
4-2-4 太陽能電池元件製備與測量........................................................96
4-3 實驗步驟...................................................................................................97
4-3-1 異參&;#33562;并苯之合成........................................................................97
4-3-2 化合物ITTn與ITTnBr之合成..................................................100
4-3-3 linker之合成.................................................................................105
4-3-4 化合物PITTn 之合成................................................................106
4-3-5 化合物PITTnHT 之合成..........................................................109
4-3-6 參&;#33562;并苯之合成..........................................................................111
4-3-7 化合物TTn與TTnBr之合成....................................................113
4-3-8 化合物PTT2HT之合成..............................................................115
參考文獻....................................................................................................................117
附圖............................................................................................................................127

1.International Energy Agency / SOT, S. P. G. L.-B.-S. G., Total global primary energy supply in Mtoe. 2010.
2.Benanti, T.; Venkataraman, D., Organic Solar Cells: An Overview Focusing on Active Layer Morphology. Photosynth. Res. 2006, 87, 1, 73-81.
3.(a) Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G., High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. J. Phys. Chem. Lett. 2013, 4, 6, 897-902; (b) Jacoby, M., Tapping Solar Power With Perovskites Chemical &; Engineering News February 24, 2014, 2014, pp 10-16.
4.You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y., A Polymer Tandem Solar Cell With 10.6% Power Conversion Efficiency. Nat. Commun. 2013, 4, 1446.
5.O''Regan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature (London) 1991, 353, 6346, 737-740.
6.Ooyama, Y.; Harima, Y., Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. Eur. J. Org. Chem. 2009, 2009, 18, 2903-2934.
7.Li, G.; Zhu, R.; Yang, Y., Polymer Solar Cells. Nat. Photonics 2012, 6, 3, 153-161.
8.Sekuler, R.; Blake, R., Perception. Alfred A. Knopf Inc: New York, 1985.
9.Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 4, 1324-1338.
10.Cheng, Y. J.; Yang, S. H.; Hsu, C. S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 11, 5868-923.
11.(a) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv. Funct. Mater. 2001, 11, 5, 374-380; (b) Po, R.; Maggini, M.; Camaioni, N., Polymer Solar Cells: Recent Approaches and Achievements. Journal of Physical Chemistry C 2009, 114, 2, 695-706.
12.Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10&;#8201;% Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 6, 789-794.
13.Drees, M. Polymer/Fullerene Photovoltaic Devices - Nanoscale Control of the Interface by Thermally-controlled Interdiffusion. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2003.
14.Feng Zhi-Hui, H. Y.-B., Shi Quan-Min, Qin Li-Fang, Li Yan1, Zhang Lei, Liu Xiao-Jun, Teng Feng, Wang Yong-Sheng and Xia Rui-Dong, Polymer solar cells based on a PEDOT:PSS layer spin-coated under the action of an electric field. Chinese Phys. B 2010, 19, 028601.
15.(a) Sean E. Shaheen, N. K., David S. Ginley, Matthew S. White, and Dana C. Olson, Inverted Bulk-Heterojunction Plastic Solar Cells. SPIE 2007; (b) White, M. S.; Olson, D. C.; Shaheen, S. E.; Kopidakis, N.; Ginley, D. S., Inverted Bulk-Heterojunction Organic Photovoltaic Device Using a Solution-Derived ZnO Underlayer. Appl. Phys. Lett. 2006, 89, 14, -.
16.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic Solar Cells. Adv. Funct. Mater. 2001, 11, 1, 15-26.
17.Kietzke, T., Recent Advances in Organic Solar Cells. Advances in OptoElectronics 2007, 2007, 1-15.
18.Cowan, S. R.; Banerji, N.; Leong, W. L.; Heeger, A. J., Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells. Adv. Funct. Mater. 2012, 22, 6, 1116-1128.
19.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 5087, 1474-1476.
20.Thompson, B. C.; Frechet, J. M., Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. Engl. 2008, 47, 1, 58-77.
21.Tang, C. W., Two&;#8208;Layer Organic Photovoltaic Cell. Appl. Phys. Lett. 1986, 48, 2, 183-185.
22.Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F., Semiconducting polymer&;#8208;buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 1993, 62, 6, 585-587.
