參考文獻
1.(a) Bouhss, A.; Trunkfield, A. E.; Bugg, T. D. H.; Mengin-Lecreulx, D. FEMS Microbiol. Rev. 2008, 32, 208–233. The biosynthesis of peptidoglycan lipid-linked intermediates.
(b) van Heijenoort, J. Microbiol. Mol. Biol. Rev. 2007, 71, 620–635. Lipid intermediates in the biosynthesis of bacterial peptidoglycan.
(c) van Heijenoort, J. Nat. Prod. Rep. 2001, 18, 503–519. Recent advances in the formation of the bacterial peptidoglycan monomer unit.
2.Welzel, P. Chem. Rev. 2005, 105, 4610–4660. Syntheses around the transglycosylation step in peptidoglycan biosynthesis.
3.Schwartz, B.; Markwalder, J. A.; Seitz, S. P.; Wang, Y.; Stein, R. L. Biochemistry 2002, 41, 12552–12561. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
4.(a) Patrick, G. L., An Introduction to Medicinal Chemistry. 3rd ed.; Oxford: 2005.
(b) Bauman, R. W.; 編譯: 李振登, 2008, 微生物學(精華版).
5.Lovering, A. L.; de Castro, L. H.; Lim, D.; Strynadka, N. C. J. Science 2007, 315, 1402–1405. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis.
6.Lovering, A. L.; Gretes, M.; Strynadka, N. C. J. Curr. Opin. Struc. Biology 2008, 18, 534–543. Structural details of the glycosyltransferase step of peptidoglycan assembly.
7.王仁聰,合成&;#32957;聚醣轉醣&;#37238;之Lipid II受質與發展過渡態模擬抑制劑,國立台灣大學化學所博士論文,2010.8.Yuan, Y.; Fuse, S.; Ostash, B.; Sliz, P.; Kahne, D.; Walker, S. ACS Chem. Biol. 2010, 3, 429–436. Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design.
9.Sung, M. T.; Lai, Y. T.; Huang, C. Y.; Chou, L. Y.; Shih, H. W.; Cheng, W. C.; Wong, C. H.; Ma, C. Proc. Natl. Acad. Sci. USA 2009, 106, 8824–8829. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
10.Huang, C.Y.; Shih, H. W.; Lin, L. Y.; Tien, Y. W.; Cheng, T. J. R.; Cheng, W. C.; Wong, C. H.; Ma, C. Proc. Natl. Acad. Sci. USA 2012, 109, 6496–6501. Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
11.Perlstein, D. L.; Zhang, Y.; Wang, T. S.; Kahne, D. E.; Walker, S. J. Am. Chem. Soc. 2007, 129, 12674–12675. The direction of glycan chain elongation by peptidoglycan glycosyltransferases.
12.Hara, H.; Suzuki, H. FEBS Lett. 1984, 168, 155–160. A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli.
13.Van Heijenoort, Y.; Gomez, M.; Derrien, M.; Ayala, J.; van Heijenoort, J. J. Bacteriol. 1992, 174, 3549–3557. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3.
14.Branstrom, A. A.; Midha, S.; Goldman, R. C. FEMS Microbiol. Lett. 2000, 191, 187–190. In situ assay for identifying inhibitors of bacterial transglycosylase.
15.Schwartz, B.; Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638–11643. Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli.
16.Schwartz, B.; Markwalder, J. A.; Seitz, S. P.; Wang, Y.; Stein, R. L. Biochemistry 2002, 41, 12552–12561. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
17.Liu, C. Y.; Guo, C. W.; Chang, Y. F.; Wang, J. T.; Shih, H. W.; Hsu, Y. F.; Chen, C. W.; Chen, S. K.; Wang, Y. C.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Fang, J. M.; Cheng, W. C. Org. Lett. 2010, 12, 1608–1611. Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety.
18.Ye, X. Y.; Lo, M. C.; Brunner, L.; Walker, D.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2001, 123, 3155–3156. Better substrates for bacterial transglycosylases.
19.Stembera, K.; Vogel, S.; Buchynskyy, A.; Ayala, J. A.; Welzel, P. ChemBioChem 2002, 3, 559–565. A surface plasmon resonance analysis of the interaction between the antibiotic moenomycin A and penicillin-binding protein 1b.
20.Anikin, A.; Buchynskyy, A.; Kempin, U.; Stembera, K.; Welzel, P.; Lantzsch, G. Angew. Chem. Int. Ed. Engl. 1999, 38, 3703–3707. Membrane anchoring and intervesicle transfer of a derivative of the antibiotic moenomycin A.
