跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬浩瑋
研究生(外文):Hao-Wei Ma
論文名稱:釕金屬錯合物催化全碳鏈芳香丙炔醇經由釕金屬亞乙烯基/丙二烯錯合物合成雙環/參環有機化合物之反應
論文名稱(外文):Sequential Allenylidene/Vinylidene Cyclization on Ruthenium for Stereoselective Construction of Bicyclic/Tricyclic Carbocycles from Aryl Propargyl Alcohol
指導教授:林英智林英智引用關係
指導教授(外文):Ying-Chih Lin
口試委員:葉名倉邱靜雯張啟光楊吉水陳竹亭
口試委員(外文):Ming-Chang YehChing-Wen ChiuChi-Kwong ChangJye-Shane YangJwu-Ting Chen
口試日期:2014-07-04
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:193
中文關鍵詞:釕金屬亞乙烯基錯合物丙烯基錯合物催化環化反應三級碳陽離子聯繼環化反應氧誘發環化環接化合物
外文關鍵詞:RutheniumVinylidene ComplexAllenylidene ComplexCarbocationTandem cyclizationOxygen Induced CyclizationSpiro Ring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文的第一部分中,我們探討釕金屬錯合物催化於鄰位含烯類碳鏈取代的芳香丙炔醇1,7-及1,8-烯炔化合物,藉由分子內環化反應形成聯繼(tandem)環化的產物。利用釕金屬催化劑[Ru]NCCH3+ ([Ru] = RuCp(PPh3)2) 與尾端烯類官能基內側具有甲基取代的1,7-烯炔化合物1在氯仿/甲醇的共溶劑中進行反應,可得到含有架橋的二次環化有機化合物15a。在單一溶劑系統(氯仿)中,相同的催化反應只會得到一次環化的烯炔中間物7。第一部分的環化中,可能經由尾端的烯類官能基親核性加成於釕金屬丙二烯中間物B的Cγ上,形成釕金屬亞乙烯基錯合物3。因尾端烯類官能基內側具有甲基取代,形成3的過程中有三級陽離子的生成能穩定中間體,使此環化反應得以進行。而第二次的環化則需在醇類與氯仿共溶劑的環境下,由第一次環化後仍保留的烯官能基親核性加成於亞乙烯基錯合物3的Cα上,之後醇類加成脫去釕金屬而得到二次環化有機物15a。1,8-烯炔化合物2,也可利用相同的催化反應條件得到類似的二次環化化合物13a。另一方面,我們也合成一系列芳香丙炔醇,於芳香環鄰位碳鏈烯類官能基末端有兩個甲基取代的化合物19, 20, 20’, 21,與釕金屬催化劑進行反應。當1,7-烯炔化合物19進行金屬催化反應時,可直接得到第二次環化後的有機產物23,反應機構則是類似於上述15a或13a的生成機制。但在這個催化過程中,並無法單離出釕金屬亞乙烯基錯合物O,推測可能是形成中間物O時,尾端的烯類官能基過於靠近Cα,因此快速的親核性加成於Cα後伴隨著金屬脫去產生催化後產物23。另外,也可使用類似的烯炔化合物20, 20’, 21與釕金屬催化劑進行環化反應得到相對應的二次環化產物24, 24’及25。最後,當使用尾端沒有任何甲基取代的芳香丙炔醇27或28,與釕金屬錯合物[Ru]-Cl反應,則不會有環化反應的發生,只會得到三苯基磷(PPh&;#172;3&;#172;)加成之釕金屬乙炔錯合物29, 30,釕金屬丙二烯錯合物31,或含甲氧基之釕金屬碳烯錯合物32。
第二部分中,則是針對一系列於四號位上有環己烷取代的1,6-烯炔有機化合物,與1,2-雙(聯苯代磷基)-乙烷釕金屬錯合物[Ru’]-Cl ([Ru’] = RuCp(dppe)) 的反應性做探討。首先,1,6-烯炔化合物33a與釕金屬錯合物在二氯甲烷中進行反應,可得到釕金屬丙二烯錯合物38。當溶劑系統改為甲醇,則會產生γ位甲氧基取代釕金屬亞乙烯基錯合物36a及含甲氧基釕金屬碳烯錯合物37之混合物。在鹼性條件下對36a於β碳上進行去質子化反應,可得到釕金屬乙炔基錯合物39,而此錯合物39在甲醇及四氟硼酸下,可再得到α碳上甲氧基加成之釕金屬碳烯錯合物37。另外,釕金屬亞乙烯基錯合物36a,在氧氣的參與下,具有新穎的反應性。錯合物36a在空氣及甲醇的條件下,可進行氧誘發環化反應而得到具有環接(spiro)的雙取代亞乙烯基錯合物40a。為了提高40a的產率,我們進行一系列的反應測試,發現在氧氣的慢慢導入及間-氯過氧苯甲酸(m-CPBA)的幫助之下,是最好的反應條件。除此之外,也進行了反應機制的探討,合成了帶有環氧基的丙炔醇41,並與釕金屬錯合物在甲醇中進行反應。然而,並沒有預期的氧誘導環化產物40a的產生,而是得到亞乙烯基錯合物42及環氧基開環後之釕金屬碳烯錯合物43混合物。而此二種錯合物在空氣中也不會有進一步的環化反應發生。為了討論釕金屬亞乙烯基錯合物更多反應性,將40a於四氟硼酸中進行質子化反應,可得到1,3-甲氧基位移之碳烯錯合物44及其結構異構物44’。接著,在鹼性條件下,44及44’混合物會完全反應產生中性釕金屬醯基錯合物45;並可以利用鹽酸將有機物部分以醛類的形式切下來得到有機化合物46。除此之外,尾端帶有甲基取代的1,6-烯炔化合物34及35,與釕金屬錯合物進行反應,則分別會經由5-exo-dig或6-exo-dig路徑產生環化後的釕金屬碳烯錯合物47及48,且在合環過程中,皆伴隨著三級碳陽離子的產生以穩定中間物。

The tandem cyclization reaction of phenyl propargyl alcohol 1, in which a 2-methyl-substituted allyl group is bound to the ortho-position of the phenyl ring, is catalyzed by [Ru]NCCH3+ ([Ru] = Cp(PPh3)2Ru) in a cosolvent of CHCl3/MeOH at 60 °C, to afford the cyclized compound 15a with two newly formed six-membered rings. In CHCl3 the catalytic reaction by [Ru]NCCH3+ stops at the isolable organic cyclization intermediate enyne 7. The first part of this tandem cyclization proceeds via an allenylidene complex B followed by a C-C bond formation between Cγ of the allenylidene ligand and the terminal carbon atom of the vinyl group generating the vinylidene complex 3, which can be isolated if [Ru]Cl is used. The presence of the methyl group on the internal vinyl carbon may serve to stabilize a proposed carbocation making the cyclization