(44.192.112.123) 您好!臺灣時間:2021/03/09 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬佳瑛
研究生(外文):Jia-Ying Ma
論文名稱:利用發光銅奈米團簇偵測硫化氫
論文名稱(外文):Detection of Hydrogen Sulfide Using Photoluminescent Copper Nanoclusters
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:吳秀梅黃志清陳建甫
口試委員(外文):Shou-Mei WuChih-Ching HuangChien-Fu Chen
口試日期:2014-06-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:銅奈米團簇青黴胺聚集體硫化氫溫泉水
外文關鍵詞:copper nanoclusterspenicillamineaggregateshydrogen sulfidehot spring water
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是利用硫醇分子青黴胺(penicillamine)與銅離子合成發光銅奈米團簇聚集體(copper nanocluster aggregates),並用於偵測水溶液中的硫化氫(hydrogen sulfide)濃度。銅奈米團簇聚集體具有溶劑影響放光、長斯托克斯位移(Stokes shift,254 nm)、長放光生命期(τ1和τ2分別為0.4 ns (3%)和126.5 ns (97%))以及高量子產率(quantum yields,QY = 2.0%)等光學性質,適合應用在環境樣品的分析。發光的銅奈米團簇聚集體會與硫化氫反應生成顆粒較大且不具放光性質的硫化銅奈米粒子(copper sulfide nanoparticles),透過分析物誘導放光消光作用(analyte-induced photoluminescence quenching)使得銅奈米團簇聚集體的放光變弱。在最佳化的反應條件下(pH值為4.0,常溫下避光反應40分鐘),硫化氫的偵測極限(limit of detection)為500 nM,其線性範圍為1–100 μM,與環境中其它干擾離子相比,銅奈米團簇聚集體對於硫化氫具有較高的選擇性(大於10倍),因此可應用在溫泉水樣品中硫化氫濃度測定,並且具有製備簡單、成本低、快速偵測且精準的優點。

In this study, we unveiled a novel copper nanocluster (Cu NCs)-based sensor for the determination of hydrogen sulfide (H2S) in hot spring waters with high selectivity and sensitivity. We have developed a one-pot, inexpensive, simple and rapid method to synthesize photoluminescent Cu NC aggregates from Cu2+ ions in 65% (v/v) dimethylformamide (DMF) aqueous solution containing penicillamine (PA) as a capping and reducing agent. As-prepared PA-Cu NC aggregates emit at 580 nm when excited at 326 nm through an aggregation-induced emission effect, with solvent-dependent properties, a quantum yield of 2.0%, a long lifetime (τ1 = 0.4 ns (3%), τ2 = 126.5 ns (97%)), and a large stokes shift (254 nm). The PA-Cu NC aggregates are highly selective and sensitive for the detection of H2S, based on analyte-induced photoluminescence (PL) quenching through formation of CuS nanoparticles (NPs). The probe allows the detection of H2S, with a linear range of 1–100 μM and a limit of detection (LOD, signal-to-noise ratio = 3) of 500 nM. The practicality of this probe has been validated through the analysis of hot spring water samples.

謝誌 I
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 螢光貴金屬奈米團簇 1
1.2 螢光銅奈米團簇 4
1.3 螢光銅奈米團簇之製備方法 5
1.3.1 以聚合物穩定之銅奈米團簇 6
1.3.2 以硫醇分子穩定之銅奈米團簇 7
1.3.3 以DNA分子穩定之銅奈米團簇 10
1.4 螢光奈米團簇之應用 11
1.5 研究動機 12
1.6 本章圖表 14
1.7 參考文獻 21
第二章 利用銅奈米團簇聚集體偵測硫化氫 26
2.1 前言 26
2.2 實驗方法 26
2.2.1 實驗試藥 26
2.2.2 銅奈米團簇聚集體的合成 26
2.2.3 實驗儀器 27
2.2.4 利用銅奈米團簇聚集體偵測硫化氫 28
2.2.5 偵測溫泉水樣品中的硫化氫 28
2.3 實驗結果與討論 29
2.3.1 銅奈米團簇聚集體的形成 29
2.3.2 銅奈米團簇聚集體的光學性質 30
2.3.3 銅奈米團簇聚集體偵測硫化氫之機制 32
2.3.4 偵測溫泉水樣品中的硫化氫濃度 34
2.4 結論 35
2.5 本章圖表 36
2.6 參考文獻 50

第一章:
(1)De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225–4241.