23.Wienk, M. M.; Kroon, J. M.; Verhees, W. J.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A., Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew. Chem. Int. Ed. Engl. 2003, 42, 29, 3371-3375.
24.Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J., Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance. Chem. Soc. Rev. 2011, 40, 3, 1185-1199.
25.Sun, X.; Zhou, Y.; Wu, W.; Liu, Y.; Tian, W.; Yu, G.; Qiu, W.; Chen, S.; Zhu, D., X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells. J. Phys. Chem. B 2006, 110, 15, 7702-7707.
26.Ray, B.; Alam, M. A., Random vs Regularized OPV: Limits of Performance Gain of Organic Bulk Heterojunction Solar Cells by Morphology Engineering. Sol. Energy Mater. Sol. Cells 2012, 99, 204-212.
27.Venkataraman, D.; Yurt, S.; Venkatraman, B. H.; Gavvalapalli, N., Role of Molecular Architecture in Organic Photovoltaic Cells. J. Phys. Chem. Lett. 2010, 1, 6, 947-958.
28.Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78, 6, 841.
29.Vanlaeke, P.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; Manca, J.; Heremans, P.; Poortmans, J., Polythiophene Based Bulk Heterojunction Solar Cells: Morphology and Its Implications. Thin Solid Films 2006, 511-512, 358-361.
30.Kroon, J. M.; Wienk, M. M.; Verhees, W. J. H.; Hummelen, J. C., Accurate Efficiency Determination and Stability Studies of Conjugated Polymer/Fullerene Solar Cells. Thin Solid Films 2002, 403–404, 0, 223-228.
31.Wong, W. W. H.; Ma, C.-Q.; Pisula, W.; Yan, C.; Feng, X.; Jones, D. J.; Mu&;#776;llen, K.; Janssen, R. A. J.; Ba&;#776;uerle, P.; Holmes, A. B., Self-Assembling Thiophene Dendrimers with a Hexa-peri-hexabenzocoronene Core&;#8722;Synthesis, Characterization and Performance in Bulk Heterojunction Solar Cells. Chem. Mater. 2010, 22, 2, 457-466.
32.Lee, W.; Kim, G.-H.; Ko, S.-J.; Yum, S.; Hwang, S.; Cho, S.; Shin, Y.-H.; Kim, J. Y.; Woo, H. Y., Semicrystalline D–A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices. Macromolecules 2014, 47, 5, 1604-1612.
33.Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D. C.; Cook, S.; Durrant, J. R., Composition and Annealing Effects in Polythiophene/Fullerene Solar Cells. J. Mat. Sci. 2005, 40, 6, 1371-1376.
34.Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nat. Mater. 2005, 4, 11, 864-868.
35.Zeng, L.; Tang, C. W.; Chen, S. H., Effects of Active Layer Thickness and Thermal Annealing on Polythiophene: Fullerene Bulk Heterojunction Photovoltaic Devices. Appl. Phys. Lett. 2010, 97, 5, 053305.
36.Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH). J. Chem. Soc., Chem. Commun. 1977, 16, 578-580.
37.Bengt Norden, E. K. The Nobel Prize in Chemistry, 2000: Conductive polymers http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/advanced.html.
38.(a) Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 48, 16144-16145; (b) Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. J. Am. Chem. Soc. 2008, 130, 48, 16324-16329; (c) Richter, T. V.; Braun, C. H.; Link, S.; Scheuble, M.; Crossland, E. J. W.; Stelzl, F.; Wurfel, U.; Ludwigs, S., Regioregular Polythiophenes with Alkylthiophene Side Chains. Macromolecules 2012, 45, 14, 5782-5788; (d) Zhang, F.; Wu, D.; Xu, Y.; Feng, X., Thiophene-Based Conjugated Oligomers for Organic Solar Cells. J. Mater. Chem. 2011, 21, 44, 17590.
39.(a) Lv, M.; Lei, M.; Zhu, J.; Hirai, T.; Chen, X., [6,6]-Phenyl-C61-butyric acid 2-((2-(dimethylamino)ethyl)(methyl)amino)-ethyl Ester as an Acceptor and Cathode Interfacial Materials in Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014; (b) Guillain, F.; Tsikritzis, D.; Skoulatakis, G.; Kennou, S.; Wantz, G.; Vignau, L., Annealing-Free Solution-Processed Tungsten Oxide for Inverted Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2014, 122, 0, 251-256.