possible. The second part of the cyclization, which requires the presence of methanol, proceeds via addition of the olefin moiety on the six-membered ring to Cα of the vinylidene ligand of 3. This is followed by a demetalation process, affording the final product 15a. Tandem cyclization of analogous phenyl propargyl alcohol 2 with an additional methylene group also affords compound 13 with a sequentially formed seven-membered and six-membered ring. The similar catalytic cyclization reaction of 2 by [Ru]NCCH3+ in the first stage is also demonstrated to give 8 in high yield. Likewise, the vinylidene complex 4 is acquired from 2 with [Ru]Cl. A series of phenyl propargyl alcohol 19, 20, 20’ and 21 having two methyl groups on the terminal carbon of the ortho tethering chain were synthesized. The catalytic cyclization reaction of 19 by [Ru]NCCH3+ directly afford the second stage product 23. The formation of the tricyclic product 23 proceeds in the same way as we mentioned above. In this catalytic cycle, many attempts to isolate the vinylidene intermediate O failed. A fast addition of terminal olefinic moiety to Cα of the vinylidene ligand followed by a demetalation process yields the final product. Without the methyl group, two similar phenyl propargyl alcohols 27 and 28, in the reactions with [Ru]Cl, yield no cyclization product. Only the phosphonium acetylide complex 29, 30, the allenylidene complex 31 or the methoxy carbene complex 32 are obtained. All cyclic vinylidene complexes and organic compounds are characterized by NMR spectra.
Three 1,6-enyne compounds 33-35 each containing pendant olefinic groups, which have zero, one or two methyl groups, are prepared. Reaction of enyne 33a with [Ru’]Cl ([Ru’] = Cp(dppe)Ru) in CH2Cl2 yields the allenylidene complex 38. In MeOH, the same reaction gives a mixture of the γ-methoxyvinylidene complex 36a and the α-methoxycarbene complex 37. Deprotonation of 36a generate the acetylide complex 39, however, treatment of 39 with HBF4 in MeOH is readily followed by a methoxide addition to generate 37. Astonishingly, with the presence of two hydrogens at the terminal olefinic carbon, complex 36a undergoes a cyclization in air to give the vinylidene complex 40a containing a spiral ring system and mixed phosphine oxide of dppe as a minor product. Complex 40a is characterized by 1H, 13C, 31P, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC NMR spectroscopy. Analogous complex 40a’ is directly obtained from the reaction of [Ru]Cl ([Ru] = Cp(PPh3)2Ru) with enyne 33a in MeOH in air. Protonation of 40a causes formation of the 1,3-migration product 44 and 44’. Moreover, base induced reaction of complexes 44 and 44’ leads to the neutral acyl complex 45. Finally, the spiral organic compound 46 with an aldehyde group is obtained from the reaction of 45 with HCl. In addition, the reactions of 1,6-enyne 34 with [Ru]Cl and [Ru’]Cl both proceed via a 5-exo-dig cyclization pathway to give the carbene complexes 47 and 47’, respectively. For the enyne 35 with one methyl groups at the internal carbon of the olefinic part, formation of the carbene complexes 48 or 49 may then involve a 6-exo-dig cyclization to give the tertiary carbocation, ultimately leading to 48 in methanol and 49 in CH2Cl2.