(2)Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: New York 1995.
(3)Choi, S.; Dickson, R. M.; Yu, J. Chem. Soc. Rev. 2012, 41, 1867–1891.
(4)Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Chem. Asian J. 2013, 8, 858–871.
(5)Negishi, Y.; Tsunoyama, H.; Suzuki, M.; Kawamura, N.; Matsushita, M. M.; Maruyama, K.; Sugawara, T.; Yokoyama, T.; Tsukuda, T. J. Am. Chem. Soc. 2006, 128, 12034–12035.
(6)Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2009, 131, 2490–2492.
(7)Murray, R. W. Chem. Rev. 2008, 108, 2688–2720.
(8)Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Books/Cole: Australia 1976.
(9)Zheng, J.; Zhang, C. W.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402(1)–077402(4).
(10)de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611–676.
(11)de Heer, W. A.; Selby, K.; Kresin, V.; Masui, J.; Vollmer, M.; Chatelain, A.; Knight, W. D. Phys. Rev. Lett. 1987, 59, 1805–1808.
(12)Negishi, Y.; Nobusada, K.; Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261–5270.
(13)Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568–2573.
(14)Diez, I.; Ras, R. H. A. Nanoscale 2011, 3, 1963–1970.
(15)Jin, R. Nanoscale 2010, 2, 343–362.
(16)Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594–3623.
(17)Shang, L.; Dong, S.; Nienhaus, G. U. Nano Today 2011, 6, 401–418.
(18)Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. J. Mater. Chem. 2012, 22, 12972–12982.
(19)Hong, Y.; Lam, J. W. Y.; Tang, B. Z Chem. Soc. Rev. 2011, 40, 5361–5388.
(20)Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662–16670.
(21)Dou, X.; Yuan, X.; Yu, Y.; Luo, Z.; Yao, Q.; Leong, D. T.; Xie, J. Nanoscale 2014, 6, 157–161.
(22)Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355–7356.
(23)Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877–4878.
(24)Vilar-Vidal, N.; Blanco, M. C.; Lo&;#769;pez-Quintela, M. A.; Rivas, J.; Serra, C. J. Phys. Chem. C 2010, 114, 15924–15930.
(25)Va&;#769;zquez-Va&;#769;zquez, C.; Ban&;#771;obre-Lo&;#769;pez, M.; Mitra, A.; Lo&;#769;pez-Quintela, M. A.; Rivas, J. Langmuir 2009, 25, 8208–8216.
(26)Wei, W.; Lu, Y.; Chen, W.; Chen, S. J. Am. Chem. Soc. 2011, 133, 2060–2063.
(27)Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Angew. Chem. Int. Ed. 2010, 49, 5665–5667.
(28)Jia, X.; Li, J.; Han, L.; Ren, J.; Yang, X; Wang, E. ACS NANO 2012, 6, 3311–3317.
(29)Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Angew. Chem. Int. Ed. 2013, 52, 9719–9722.
(30)Qing, Z.; He, X.; Qing, T.; Wang, K.; Shi, H.; He, D.; Zou, Z.; Yan, L.; Xu, F.; Ye, X.; Mao, Z. Anal. Chem. 2013, 85, 12138–12143.
(31)Kawasaki, H.; Kosaka, Y.; Myoujin, Y; Narushima, T.; Yonezawa, T.; Arakawa, R. Chem. Commun. 2011, 47, 7740–7742.
(32)Lu, Y.; Wei, W.; Chen, W. Chinese Sci. Bull. 2012, 57, 41–47.
(33)Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Chem. Commun. 2012, 48, 567–569.
(34)Yu, Y.; Yao, Q.; Luo, Z.; Yuan, X.; Lee, J. Y.; Xie, J. Nanoscale 2013, 5, 4606–4620.
(35)Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903–2910.
(36)Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. ACS NANO 2011, 5, 8800–8808.
(37)Jia, X.; Li, J.; Wang, E. Small 2013, 9, 3873–3879.
(38)Yu, J.; Patel, S. A.; Dickson, R. M. Angew. Chem. 2007, 119, 2074–2076.
(39)Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Anal. Chem. 2011, 83, 9676–9680.
