(3.235.108.188) 您好!臺灣時間:2021/03/07 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭柏辰
研究生(外文):Po-Cheng Kuo
論文名稱:以質譜分析阿茲海默症小鼠模型中tau蛋白過磷酸化
論文名稱(外文):Analysis of tau hyperphosphorylation in a mouse model of Alzheimer disease by mass spectrometry
指導教授:戴桓青戴桓青引用關係
指導教授(外文):Hwan-Ching Tai
口試委員:陳玉如陳振中
口試委員(外文):Yu-Ju Chen
口試日期:2014-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:阿茲海默症tau蛋白質譜分析過磷酸化
外文關鍵詞:Alzheimer diseasetau proteinhyperphosphorylationmass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症是最為常見的神經退化性老年失智症,而由Aβ胜&;#32957;堆積形成的斑塊以及tau蛋白堆積形成的神經纖維糾結為該病症最主要的病理特徵。其中,發生於新皮層的Aβ胜&;#32957;病變通常會早於tau蛋白的病變,然而兩者之間的關聯性是最為關鍵但尚未能解決的議題。在先前的研究中我們觀察到:患有阿茲海默症的大腦中在神經突觸的位置有過磷酸化並且錯誤折疊的tau蛋白沉積物。於此研究中,主要探討的議題為Aβ胜&;#32957;堆積是否會引發神經突觸中的tau蛋白過磷酸化產生病變,因此我們使用有大量斑塊而沒有神經纖維糾結的APP/PS1老鼠模型來進行研究。為了要進行磷酸化蛋白質體的分析,我們從老鼠的大腦中分離出突觸體,並利用固定化金屬離子親和層析(IMAC)將磷酸化胜&;#32957;進行濃縮。接著,我們使用無標記的液相層析串聯式質譜儀定量技術(label-free LC-MS/MS)對tau蛋白不同的磷酸化位置進行定量。在控制組和APP/PS1的老鼠中,鑑定出19個tau蛋白的磷酸化位置,其中有16個在人類tau蛋白序列中存在有相對應之磷酸化位置。比較兩組老鼠整體的磷酸化結果可發現APP/PS1老鼠整體磷酸化現象比起控制組有些微上升,而其中有8個位置磷酸化增加的量在統計上有顯著的差異。這些在磷酸化上有顯著增加的位置主要位於微管結合結構域(microtubule binding domain)的附近,可能因此增加tau蛋白與微管表面之間的電子斥力。為了進一步地去確認這8個磷酸化的結果,我們利用免疫墨點法語質譜之數據相比較,發現:在細胞溶質中有5個位置 (T181, S199/S202, S396/S404) 有過磷酸化,而在突觸體中有2個位置 (S199/S202) 有過磷酸化。同時我們也檢驗了一般認為和tau蛋白的調控最有關聯的其中一個激&;#37238;(GSK3β)以及磷酸&;#37238;(calcineurin Aα)之修飾或含量,皆未發現顯著的變化。我們的數據表明,Aβ所引起突觸的tau蛋白病變可能是起始於tau蛋白中S199/S202位置的磷酸化,而該位置可能是早期生物標誌物檢測或治療性干預的重要潛在目標。

The pathological hallmarks of Alzheimer’s disease (AD), the most common cause of neurodegenerative senile dementia, are aggregates of Aβ peptide (plaques) and aggregates of tau protein (tangles). The link between Aβ pathology and tau pathology is a critical but unresolved issue, with the former generally preceding the latter in the neocortex. We previously observed that neuronal synapses in AD-affected brains showed deposits of hyperphosphorylated and misfolded tau protein. In this study, we used the APP/PS1 mouse model (high plaque burden, no tangles) to study if Aβ aggregation may induce tau hyperphosphorylation inside synapses to trigger tauopathy. We isolated synaptosomes from mouse brains for phosphoproteomics analysis, using immobilized metal ion affinity chromatography to enrich all phosphopeptides. Then we used label-free liquid chromatography-tandem mass spectrometry method to quantify phosphorylation sites on tau protein. In both APP/PS1 and control mice, 19 tau phosphosites were consistently identified in mouse tau protein, 16 of which are conserved in human tau. The overall pattern suggests a subtle increase in phosphorylation in APP/PS1 mice compared to wild type littermates, with 8 sites showing statistically significant increased level. These upregulated sites are located in flanking regions of the microtubule binding domain, possibly increasing electrostatic repulsion between tau and the microtubule surface. Further confirmation using immunoblotting verified hyperphosphorylation at 5 of these sites in the cytosol (T181, S199/S202, S396/S404), and 2 sites in synaptosomes (S199/S202). We also checked a kinases (GSK3β) and a phosphatase (calcineurin Aα) commonly associated with tau regulation but found no significant changes in their levels or modifications. Our data suggest that synaptic tau pathology induced by Aβ may be initiated by phosphorylation in the central region of the protein (S199/S202), which may be a potential target for early biomarker detection or therapeutic intervention.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