Contents
Contents I
Structures and Numbering of Compounds V
Reaction Schemes VIII
中文摘要 IX
Chapter 1
Sequential Allenylidene/Vinylidene Cyclization for Stereoselective Construction of Bicyclic Carbocycles from Propargyl Alcohol
Abstract 2
Introduction 4
Results and Discussion 5
Cyclization Reaction of Methyl Substitued Enynes. 5
Tandem Cyclization with One Methyl Substituted Enynes. 10
Tandem Cyclization of the Enyne with Two Terminal Methyl Groups. 18
Other Propargylic Enynes. 25
Conculsions 27
Chapter 2
Oxygen Induced Cyclization of Ruthenium Vinylidene Complexes with Olefinic Group
Abstract 30
Introduction 31
Results and Discussion 35
Reaction of 1,6-Enyne and [Ru’]-Cl. 35
Oxygen Induced Cyclization of γ-methoxyvinylidene. 38
Migration of OMe Group. 43
Enynes with Methyl Substituents. 46
Conculsions 49
Chapter 3
Supporting Information
Experimental Section 51
References 105
Appendix I: X-Ray Crystallographic Data 118
Appendix II: NMR Spectrum Data 126
Spectrum of 7 127
Spectrum of 8 128
Spectrum of 13a 129
Spectrum of 13b 131
Spectrum of 13c 132
Spectrum of 13d 133
Spectrum of 14 134
Spectrum of 15a 135
Spectrum of 15b 137
Spectrum of 23a 138
Spectrum of 23b (cis) 139
Spectrum of 23b (trans) 140
Spectrum of 23c 141
Spectrum of 23d 142
Spectrum of 23e 143
Spectrum of 24a 144
Spectrum of 24b 145
Spectrum of 24c 147
Spectrum of 24d 148
Spectrum of 24e 149
Spectrum of 24a’ 150
Spectrum of 24b’ 151
Spectrum of 24c’ 152
Spectrum of 24d’ 153
Spectrum of 24e’ 154
Spectrum of 25b 155
Spectrum of 25c 156
Spectrum of 25d 157
Spectrum of 25e 158
Spectrum of 26 159
Appendix III: Standard Orientation of 13a and 15a from Optimized Structures. 160
Standard orientation of 13aF”RS1 at the B3LYP optimized geometry. 161
Standard orientation of 13aF”SR1 at the B3LYP optimized geometry. 166
Standard orientation of 13aF”SR2 at the B3LYP optimized geometry. 171
Standard orientation of 13aF”SS1 at the B3LYP optimized geometry. 176
Standard orientation of 15aHRR at the B3LYP optimized geometry. 181
Standard orientation of 15aHRS at the B3LYP optimized geometry. 186
Appendix IV: Bond Distances of Ru-C or Carbon-Carbon Bond. 191


1. (a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102; (b) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881–930.
2. (a) Bodennec, G.; St-Jacques, M. Can. J. Chem. 1977, 55, 1199–1206; (b) Ram, S.; Spicer, L. D. Tetrahedron Lett. 1988, 29, 3741–3744; (c) Wu, G.-Z.; Lamaty, F.; Negishi, E. J. Org. Chem. 1989, 54, 2507–2508; (d) Muehldorf, A. V.; Guzman-Perez, A.; Kluge, A. F. Tetrahedron Lett. 1994, 35, 8755–8758; (e) Ma, S.; Negishi, E. J. Am. Chem. Soc., 1995, 117, 6345–6357; (f) Christoffers, J.; Bergman, R. G. J. Am. Chem. Soc., 1996, 118, 4715–4716; (g) Matsubara, S.; Sugihara, M.; Utimoto,K. Synlett 1998, 1998, 313–315; (h) Christoffers, J.; Bergrnan, R. G. Inorg. Chim. Acta 1998, 270, 20–27; (j) LeBrazidec, J.-Y.; Kocienski, P. J.; Connolly, J. D.; Muir, K. W. J. Chem. Soc., Perkin Trans. 1 1998, 2475–2478; (i) Hopf, H.; Kruger, A. Chem. –Eur. J. 2001, 7, 4378–4385; (k) Chow, R.; Kocienski, P. J.; Kuhl, A.; LeBrazidec, J.-Y.; Muir, K. W.; Fish, P. J. Chem. Soc., Perkin Trans. 1 2001, 2344–2355; (l) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156–5159.