(40)Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888–889.
(41)Becerril, H. A.; Woolley, A. T. Chem. Soc. Rev. 2009, 38, 329–337.
(42)Darugar, Q.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 143–149.
(43)Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165–167.
(44)Brushett, F. R.; Thorum, M. S.; Lioutas, N. S.; Naughton, M. S.; Tornow, C.; Jhong, H. R.; Gewirth, A. A.; Kenis, P. J. A. J. Am. Chem. Soc. 2010, 132, 12185–12187.
(45)Chen, W.; Chen, S. Angew. Chem. Int. Ed. 2009, 48, 4386–4389.
(46)Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760–764.
(47)Tang, W.; Lin, H. F.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E. W. J. Phys. Chem. C 2008, 112, 10515–10519.
(48)Campbell, F. W.; Belding, S. R.; Baron, R.; Xiao, L.; Compton, R. G. J. Phys. Chem. C 2009, 113, 9053–9062.
(49)Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331–1335.
(50)Er, J. C.; Tang, M. K.; Chia, C. G.; Liew, H.; Vendrell, M.; Chang, Y. T. Chem. Sci. 2013, 4, 2168–2176.
(51)He, X.; Wang, Y.; Wang, K.; Chen, M.; Chen, S. Anal. Chem. 2012, 84, 9056–9064.
(52)Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H. Biochem. Biophys. Res. Commun. 2002, 293, 1485–1488.
(53)Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R. Science 2008, 322, 587–590.
(54)Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066–1071.
(55)Kimura, H. Antioxid. Redox. Sign. 2010, 12, 1111–1123.
(56)Lawrence, N. S.; Davis, J.; Compton, R. G. Talanta 2000, 52, 771–784.
(57)Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G. J.; Davies, S. N.; Compton, R. G. Electroanalysis 2000, 12, 1453–1460.
(58)Pawlak, Z.; Pawlak, A. S. Talanta 1999, 48, 347–353.
(59)Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K. Chem. Commun. 2009, 7390–7392.
(60)Choi, M. F. M. Analyst 1998, 123, 1631–1634.
(61)Berube, P. R.; Parkinson, P. D.; Hall, E. R. J. Chromatogr. A 1999, 830, 485–489.
(62)Chen, S.; Chen, Z.-j.; Ren, W.; Ai, H.-w. J. Am. Chem. Soc. 2012, 134, 9589–9592.
(63)Hou, F.; Cheng, J.; Xi, P.; Chen, F.; Huang, L.; Xie, G.; Shi, Y.; Liu, H.; Bai, D.; Zeng, Z. Dalton Trans. 2012, 41, 5799–5804.
(64)Hou, F.; Huang, L.; Xi, P.; Cheng, J.; Zhao, X.; Xie, G.; Shi, Y.; Cheng, F.; Yao, X.; Bai, D.; Zeng, Z. Inorg. Chem. 2012, 51, 2454–2460.
(65)Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078–10080.
(66)Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem. Int. Ed. 2011, 50, 10327–10329.
(67)Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767–4769.
(68)Xuan, W.; Sheng, C.; Cao, Y.; He, W.; Wang, W. Angew. Chem. Int. Ed. 2012, 51, 2282–2284.
(69)Jin, R. Nanoscale 2010, 2, 343–362.
(70)Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409–431.
(71)Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Nanoscale 2012, 4, 4073–4083.
(72)Shang, L.; Dong, S.; Nienhaus, G. U. Nano Today 2011, 6, 401–418.
(73)Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. J. Mater. Chem. 2012, 22, 12972–12982.
(74)Va&;#769;zquez-Va&;#769;zquez, C.; Ban&;#771;obre-Lo&;#769;pez, M.; Mitra, A.; Lo&;#769;pez-Quintela, M. A.; Rivas, J. Langmuir 2009, 25, 8208–8216.
(75)Wei, W.; Lu, Y.; Chen, W.; Chen, S. J. Am. Chem. Soc. 2011, 133, 2060–2063.
(76)Ganguly, A.; Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T. J. Nanopart. Res. 2013, 15, 1–7.
(77)Vilar-Vidal, N.; Blanco, M. C.; Lo&;#769;pez-Quintela, M. A.; Rivas, J.; Serra, C. J. Phys. Chem. C 2010, 114, 15924–15930.