Table of Contents v
LIST OF FIGURES vii
LIST OF TABLES ix
ABBREVIATIONS x
Chapter 1 Introduction 1
1.1 Cell types in the brain 1
1.2 The chemical synapse 3
1.3 Alzheimer disease and synaptic dysfunction 5
1.4 Phosphorylation pattern of tau protein 7
1.5 Mass spectrometry for phosphoproteomics 13
1.6 Label-free quantification in mass spectrometry 17
1.7 Aim of this study 20
Chapter 2 MATERIALS AND METHODS 21
2.1 Materials 21
2.1.1 Mice for synaptosome preparation 21
2.1.2 Antibodies 21
2.1.3 Chemicals 22
2.2 Synaptosome preparation 22
2.3 LC-MS/MS analysis 23
2.3.1 Gel-assisted Digestion 23
2.3.2 IMAC Procedure 24
2.3.3 LC-MS/MS Analysis 24
2.3.4 Database Search 25
2.3.5 Quantitative analysis by IDEAL-Q 25
2.4 Western blot 26
2.4.1 SDS-PAGE using home-made gradient gel 26
2.4.2 Western transfer and blotting 27
Chapter 3 RESULTS 28
3.1 Phosphorylation sites of tau 28
3.2 Label free quantification of tau phosphopeptides 31
3.3 Hierarchical clustering analysis 44
3.4 Phosphosite verification by Western blotting 48
3.5 Kinase and phosphatase analysis 53
Chapter 4 CONCLUSION 56
REFERENCE 57
APPENDEX 69
Synaptosome preparation 69
SDS-PAGE using home-made gradient gel 72
Western transfer and blotting 75


1.Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S., and Milligan, R.A. (2002). MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J. Cell Biol. 157, 1187-1196.
2.Andrews-Zwilling, Y., Bien-Ly, N., Xu, Q., Li, G., Bernardo, A., Yoon, S.Y., Zwilling, D., Yan, T.X., Chen, L., and Huang, Y. (2010). Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J. Neurosci. 30, 13707-13717.
3.Arendt, T., Stieler, J., Strijkstra, A.M., Hut, R.A., Rudiger, J., Van der Zee, E.A., Harkany, T., Holzer, M., and Hartig, W. (2003). Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J. Neurosci. 23, 6972-6981.
4.Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, K., Knight, J., Dickson, D., et al. (2007). Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650-3662.
5.Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Wang, C., and Huang, Y. (2011). C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proc. Natl. Acad. Sci. 108, 4236-4241.
6.Blanchard, V., Moussaoui, S., Czech, C., Touchet, N., Bonici, B., Planche, M., Canton, T., Jedidi, I., Gohin, M., Wirths, O., et al. (2003). Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp. Neurol. 184, 247-263.
7.Boutajangout, A., Authelet, M., Blanchard, V., Touchet, N., Tremp, G., Pradier, L., and Brion, J.P. (2004). Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer''s disease mutants of APP and presenilin-1. Neurobiol. Dis. 15, 47-60.