3. (a) Gutsche, C. D.; Bachman, G. L.; Coffey, R. S. Tetrahedron 1962, 18, 617–627; (b) Morrison, H.; Giacherio, D. J. Chem. Soc., Chem. Commun. 1980, 22, 1080–1081; (c) Charlton, J. L.; Williams, G. J.; Lypka, G. N. Can. J. Chem. 1980, 58, 1271–1274; (d) Morrison, H.; Giacherio, D. J. Org. Chem. 1982, 47, 1058–1063; (e) Duguid, R. J.; Morrison, H. J. Am. Chem. Soc., 1991, 113, 1265–1271.
4. (a) Jenneskens, L. W.; de Kanter, F. J. J.; Kraakman, P. A.; Turkenburg, L. A. M.; Koolhaas, W. E.; de Wolf, W. H.; Bickelhaupt, F.; Tobe, Y.;Kakiuchi, K.; Odaira, Y. J. Am. Chem. Soc., 1985, 107, 3716–3717; (b) Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281–283.
5. (a) Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543–545; (b) Yet, L. Chem. Rev. 2000, 100, 2963–3007; (c) Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43, 3754–3760; (d) Pansare, S. V.; Adsool, V. A. Org. Lett. 2006, 8, 5897–5899.
6. (a) Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc., 2003, 125, 6060–6061; (b) Saito, A.; Ono, T.; Hanzawa, Y. J. Org. Chem. 2006, 71, 6437–6443; (c) Varela-Fernandez, A.; Garcia- Yebra, C.; Varela, J. A.; Esteruelas, M. A.; Saa, C. Angew. Chem., Int. Ed. 2010, 49, 4278–4281; (d) Li, Q.; Jiang, G. J.; Jiao, L.; Yu, Z. X. Org. Lett. 2010, 12, 1332–1335.
7. (a) Jimenez, J. I.; Huber, U.; Moore, R. E.; Patterson, G. M. L. J. Nat. Prod. 1999, 62, 569–572; (b) Bhat, V.; Allan, K. M.; Rawal, V. H. J. Am. Chem. Soc., 2011, 133, 5798–5801; (c) Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc., 2011, 133, 15797–15799.
8. Jackson, S. R.; Johnson, M. G.; Mikami, M.; Shiokawa, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2001, 40, 2694–2697.
9. Demirci-Gultekin, D.; Gunba&;#351;, D. D.; Ta&;#351;kesenligil, Y.; Balci, M. Tetrahedron 2007, 63, 8151–8156.
10. (a) Warner, P. M.; Palmer, R. F.; Lu, S.-L. J. Am. Chem. Soc., 1977, 99, 3773–3778; (b) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z.; Angew. Chem., Int. Ed. 2010, 49, 3215–3218.
11. (a) Matsuda, T.; Makino, M.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 4608–4611; (b) Evans, P. A.; Lawler, M. J. Angew. Chem., Int. Ed. 2006, 45, 4970–4972.
12. (a) Yen, Y.-S.; Lin, Y.-C.; Huang, S.-L.; Liu, Y.-H.; Sung, H.-L.; Wang, Y. J. Am. Chem. Soc., 2005, 127, 18037–18045; (b) Cheng, C.-W.; Kuo, Y.-C.; Chang, S.-H.; Lin, Y.-C.; Liu, Y.-H.; Wang, Y. J. Am. Chem. Soc., 2007, 129, 14974–14980; (c) Chung, C.-P.; Chen, C.-C.; Lin, Y.-C.; Liu, Y.-H.; Wang, Y. J. Am. Chem. Soc., 2009, 131, 18366–18375.
13. (a) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem. –Eur. J. 2005, 11, 1433–1451; (b) Daini, M.; Yoshikawa, M.; Inada, Y.; Uemura, S.; Sakata, K.; Kanao, K.; Miyake, Y.; Nishibayashi, Y. Organometallics 2008, 27, 2046–2051; (c) Fukamizu, K.; Miyake, Y.; Nishibayashi, Y. J. Am. Chem. Soc., 2008, 130, 10498–10499.
14. (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Perez-Carreno, E.; Garcia-Granda, S. Organometallics 1999, 18, 2821–2832; (b) Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno, J. Organometallics 2002, 21, 3837–3840.