(78)Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T. Anal. Chem. 2011, 83, 9450–9455.
(79)Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S. Nanoscale 2013, 5, 4683–4686.
第二章:
(1)Chen, P.-C.; Yeh, T.-Y.; Ou, C.-M.; Shih, C.-C.; Chang, H.-T. Nanoscale 2013, 5, 4691–4695.
(2)Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662–16670.
(3)Jia, X.; Li, J.; Wang, E. Small 2013, 9, 3873–3879. (23) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078–10080.
(4)Shang, L.; Dorlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Nanoscale 2011, 3, 2009–2014.
(5)Yang, X.; Gan, L.; Han, L.; Li, D.; Wang, J.; Wang, E. Chem. Commun. 2013, 49, 2302–2304.
(6)Hermann, H. L.; Boche, G.; Schwerdtfeger, P. Chem. Eur. J. 2001, 7, 5333–5342.
(7)Jia, X.; Yang, X.; Li, J.; Li, D.; Wang, E. Chem. Commun. 2014, 50, 237–239.
(8)Lopez, A.; Liu, J. J. Phys. Chem. C 2013, 117, 3653–3661.
(9)Va&;#769;zquez-Va&;#769;zquez, C.; Ban&;#771;obre-Lo&;#769;pez, M.; Mitra, A.; Lo&;#769;pez-Quintela, M. A.; Rivas, J. Langmuir 2009, 25, 8208–8216.
(10)Wei, W.; Lu, Y.; Chen, W.; Chen, S. J. Am. Chem. Soc. 2011, 133, 2060–2063.
(11)Vilar-Vidal, N.; Blanco, M. C.; Lo&;#769;pez-Quintela, M. A.; Rivas, J.; Serra, C. J. Phys. Chem. C 2010, 114, 15924–15930.
(12)Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824–6828.
(13)Huang, C.-C.; Liao, H.-Y.; Shiang, Y.-C.; Lin, Z.-H.; Yang, Z.; Chang, H.-T. J. Mater. Chem. 2009, 19, 755–759.
(14)Taladriz-Blanco, P.; Buurma, N. J.; Rodriguez-Lorenzo, L.; Perez-Juste, J.; Liz-Marzan, L. M.; Herves, P. J. Mater. Chem. 2011, 21, 16880–16887.
(15)Qu, F.; Dou, L. L.; Li, N. B.; Luo, H. Q. J. Mater. Chem. C 2013, 1, 4008–4013.
(16)Rakshit, S.; Saha, R.; Verma, P. K.; Pal, S. K. Photochem. Photobiol. 2012, 88, 851–859.
(17)Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Small 2011, 7, 2614–2620.
(18)Udaya Bhaskara Rao, T.; Pradeep, T. Angew. Chem. Int. Ed. 2010, 49, 3925–3929.
(19)Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Nanoscale 2012, 4, 4073–4083.
(20)Zhu, H.; Ji, X.; Yang, D.; Ji, Y.; Zhang, H. Microporous Mesoporous Mater. 2005, 80, 153–156.
(21)Chang, H.-Y.; Chang, H.-T.; Hung, Y.-L.; Hsiung, T.-M.; Lin, Y.-W.; Huang, C.-C. RSC Adv. 2013, 3, 4588–4597.
(22)Zhou, T.; Rong, M.; Cai, Z.; Yang, C. J.; Chen, X. Nanoscale 2012, 4, 4103–4106.
(23)Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078–10080.
(24)Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem. Int. Ed. 2011, 50, 10327–10329.
(25)Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767–4769.
(26)Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T. Anal. Chem. 2011, 83, 9450–9455.
(27)Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S. Nanoscale 2013, 5, 4683–4686.
(28)Zhang, B.-H.; Wu, F.-Y.; Wu, Y.-M.; Zhan, X.-S. J. Fluoresc. 2010, 20, 243–250.
(29)Gore, A. H.; Vatre, S. B.; Anbhule, P. V.; Han, S.-H.; Patil, S. R.; Kolekar, G. B. Analyst 2013, 138, 1329–1333.
(30)Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L. Sens. Actuators, B 2013, 188, 53–58.
(31)Liu, J.; Chen, J.; Fang, Z.; Zeng, L. Analyst 2012, 137, 5502–5505.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