8.Braak, E., Griffing, K., Arai, K., Bohl, J., Bratzke, H., and Braak, H. (1999). Neuropathology of Alzheimer''s disease: what is new since A. Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci. 249 Suppl 3, 14-22.
9.Brodal, P. (2010). The central nervous system : structure and function, 4th ed. (New York: Oxford University Press).
10.Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95-130.
11.Busciglio, J., Lorenzo, A., Yeh, J., and Yankner, B.A. (1995). beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879-888.
12.Cho, J.H., and Johnson, G.V. (2003). Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J. Biol. Chem. 278, 187-193.
13.Cohen, T.J., Guo, J.L., Hurtado, D.E., Kwong, L.K., Mills, I.P., Trojanowski, J.Q., and Lee, V.M. (2011). The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252.
14.Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P., and Yang, A.J. (2006). Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825-10838.
15.Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
16.de Calignon, A., Polydoro, M., Suarez-Calvet, M., William, C., Adamowicz, D.H., Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., et al. (2012). Propagation of tau pathology in a model of early Alzheimer''s disease. Neuron 73, 685-697.
17.De Felice, F.G., Wu, D., Lambert, M.P., Fernandez, S.J., Velasco, P.T., Lacor, P.N., Bigio, E.H., Jerecic, J., Acton, P.J., Shughrue, P.J., et al. (2008). Alzheimer''s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol. Aging 29, 1334-1347.
18.Duff, K., Knight, H., Refolo, L.M., Sanders, S., Yu, X., Picciano, M., Malester, B., Hutton, M., Adamson, J., Goedert, M., et al. (2000). Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87-98.
19.Duff, K., and Suleman, F. (2004). Transgenic mouse models of Alzheimer''s disease: how useful have they been for therapeutic development? Brief Funct. Genomic. Proteomic. 3, 47-59.
20.Fanara, P., Husted, K.H., Selle, K., Wong, P.Y., Banerjee, J., Brandt, R., and Hellerstein, M.K. (2010). Changes in microtubule turnover accompany synaptic plasticity and memory formation in response to contextual fear conditioning in mice. Neuroscience 168, 167-178.
21.Ferreira, A., Lu, Q., Orecchio, L., and Kosik, K.S. (1997). Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar A beta. Mol. Cell. Neurosci. 9, 220-234.
22.Forde, J.E., and Dale, T.C. (2007). Glycogen synthase kinase 3: a key regulator of cellular fate. Cell. Mol. Life Sci. 64, 1930-1944.
23.Gong, C.X., Liu, F., Grundke-Iqbal, I., and Iqbal, K. (2005). Post-translational modifications of tau protein in Alzheimer''s disease. J. Neural Transm. 112, 813-838.
24.Gong, C.X., Singh, T.J., Grundke-Iqbal, I., and Iqbal, K. (1994). Alzheimer''s disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J. Neurochem. 62, 803-806.
25.Greenberg, S.G., Davies, P., Schein, J.D., and Binder, L.I. (1992). Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J. Biol. Chem. 267, 564-569.
26.Gu, Y., Oyama, F., and Ihara, Y. (1996). Tau is widely expressed in rat tissues. J Neurochem. 67, 1235-1244.
27.Han, C.L., Chien, C.W., Chen, W.C., Chen, Y.R., Wu, C.P., Li, H., and Chen, Y.J. (2008). A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics 7, 1983-1997.
28.Hanger, D.P., Betts, J.C., Loviny, T.L., Blackstock, W.P., and Anderton, B.H. (1998). New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer''s disease brain using nanoelectrospray mass spectrometry. J. Neurochem. 71, 2465-2476.
29.Hanger, D.P., Byers, H.L., Wray, S., Leung, K.Y., Saxton, M.J., Seereeram, A., Reynolds, C.H., Ward, M.A., and Anderton, B.H. (2007). Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem. 282, 23645-23654.