15. For 1,1-ADEQUATE see: (a) Reif, B.; Kock, M.; Kerssebaum, R.; Kang, H.; Fenical, W.; Griesinger, C. J. Magn. Reson. A. 1996, 118, 282–285; (b) Kock, M.; Kerssebaum, R.; Bermel, W. Magn. Reson. Chem. 2003, 41, 65–69.
16. For H2BC see: Nyberg, N. T.; Duus, J. O.; Soerensen, O. W. J. Am. Chem. Soc., 2005, 127, 6154–6155.
17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
18. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Lee, W.; Yang, W.; Parr, R. G.; Phys. Rev. B 1988, 37, 785–789.
19. Dunning Jr., T. H.; Hay, P. J. in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1976) 1–28. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. (c) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284–298. (d) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310.
20. Taduri, B. P.; Sohel, S. M. A.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commun. 2007, 2530–2532.
21. Tsai, F.-Y.; Ma, H.-W.; Huang, S.-L.; Lin, Y.-C.; Wang, Y.; Liu, Y.-H. Chem. –Eur. J. 2012, 18, 3399–3407.
22. (a) Steyn, R.; Sable, H. Z. Tetrahedron 1971, 27, 4429–4447. (b) Garayalde, D.; Kruger, K.; Nevado, C. Angew. Chem., Int. Ed. 2011, 50, 911–915.
23. (a) Limberg, C. Angew. Chem., Int. Ed., 2003, 42, 5932–5954; (b) Nam, W. Acc. Chem. Res., 2007, 40, 465.
24. Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329–2364.
25. (a) Modern Oxidation Methods; J. E. Backvall, Ed.; Wiley-VCH: Weinheim, Germany, 2004; (b) Simandi, L. I. Advances in Catalytic Activation of Dioxygen by Metal Complexes; Kluwer Academic: Boston, USA, 2003.
26. Bakac, A. Inorg. Chem., 2010, 49, 3584–3593.
27. Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V. B.; Pleiss, J.; Gla&;#776;ser, R.; Einicke, W.-D.; Sprenger, G. A.; Beifus, U.; Klemm, E.; Liebner, C.; Hieronymus, H.; Hsu, S.-F.; Plietker, B.; Sabine Laschat, S. ChemCatChem 2013, 5, 82–112.
28. (a) Mayo, F. R. Acc. Chem. Res., 1968, 1, 193–201; (b) Partenheimer, W. Catal. Today, 1995, 23, 69–158; (d) Hermans, I.; Peeters, J.; Jacobs, P. A. Top. Catal., 2008, 50, 124–132.
29. For leading reviews of metal-catalyzed reactions using O2 as an oxidant, see: (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420; (h) Stahl, S. S. Science 2005, 309, 1824–1826. (g) Gligorich, K. M.; Sigman, M. S. Angew. Chem., Int. Ed. 2006, 45, 6612–6615; (b) Piera, J.; Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506–3523; (c) Gligorich, K. M.; Sigman, M. S. Chem. Commun. 2009, 3854–3867; (d) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851–863; (e) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736–1748; (f) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381–3430.
30. Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc., 2006, 128, 11332–11333.
31. (a) Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed., 2006, 45, 481–485; (b) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc., 2005, 127, 17778–17788; (c) Cornell, C. N.; Sigman, M. S. Org. Lett., 2006, 8, 4117–4120; (d) Ren, W.; Xia, Y.; Ji, S.-J.; Zhang, Y.; Wan, X.; Zhao, J. Org. Lett., 2009, 11, 1841–1844.
32. Zhang, C.; Jiao, N. J. Am. Chem. Soc., 2010, 132, 28–29.
33. Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett., 2003, 5, 2997–2999.
34. Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2011, 50, 8968–8973.
35. (a) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed., 2006, 45, 200–203; (b) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350; (c) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268–4315; (d) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657–1712; (e) Hitt, D. M.; O’Connor, J. M. Chem. Rev. 2011, 111, 7904–7922; (f) Simonneau, A.; Harrak, Y.; Jeanne-Julien, L.; Lemiere, G.; Mouries-Mansuy, V.; Goddard, J.-P.; Malacria, M.; Fensterbank, L. ChemCatChem 2013, 5, 1096–1099; (g) Hashmi, A. S. K.; Graf, K.; Ackermann, M.; Rominger, F. ChemCatChem 2013, 5, 1200–1204.
36. (a) Trost, B. M.; Krische, M. J. Synlett, 1998, 1–16; (b) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics, 2001, 20, 3704–3709; (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev., 2002, 102, 813–834; (d) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev., 1996, 96, 635–662.