40.Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M., A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:Fullerene Solar Cells. Nat. Mater. 2006, 5, 3, 197-203.
41.McCullough, R. D.; Lowe, R. D., Enhanced Electrical Conductivity in Regioselectively Synthesized Poly(3-Alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, 1, 70-72.
42.Barbarella, G.; Zambianchi, M.; Di Toro, R.; Colonna, M.; Iarossi, D.; Goldoni, F.; Bongini, A., Regioselective Oligomerization of 3-(Alkylsulfanyl)thiophenes with Ferric Chloride. J. Org. Chem. 1996, 61, 23, 8285-8292.
43.McCullough, R. D., The Chemistry of Conducting Polythiophenes. Adv. Mater. 1998, 10, 2, 93-116.
44.Taerum, T.; Lukoyanova, O.; Wylie, R. G.; Perepichka, D. F., Synthesis, Polymerization, and Unusual Properties of New Star-Shaped Thiophene Oligomers. Org. Lett. 2009, 11, 15, 3230-3233.
45.Weder, C., Synthesis, Processing and Properties of Conjugated Polymer Networks. Chemical Communications (Cambridge) 2005, 43, 5378-5389.
46.Patra, D.; Ramesh, M.; Sahu, D.; Padhy, H.; Chu, C.-W.; Wei, K.-H.; Lin, H.-C., Enhancement of Photovoltaic Properties in Supramolecular Polymer Networks Featuring a Solar Cell Main-Chain Polymer H-Bonded with Conjugated Cross-Linkers. Polymer 2012, 53, 6, 1219-1228.
47.Zhou, E.; Tan, Z. a.; Yang, C.; Li, Y., Linking Polythiophene Chains Through Conjugated Bridges: A Way to Improve Charge Transport in Polymer Solar Cells. Macromol. Rapid Commun. 2006, 27, 10, 793-798.
48.Lang, K. F.; Zander, M.; Theiling, E. A., Isotruxen. Chem. Ber. 1960, 93, 2, 321-325.
49.Yang, J. S.; Huang, H. H.; Liu, Y. H.; Peng, S. M., Synthesis and Electronic Properties of Isotruxene-Derived Star-Shaped Ladder-Type Oligophenylenes: Bandgap Tuning with Two-Dimensional Conjugation. Org. Lett. 2009, 11, 21, 4942-4945.
50.Liu, T.-A.; Prabhakar, C.; Yu, J.-Y.; Chen, C.-h.; Huang, H.-H.; Yang, J.-S., Star-Shaped Oligothiophenes Containing an Isotruxene Core: Synthesis, Electronic Properties, Electropolymerization, and Film Morphology. Macromolecules 2012, 45, 11, 4529-4539.
51.Pei, J.; Wang, J.-L.; Cao, X.-Y.; Zhou, X.-H.; Zhang, W.-B., Star-Shaped Polycyclic Aromatics Based on Oligothiophene-Functionalized Truxene:&;#8201; Synthesis, Properties, and Facile Emissive Wavelength Tuning. J. Am. Chem. Soc. 2003, 125, 33, 9944-9945.
52.Yuan, M.-S.; Fang, Q.; Liu, Z.-Q.; Guo, J.-P.; Chen, H.-Y.; Yu, W.-T.; Xue, G.; Liu, D.-S., Acceptor or Donor (Diaryl B or N) Substituted Octupolar Truxene:&;#8201; Synthesis, Structure, and Charge-Transfer-Enhanced Fluorescence. J. Org. Chem. 2006, 71, 20, 7858-7861.
53.Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J., Building Blocks for N-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (nTs; n = 2&;#8722;6). Systematic Synthesis, Spectroscopy, Electrochemistry, and Solid-State Organization. J. Am. Chem. Soc. 2004, 126, 41, 13480-13501.
54.Chen, H.-Y. Film''s Morphogical Studies on Isotruxene- Derived Oligothiophenes and Their Polymer Toward Photovoltaic Applications. National Taiwan University, 2013.