30.Hanger, D.P., and Noble, W. (2011). Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int. J. Alzheimers Dis. 2011, 352805.
31.Hasegawa, M., Morishima-Kawashima, M., Takio, K., Suzuki, M., Titani, K., and Ihara, Y. (1992). Protein sequence and mass spectrometric analyses of tau in the Alzheimer''s disease brain. J. Biol. Chem. 267, 17047-17054.
32.Huang, Y. (2006). Molecular and cellular mechanisms of apolipoprotein E4 neurotoxicity and potential therapeutic strategies. Curr. Opin. Drug Discov. Devel. 9, 627-641.
33.Huang, Y. (2010). Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer''s disease. Trends Mol. Med. 16, 287-294.
34.Huang, Y., and Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204-1222.
35.Hunter, T. (2000). Signaling--2000 and beyond. Cell 100, 113-127.
36.Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. 77, 1311-1315.
37.Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., Chieng, B.C., Christie, M.J., Napier, I.A., et al. (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer''s disease mouse models. Cell 142, 387-397.
38.Jessell, T.M., and Kandel, E.R. (1993). Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72 Suppl, 1-30.
39.Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., and Selkoe, D.J. (2011). Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U. S. A. 108, 5819-5824.
40.Kim, J., Basak, J.M., and Holtzman, D.M. (2009a). The role of apolipoprotein E in Alzheimer''s disease. Neuron 63, 287-303.
41.Kim, Y., Lee, Y.I., Seo, M., Kim, S.Y., Lee, J.E., Youn, H.D., Kim, Y.S., and Juhnn, Y.S. (2009b). Calcineurin dephosphorylates glycogen synthase kinase-3 beta at serine-9 in neuroblast-derived cells. J. Neurochem. 111, 344-354.
42.King, M.E., Kan, H.M., Baas, P.W., Erisir, A., Glabe, C.G., and Bloom, G.S. (2006). Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J. Cell Biol. 175, 541-546.
43.Klein, C., Kramer, E.M., Cardine, A.M., Schraven, B., Brandt, R., and Trotter, J. (2002). Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci. 22, 698-707.
44.Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T., and Oda, Y. (2005). Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal. Chem. 77, 5144-5154.
45.Koob, A. (2009). The root of thought : unlocking glia--the brain cell that will help us sharpen our wits, heal injury, and treat brain disease (Upper Saddle River, N.J.: FT Press).
46.Ksiezak-Reding, H., Morgan, K., Mattiace, L.A., Davies, P., Liu, W.K., Yen, S.H., Weidenheim, K., and Dickson, D.W. (1994). Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am. J. Pathol. 145, 1496-1508.
47.Kurt, M.A., Davies, D.C., Kidd, M., Duff, K., and Howlett, D.R. (2003). Hyperphosphorylated tau and paired helical filament-like structures in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Neurobiol. Dis. 14, 89-97.
48.Lee, G., Thangavel, R., Sharma, V.M., Litersky, J.M., Bhaskar, K., Fang, S.M., Do, L.H., Andreadis, A., Van Hoesen, G., and Ksiezak-Reding, H. (2004). Phosphorylation of tau by fyn: implications for Alzheimer''s disease. J. Neurosci. 24, 2304-2312.
49.Lee, V.M., Goedert, M., and Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121-1159.
50.Li, T., Hawkes, C., Qureshi, H.Y., Kar, S., and Paudel, H.K. (2006). Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3beta. Biochemistry 45, 3134-3145.
51.Lu, X., and Zhu, H. (2005). Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics 4, 1948-1958.
52.Mahley, R.W., Weisgraber, K.H., and Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer''s disease. Proc. Natl. Acad. Sci. 103, 5644-5651.
53.Meyer-Luehmann, M., Mielke, M., Spires-Jones, T.L., Stoothoff, W., Jones, P., Bacskai, B.J., and Hyman, B.T. (2009). A reporter of local dendritic translocation shows plaque- related loss of neural system function in APP-transgenic mice. J. Neurosci. 29, 12636-12640.