37. (a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc., 1985, 107, 1781–1783; (b) Trost, B. M.; Shi, Y. J. Am. Chem. Soc., 1993, 115, 12491–12509; (c) Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J. Org. Chem., 1998, 63, 9158–9159; (d) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc., 2000, 122, 714–715; (e) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc., 2000, 122, 6490–6491; (f) Ajamian, A.; Gleason, J. L. Org. Lett., 2003, 5, 2409–2411; (g) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org. Chem., 2000, 65, 4913–4918; (h) Mamane, V.; Gress, T.; Krause, H.; Furstner A., J. Am. Chem. Soc., 2004, 126, 8654–8655; (i) Bae, H. J.; Baskar, B.; An, S. E.; Cheong, J. Y.; Thangadurai, D. T.; Hwang, I.-C.; Rhee, Y. H. Angew. Chem., Int. Ed., 2008, 47, 2263–2266. (j) Ye, L.; Chen, Q.; Zhang, J.; Michelet, V. J. Org. Chem., 2009, 74, 9550–9553.
38. (a) Trost, B. M.; Trost, M. K. J. Am. Chem. Soc., 1991, 113, 1850–1852; (b) Furstner, A.; Seidel, G. Angew. Chem., Int. Ed., 1998, 37, 1734–1736; (c) Alexander, J. B.; La, D. S.; Dustin, R. C.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc., 1998, 120, 4041–4042; (d) Schramm, M. P.; Reddy, D. S.; Kozmin, S. A. Angew. Chem., Int. Ed., 2001, 40, 4274–4277; (e) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res., 2001, 34, 18–29; (f) Micalizio, G. C.; Schreiber, S. L. Angew. Chem., Int. Ed., 2002, 41, 152–154.
39. (a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc., 1988, 110, 1636–1638; (b) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem., 1995, 60, 5567–5569; (c) Jimenez-Nunez, E.; Claverie, C. K.; Bour, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed., 2008, 47, 7892–7895.
40. Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc., 1999, 121, 1976–1977.
41. (a) Hatano, M.; Terada, M.; Mikami, K. Angew. Chem., Int. Ed., 2001, 40, 249–253; (b) Hatano, M.; Mikami, K. J. Am. Chem. Soc., 2003, 125, 4704–4705.
42. (a)V.Cadierno, M. P. Gamasa, J.Gimeno andE.Lastra, J. Organomet. Chem., 1994, 474, C27–C29; (b)V.Cadierno, M. P. Gamasa, J.Gimeno,M. Gonzalez-Cueva, E. Lastra, J. Borge, S.Garcia-Granda and E. Perez-Carreno, Organometallics, 1996, 15, 2137–2147; (c) V. Guerchais, Eur. J. Inorg. Chem., 2002, 783–796.
43. Yang, H.; Chung, C.-P.; Lin, Y.-C.; Liu, Y.-H. Dalton Trans., 2011, 40, 3703–3710.
44. (a) Adams, J.; Lepine-Frenette, C.; Spero, D. M. J. Org. Chem. 1991, 56, 4494–4498; (b) Suzuki, M.; Daitoh, M.; Vairappan, C. S.; Abe, T.; Masuda, M. J. Nat. Prod. 2001, 64, 597–602; (c) Francisco, M. E. Y.; Erickson, K. L. J. Nat. Prod. 2001, 64, 790–791; (d) Davyt, D.; Fernandez, R.; Suescun, L.; Mombru, A. W.; Saldana, J.; Dominguez, L.; Coll, J.; Fujii, M. T.; Manta, E. J. Nat. Prod. 2001, 64, 1552–1555; (e) White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. J. Am. Chem. Soc., 2008, 130, 810–811.
45. (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Gonzalez-Cueva, M.; Lastra, E.; Borge, J.; Garcia-Granada, S.; Perex-Carreno, E. Organometallics 1996, 15, 2137–2147; (b) Esteruelas, M. A.; Gomez, A. V.; Lopez, A. M.; Modrego, J.; Onate, E. Organometallics 1997, 16, 5826–5835; (c) Auger, N.; Touchard, D.; Rigaut, S.; Halet, J.; Saillard, J. Organometallics 2003, 22, 1638–1644; (d) Winter, R. F.; Zali&;#353;, S. Coord. Chem. Rev. 2004, 248, 1565–1583.