55.Yang, J.-S.; Lee, Y.-R.; Yan, J.-L.; Lu, M.-C., Synthesis and Properties of a Fluorene-Capped Isotruxene:&;#8201; A New Unsymmetrical Star-Shaped π-System. Org. Lett. 2006, 8, 25, 5813-5816.
56.Yang, J.-S.; Huang, H.-H.; Lin, S.-H., Facile Multistep Synthesis of Isotruxene and Isotruxenone&;#8224;. J. Org. Chem. 2009, 74, 10, 3974-3977.
57.(a) Yang, J.-S.; Huang, H.-H.; Ho, J.-H., Electronic Properties of Star-Shaped Oligofluorenes Containing an Isotruxene Core: Interplay of Para and Ortho Conjugation Effects in Phenylene-Based π Systems. J. Phys. Chem. B 2008, 112, 30, 8871-8878; (b) Lin, S. H.; Hsu, Y. C.; Lin, J. T.; Lin, C. K.; Yang, J. S., Isotruxene-Derived Cone-Shaped Organic Dyes for Dye-Sensitized Solar Cells. J. Org. Chem. 2010, 75, 22, 7877-7886; (c) Huang, H. H.; Prabhakar, C.; Tang, K. C.; Chou, P. T.; Huang, G. J.; Yang, J. S., Ortho-Branched Ladder-Type Oligophenylenes with Two-Dimensionally Pi-Conjugated Electronic Properties. J. Am. Chem. Soc. 2011, 133, 20, 8028-8039.
58.(a) Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.; Mori, A.; Funahashi, M.; Tamaoki, N., Palladium-Catalyzed C&;#8722;H Homocoupling of Bromothiophene Derivatives and Synthetic Application to Well-Defined Oligothiophenes. J. Am. Chem. Soc. 2006, 128, 33, 10930-10933; (b) Abdo, N. I.; El-Shehawy, A. A.; El-Barbary, A. A.; Lee, J.-S., Palladium-Catalyzed Direct C-H Arylation of Thieno[3,4-b]pyrazines: Synthesis of Advanced Oligomeric and Polymeric Materials. Eur. J. Org. Chem. 2012, 2012, 28, 5540-5551; (c) Willot, P.; De Cremer, L.; Koeckelberghs, G., The Use of Cyclopenta[2,1-b;3,4-b′]dithiophene Analogues for the Development of Low-Bandgap Materials. Macromol. Chem. Phys. 2012, 213, 12, 1216-1224.
59.Smith, Z. C.; Pawle, R. H.; Thomas, S. W., Photoinduced Aggregation of Polythiophenes. ACS Macro Lett. 2012, 1, 7, 825-829.
60.(a) Dehmlow, E. V.; Kelle, T., Synthesis of New Truxene Derivatives: Possible Precursors of Fullerene Partial Structures? Synth. Commun. 1997, 27, 11, 2021-2031; (b) Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M., Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes:&;#8201; Highly Fluorescent Star-Shaped Architectures. J. Am. Chem. Soc. 2004, 126, 42, 13695-13702.
61.Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J., Efficient Two Layer Leds on a Polymer Blend Basis. Adv. Mater. 1995, 7, 6, 551-554.
62.Izumi, T.; Kobashi, S.; Takimiya, K.; Aso, Y.; Otsubo, T., Synthesis and Spectroscopic Properties of a Series of β-Blocked Long Oligothiophenes up to the 96-mer:&;#8201; Revaluation of Effective Conjugation Length. J. Am. Chem. Soc. 2003, 125, 18, 5286-5287.
63.Sumi, N.; Nakanishi, H.; Ueno, S.; Takimiya, K.; Aso, Y.; Otsubo, T., Synthesis and Properties of a Series of the Longest Oligothiophenes up to the 48-mer. Bull. Chem. Soc. Jpn. 2001, 74, 5, 979-988.
64.El-Shehawy, A. A.; Abdo, N. I.; El-Barbary, A. A.; Lee, J.-S., Alternating Copolymers Based on 2,1,3-Benzothiadiazole and Hexylthiophene: Positioning Effect of Hexyl Chains on the Photophysical and Electrochemical Properties. Eur. J. Org. Chem. 2011, 4841-4852.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