54.Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Titani, K., and Ihara, Y. (1995a). Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270, 823-829.
55.Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Yoshida, H., Watanabe, A., Titani, K., and Ihara, Y. (1995b). Hyperphosphorylation of tau in PHF. Neurobiol. Aging 16, 365-371; discussion 371-380.
56.Morris, J.C., Roe, C.M., Grant, E.A., Head, D., Storandt, M., Goate, A.M., Fagan, A.M., Holtzman, D.M., and Mintun, M.A. (2009). Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol. 66, 1469-1475.
57.Morris, M., Maeda, S., Vossel, K., and Mucke, L. (2011). The many faces of tau. Neuron 70, 410-426.
58.Nadim, F., and Bucher, D. (2014). Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29C, 48-56.
59.Oda, Y., Nagasu, T., and Chait, B.T. (2001). Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379-382.
60.Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502.
61.Palop, J.J., Chin, J., and Mucke, L. (2006). A network dysfunction perspective on neurodegenerative diseases. Nature 443, 768-773.
62.Perez, M., Santa-Maria, I., Gomez de Barreda, E., Zhu, X., Cuadros, R., Cabrero, J.R., Sanchez-Madrid, F., Dawson, H.N., Vitek, M.P., Perry, G., et al. (2009). Tau--an inhibitor of deacetylase HDAC6 function. J. Neurochem. 109, 1756-1766.
63.Porzig, R., Singer, D., and Hoffmann, R. (2007). Epitope mapping of mAbs AT8 and Tau5 directed against hyperphosphorylated regions of the human tau protein. Biochem. Biophys. Res. Commun. 358, 644-649.
64.Ramon y Cajal, S. (1909). Histologie du systeme nerveux de l''homme &; des vertebres Vol. 1 (Paris: Maloine).
65.Reese, L.C., and Taglialatela, G. (2011). A role for calcineurin in Alzheimer''s disease. Curr. Neuropharmacol. 9, 685-692.
66.Roberson, E.D., Halabisky, B., Yoo, J.W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G.Q., et al. (2011). Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer''s disease. J. Neurosci. 31, 700-711.
67.Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q., and Mucke, L. (2007). Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer''s disease mouse model. Science 316, 750-754.
68.Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss, V.L., Spek, E.J., Zhang, H., Zha, X.M., Polakiewicz, R.D., and Comb, M.J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94-101.
69.Sahara, N., Maeda, S., and Takashima, A. (2008). Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr. Alzheimer Res. 5, 591-598.
70.Samura, E., Shoji, M., Kawarabayashi, T., Sasaki, A., Matsubara, E., Murakami, T., Wuhua, X., Tamura, S., Ikeda, M., Ishiguro, K., et al. (2006). Enhanced accumulation of tau in doubly transgenic mice expressing mutant betaAPP and presenilin-1. Brain Res. 1094, 192-199.
71.Santacruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., et al. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476-481.
72.Serrano-Pozo, A., Frosch, M.P., Masliah, E., and Hyman, B.T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1, a006189.
73.Song, J.S., and Yang, S.D. (1995). Tau protein kinase I/GSK-3 beta/kinase FA in heparin phosphorylates tau on Ser199, Thr231, Ser235, Ser262, Ser369, and Ser400 sites phosphorylated in Alzheimer disease brain. J. Protein Chem. 14, 95-105.
74.Steen, H., Kuster, B., Fernandez, M., Pandey, A., and Mann, M. (2002). Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031-1039.
75.Sudhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903-911.
76.Tai, H.C., Serrano-Pozo, A., Hashimoto, T., Frosch, M.P., Spires-Jones, T.L., and Hyman, B.T. (2012). The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426-1435.
77.Tashiro, K., Hasegawa, M., Ihara, Y., and Iwatsubo, T. (1997). Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 8, 2797-2801.