46. (a) Rigaut, S.; Monnier, F.; Mousset, F.; Touchard, D.; Dixneuf, P. H. Organometallics 2002, 21, 2654–2661; (b) Rigaut, S.; Massue, J.; Touchard, D.; Fillaut, J.-L.; Golhen, S.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2002, 41, 4513–4517; (c) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Organometallics 2003, 22, 3980–3984; (d) Rigaut, S.; Costuas, K.; Touchard, D.; Saillard, J.-Y.; Golhen, S.; Dixneuf, P. H. J. Am. Chem. Soc., 2004, 126, 4072–4073; (e) Rigaut, S.; Perruchon, J.; Guesmi, S.; Fave, C.; Touchard, D.; Dixneuf, P. H. Eur. J. Inorg. Chem. 2005, 447–460; (f) Cifuentes, M. P.; Humphrey, M. G.; Koutsantonis, G. A.; Lengkeek, N. A.; Petrie, S.; Sanford, V.; Schauer, P. A.; Skelton, B. W.; Stranger, R.; White, A. H. Organometallics 2008, 27, 1716–1726.
47. For allenylidne complex in dppe system: (a) Zhong, Y.-W.; Matsuo, Y.; Nakamura, E. Chem. –Asian J. 2007, 2, 358–366; (b) de Montigny, F.; Argouarch, G.; Roisnel, T.; Toupet, L.; Lapinte, C.; Lam, S. C.-F.; Tao, C.-H.; Yam, V. W.-W. Organometallics 2008, 27, 1912–1923; (c) Byrne, L. T.; Koutsantonis, G. A.; Sanford, V.; Selegue, J. P.; Schauer, P. A.; Iyer, R. S. Organometallics 2010, 29, 1199–1209; (d) Koutsantonis, G. A.; Schauer, P. A.; Skelton, B. W. Organometallics 2011, 30, 2680–2689.
48. (a) Crochet, P.; Esteruelas, M. A.; Lopez, A. M.; Ruiz, N.; Tolosa, J. I. Organometallics 1998, 17, 3479–3486; (b) Gonzalez-Herrero, P.; Weberndorfer, B.; Ilg, K.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. 2000, 39, 3266–3269; (c) Coalter, J. N.; Bollinger, J. C.; Eisenstein, O.; Caulton, K. G. New J. Chem., 2000, 24, 925–927; (d) Sanford, M. S.; Henling, L. M.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2000, 39, 3451–3453; (e) Gonzalez-Herrero, P.; Weberndo‥rfer, B.; Ilg, K.; Wolf, J.; Werner, H. Organometallics 2001, 20, 3672–3685; (f) Bustelo, E.; Jimenez-Tenorio, M.; Mereiter, K.; Puerta, M. C.; Valerga, P. Organometallics 2002, 21, 1903–1911; (g) Beach, N. J.; Jenkins, H. A.; Spivak, G. J. Organometallics 2003, 22, 5179–5181; (h) Conrad, J. C.; Amoroso, D.; Czechura, P.; Yap, G. P. A.; Fogg, D. E. Organometallics 2003, 22, 3634–3636; (i) Caskey, S. R.; Stewart, M. H.; Ahn, Y. J.; Johnson, M. J. A.; Rowsell, J. L. C.; Kampf, J. W. Organometallics 2007, 26, 1912–1923; (j) Bustelo, E.; Jimenez-Tenorio, M.; Puerta, M. C.; Valerga, P. Organometallics 2007, 26, 4300–4309; (k) Chen, J.; Sung, H. H.-Y.; Williams, I. D.; Jia, G. Organometallics 2011, 30, 6159&;#8722;6165.
49. (a) Jung, S.; Brandt, C. D.; Werner, H. New J. Chem. 2001, 25, 1101–1103; (b) Amoroso, D.; Snelgrove, J. L.; Conrad, J. C.; Drouin, S. D.; Yap, G. P. A.; Fogg, D. E. Adv. Synth. Catal. 2002, 344, 757–763; (c) Rigaut, S.; Touchard, D.; Dixneuf, P. H. Organometallics 2003, 22, 3980–3984; (d) Cadierno, V.; Diez, J.; Garcia-Garrido, S. E.; Gimeno, J. Organometallics 2005, 24, 3111–3117.
50. (a) Davison, A.; Selegue, J. P. J. Am. Chem. Soc., 1978, 100, 7763–7765; (b) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59–128.