21.Cheng, T. J. R.; Sung, M. T.; Liao, H. Y.; Chang, Y. F.; Chen, C. W.; Huang, C. Y.; Chou, L. Y.; Wu, Y. D.; Chen, Y.; Cheng, Y. S. E.; Wong, C. H.; Ma, C.; Cheng, W. C. Proc. Natl. Acad. Sci. USA 2008, 105, 431–436. Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics.
22.Huang, S. H.; Wu, W. S.; Huang, L.Y.; Huang, W. F.; Fu, W. C.; Chen, P. T.; Fang, J. M.; Cheng, W. C.; Cheng, T. J. R.; Wong, C. H. J. Am. Chem. Soc. 2013, 135, 17078-17089. New continuous fluorometric assay for bacterial transglycosylase using forsterresonance energy transfer.
23.Walsh, C. T.; Fisher, S. L.; Park, I. S.; Prahalad, M.; Wu, Z. Chem. Biol. 1996, 3, 21–28. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story.
24.Welzel, P.; Kunisch, F.; Kruggel, F.; Stein, H.; Scherkenbeck, J.; Hiltmann, A.; Duddeck, H.; Muller, D.; Maggio, J. E.; Fehlhaber, H.-W.; Seibert, G.; van Heijenoort, Y.; van Heijenoort, J. Tetrahedron 1987, 43, 585–598. Moenomycin A: minimum structural requirements for biological activity.
25.Fuse, S.; Tsukamoto, H.; Yuan, Y.; Andrew Wang, T.-S.; Zhang, Y.; Bolla, M.; Walker, S.; Sliz, P.; Kahne, D. ACS Chem. Biol. 2010, 5, 701–711. Functional and structural analysis of a key region of the cell wall inhibitor moenomycin.
26.Sofia, M. J.; Allanson, N.; Hatzenbuhler, N. T.; Jain, R.; Kakarla, R.; Kogan, N.; Liang, R.; Liu, D. S.; Silva, D. J.; Wang, H. M.; Gange, D.; Anderson, J.; Chen, A.; Chi, F.; Dulina, R.; Huang, B. W.; Kamau, M.; Wang, C. W.; Baizman, E.; Branstrom, A.; Bristol, N.; Goldman, R.; Han, K. H.; Longley, C.; Midha, S.; Axelrod, H. R. J. Med. Chem. 1999, 42, 3193–3198. Discovery of novel disaccharide antibacterial angents using a combinatorial library approach.
27.Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Bioorg. Med. Chem. 2004, 12, 6473–6494. Synthesis of mono- and disaccharide analogs of moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b.
28.Adachi, M.; Zhang, Y.; Leimkuhler, C.; Sun, B. Y.; LaTour, J. V.; Kahne, D. E. J. Am. Chem. Soc. 2006, 128, 14012–14013. Degradation and reconstruction of moenomycin A and derivatives: dissecting the function of the isoprenoid chain.
29.Cheng, T. J. R.; Wu, Y. T.; Yang, S. T.; Lo, K. H.; Chen, S. K.; Chen, Y. H.; Huang, W. I.; Yuan, C. H.; Guo, C. W.; Huang, L. Y.; Chen, K. T.; Shih, H. W.; Cheng, Y. S. E.; Cheng, W. C.; Wong, C. H. Bioorg. Med. Chem. 2010, 18, 8512–8529. High-throughput identi&;#64257;cation of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase.
30.Shih, H. W.; Chen, K. T.; Chen, S. K.; Huang, C. Y.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Cheng, W. C. Org. Biomol. Chem. 2010, 8, 2586–2593. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
31.張容華,細菌轉醣化之研究:設計及合成轉醣&;#37238;抑制劑,國立台灣大學化學所碩士論文,2011.32.鄭&;#32137;蓉,設計與合成細菌轉糖&;#37238;抑制劑之研究,國立台灣大學化學所碩士論文,2013.
33.Imai, Y. N.; Inoue, Y.; Nakanishi, I.; Kitaura, K. J. Comput. Chem. 2009, 30, 2267–2276. Amide–π interactions between formamide and benzene.
34.Hecker, S. J.; Minich, M. L.; Lackey, K. J. Org. Chem. 1990, 55, 4904–4911. Synthesis of compounds designed to inhibit bacterial cell wall transglycosylation.
35.Qiao, L.; Vederas, J. C. J. Org. Chem. 1993, 58, 3480–3482. Synthesis of a C-phosphonate disaccharide as a potential inhibitor of peptidoglycan polymerization by transglycosylase.
36.Pandit, C. R.; Mani, N. S. Synthesis 2009, 23, 4032–4036. Expedient reductive amination of aldehyde bisulfite adducts.