78.Thies, W., Bleiler, L., and Alzheimer''s, A. (2013). 2013 Alzheimer''s disease facts and figures. Alzheimers Dement. 9, 208-245.
79.Thingholm, T.E., Jensen, O.N., and Larsen, M.R. (2009). Analytical strategies for phosphoproteomics. Proteomics 9, 1451-1468.
80.Thingholm, T.E., Jorgensen, T.J., Jensen, O.N., and Larsen, M.R. (2006). Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1, 1929-1935.
81.Thomas, S.N., Funk, K.E., Wan, Y., Liao, Z., Davies, P., Kuret, J., and Yang, A.J. (2012). Dual modification of Alzheimer''s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. 123, 105-117.
82.Tokutake, T., Kasuga, K., Yajima, R., Sekine, Y., Tezuka, T., Nishizawa, M., and Ikeuchi, T. (2012). Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J. Biol. Chem. 287, 35222-35233.
83.Trojanowski, J.Q., Schuck, T., Schmidt, M.L., and Lee, V.M. (1989). Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37, 209-215.
84.Tsai, C.F., Hsu, C.C., Hung, J.N., Wang, Y.T., Choong, W.K., Zeng, M.Y., Lin, P.Y., Hong, R.W., Sung, T.Y., and Chen, Y.J. (2014). Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal. Chem. 86, 685-693.
85.Tsai, C.F., Wang, Y.T., Chen, Y.R., Lai, C.Y., Lin, P.Y., Pan, K.T., Chen, J.Y., Khoo, K.H., and Chen, Y.J. (2008). Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J. Proteome Res. 7, 4058-4069.
86.Tsou, C.C., Tsai, C.F., Tsui, Y.H., Sudhir, P.R., Wang, Y.T., Chen, Y.J., Chen, J.Y., Sung, T.Y., and Hsu, W.L. (2010). IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol. Cell. Proteomics 9, 131-144.
87.Villen, J., Beausoleil, S.A., Gerber, S.A., and Gygi, S.P. (2007). Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. U. 104, 1488-1493.
88.Wang, Y.T., Tsai, C.F., Hong, T.C., Tsou, C.C., Lin, P.Y., Pan, S.H., Hong, T.M., Yang, P.C., Sung, T.Y., Hsu, W.L., et al. (2010). An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J. Proteome Res. 9, 5582-5597.
89.Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., and Kirschner, M.W. (1975). A protein factor essential for microtubule assembly. Proc.Natl. Acad. SciUSA. 72, 1858-1862.
90.Wu, H.Y., Tomizawa, K., and Matsui, H. (2007). Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med. Okayama 61, 123-137.
91.Wu, H.Y., Tomizawa, K., Oda, Y., Wei, F.Y., Lu, Y.F., Matsushita, M., Li, S.T., Moriwaki, A., and Matsui, H. (2004). Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J. Biol. Chem. 279, 4929-4940.
92.Xu, G., Gonzales, V., and Borchelt, D.R. (2002). Abeta deposition does not cause the aggregation of endogenous tau in transgenic mice. Alzheimer Dis. Assoc. Disord. 16, 196-201.
93.Yu, Y., Run, X., Liang, Z., Li, Y., Liu, F., Liu, Y., Iqbal, K., Grundke-Iqbal, I., and Gong, C.X. (2009). Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J. Neurochem. 108, 1480-1494.
94.Zhao, H., Chang, R., Che, H., Wang, J., Yang, L., Fang, W., Xia, Y., Li, N., Ma, Q., and Wang, X. (2013). Hyperphosphorylation of tau protein by calpain regulation in retina of Alzheimer''s disease transgenic mouse. Neurosci. Lett. 551, 12-16.
95.Zheng-Fischhofer, Q., Biernat, J., Mandelkow, E.M., Illenberger, S., Godemann, R., and Mandelkow, E. (1998). Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur. J. Biochem. 252, 542-552.
96.Zheng, W.H., Bastianetto, S., Mennicken, F., Ma, W., and Kar, S. (2002). Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115, 201-211.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