51. Bruce, M. I.; Humphrey, M. G.; Liddell, M. J., J. Organomet. Chem. 1987, 321, 91–102.
52. Wu, C.-Y.; Chou, H.-H.; Lin, Y.-C.; Wang, Y.; Liu, Y.-H. Chem. –Eur. J. 2009, 15, 3221&;#8722;3229.
53. (a) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040–7043; (b) Xu, H.; Zhang, W.; Shu, D.; Werness, J. B.; Tang, W. Angew. Chem., Int. Ed. 2008, 47, 8933–8936; (c) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225–1228; (d) Pati, K.; Liu, R-S. Chem. Commun., 2009, 5233–5235. (e) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc., 2009, 131, 8394–8395; (f) Yeom, H.-S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem., Int. Ed. 2010, 49, 1611–1614; (g) Ye, L.; Cui, L; Zhang, G.; Zhang, L. J. Am. Chem. Soc., 2010, 132, 3258–3259; (h) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc., 2010, 132, 8550–8551; (i) Jeong, J.; Yeom, H.-S.; Kwon, O.; Shin, S. Chem. –Asian J. 2011, 6, 1977–1981; (j) Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236–3239; (k) Vasu, D.; Hung H. H.; Bhunia S.; Gawade S. A.; Das A.; Liu R. S. Angew. Chem., Int. Ed. 2011, 123, 7043–7046; (l) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226–7236; (m) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc., 2011, 133, 8482–; (n) Gronnier, C.; Kramer, S.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc., 2012, 134, 828&;#8722;831; (o) Xu, M.; Ren T.-T.; Li, C.-Y. Org. Lett., 2012, 14, 4902–4905; (p) Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 7835–7838; (q) Yuan, W.; Dong, X.; Wei, Y.; Shi, M. Chem. –Eur. J. 2012, 18, 10501–10505; (r) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915–1918; (s) Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2775–2779; (t) Kawade, R. K.; Liu, R.-S. Org. Lett., 2013, 15, 4094–4097; (u) Fu, J.; Shang, H.; Wang, Z.; Chang, L.; Shao, W.; Yang, Z.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 4198–4202; (v) Ghorpade, S.; Su, M.-D.; Liu, R.-S. Angew. Chem., Int. Ed. 2013, 52, 4229–4234; (w) Chen, C.-H.; Tsai, Y.-C.; Liu, R.-S. Angew. Chem., Int. Ed. 2013, 52, 4599–4603.
54. (a) Taduri, B. P.; Sohel, S. M. A.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commun., 2007, 2530–2532; (b) Terent’ev, A. O.; Yaremenko, I. A.; Chernyshev, V. V.; Dembitsky, V. M.; Nikishin, G. I. J. Org. Chem. 2012, 77, 1833&;#8722;1842.
55. (a) Chuang, C.-P.; Ngof, T. H. J. Tetrahedron Lett. 1989, 30, 6369–6370; (b) Guerrero, M. A.; Cruz-Almanza, R.; Miranda, L. D. Tetrahedron 2003, 59, 4953–4958; (c) Hirashita, T.; Tanaka, J.; Hayashi A.; Araki, S. Tetrahedron Lett. 2005, 46, 289–292; (d) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. Org. Lett., 2006, 8, 5685–5688; (e) Du, Y.; Liu, J.; Linhardt, R. J. J. Org. Chem. 2007, 72, 3952–3954.
56. (a) Berbalk, H.; Eichinger, K.; Winetzhammer, W. Helv. Chim. Acta 1981, 64, 1026–1031; (b) Ribereau, P.; Queguiner, G. Can. J. Chem. 1983, 61, 334–342; (c) Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1991, 56, 1685–1687; (e) McDonald, F. E.; Schultz, C. C. J. Am. Chem. Soc., 1994, 116, 9363–9364; (d) Katritzky, A. R.; Li, J. J. Org. Chem. 1995, 60, 638–643; (f) Aurrecoechea, J. M.; Perez, E.; Solay, M. J. Org. Chem. 2001, 66, 564–569; (g) Lo, C.-Y.; Guo, H.; Lian, J.-J.; Shen, F.-M.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930–3932; (h) Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal. 2004, 346, 432–438. (i) M. Yoshida, M. Al-Amin, K. Matsuda and K. Shishido, Tetrahedron Lett., 2008, 49, 5021–5023. (n) Yoshida, M.; Al-Amin, M.; Shishido, K. Synthesis 2009, 14, 2454–2466. (k) Blanc, A.; Tenbrink, K.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2009, 74, 4360–4363. (m) Blanc, A.; Tenbrink, K.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2009, 74, 5342–5348. (j) Blanc, A.; Alix, A.; Weibel, J.-M.; Pale, P. Eur. J. Org. Chem. 2010, 1644–1647. (l) Kang, J. Y.; Connell, B. T. J. Org. Chem. 2011, 76, 2379–2383.
57. Benhamou, L.; Lugan, N.; Lavigne, G. Organometallics, 2007, 26, 4673–4676.
58. (a) May, J. A.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 12426–12427. (b) Terao, Y.; Kametani, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron, 2001, 57, 5967–5974.
59. (a) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215–236. (b) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328–2334.
60. (a) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471–1485. (b) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056–2057. (c) Denmark, S. E.; Kesler, B. S.; Moon, Y.-C. J. Org. Chem., 1992, 57, 4912–4924.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