(3.238.186.43) 您好!臺灣時間:2021/02/28 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡睿允
研究生(外文):Jun-Yun Tsai
論文名稱:含五苯荑骨架之聚苯胺合成與作為超電容電極材料之研究
論文名稱(外文):Synthesis of Pentiptycene-incorporated Polyanilines for Application as the Electrode Materials of Supercapacitors
指導教授:楊吉水
指導教授(外文):Jye-Shane Yang
口試委員:張哲政鄭淑芬
口試委員(外文):Che-Chen ChangSoo-Fin Cheng
口試日期:2014-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:145
中文關鍵詞:超電容器導電高分子聚苯胺五苯荑分子
外文關鍵詞:supercapacitorsconducting polymerspentiptycenepolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨要引入剛硬的五苯荑骨架於聚苯胺的高分子鏈中,以提升聚苯胺高分子整體的剛性和應力穩定性,來增加其作為超電容器電極材料的穩定度。同時,具有三維立體結構的五苯荑骨架,能擴薄膜的表面積,使材料能儲存更多的電荷。因此,我們設計並合成出具有胺基的五苯荑衍生物APAN和TAP以電化學氧化聚合的方式與苯胺單體於ITO工作電極表面進行共聚合反應,分別得到PPANI及SPPANI兩種共聚合導電高分子作為超電容器電極材料,並與聚苯胺 (PANI)進行比較。此外,我們也將PCBM加入溶液中進行共聚合形成PPANI-PCBM和SPPANI-PCBM參雜薄膜,藉著兩種分子間的堆疊和排列,來使超電容器達到更好的表現。
我們利用循環伏安法 (CV)、恆電流充放電法 (CP)及電化學阻抗光譜 (EIS)對電化學聚合的導電高分子ITO電極進行電化學分析,發現SPPANI及PPANI相較於PANI具有較高的單位電容、較佳的循環穩定度,和具有較低系統內電阻,能有效地降低高分子的電阻和減少離子進出的阻力。藉由掃描式電子顯微鏡 (SEM)和穿透式電子顯微鏡 (TEM),我們觀察到SPPANI和PPANI具有不同於PANI奈米結構,亦即PANI呈現的纖維狀鬆散的結構,而SPPANI和PPANI呈現縝密的顆粒狀結構,其中SPPANI具有近乎圓球狀的結構。在PCBM的存在下,SEM影像觀察PPANI-PCBM具有較大的顆粒狀,而SPPANI-PCBM沒有太大的形貌改變。在電化學性質上,PPANI-PCBM的單位電容、能量密度和循環穩定度也較PPANI明顯提升,因此推論PCBM與APAN分子具有良好超分子作用力,有助於超電容器電極性能的提升。


Supercapacitors have evolved as the premier choice for energy storage devices because of high power density and fast charge/discharge ability. To achieve high charge capacitance, the nature of the electrodes should be of high conductivity, surface area, and electrochemical stability. Conducting polymers such as polyaniline (PANI) have the advantages of low cost and low environmental impacts. However, the electrochemical stability is generally a limitation of conducting polymers. To solve the problem, we have introduced the rigid and nonplanar pentiptycene scaffolds to PANI to improve the electrochemical stability and meanwhile to enhance the capacitance. Two pentiptycene derivatives APAN and TAP were prepared and electrocheical copolymerization of them with aniline on ITO led to the linear PPANI and star-shaped SPPANI, respectively. In the presence of PCBM during the polymerization, the polymer films correspond to SPPANI-PCBM and PPANI-PCBM, respectively.
According to cyclic voltammetry, chronopotentiometry and electrochemical impendance spectroscopy, PPANI and SPPANI display higher specific capacitance, energy density, stability and lower electrical and ionic resistance than PANI. Unlike the fibrillar and loose morphology probed by TEM and SEM for PANI, PPANI and SPPANI display granular-like and compact morphology. When PCBM is present in the solution for electrochemical polymerization, the SEM images of PPANI-PCBM show larger size of particles. In contrast, the morphology of SPPANI-PCBM is not much different from that of SPPANI. Since PPANI-PCBM displays improved specific capacitance, energy density, and stability, it appears that the supermolecular interactions between APAN and PCBM play an important role in the improved supercapacitor properties.


謝誌i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xiii
附圖目錄 xiv
結構圖列表 xvi
第一章 序論 1
1-1能源儲存 1
1-2超電容器簡介 3
1-2-1超電容器的研究背景 3
1-2-2電化學雙層電容器 5
1-2-3擬電容器 7
1-2-4混合式電容器 13
1-3導電高分子 14
1-3-1導電高分子簡介 14
1-3-2共軛導電高分子的發展 15
1-3-3共軛導電高分子應用於超電容器 16
1-4聚苯胺 19
1-4-1聚苯胺簡介 19
1-4-2聚苯胺的導電性 20
1-4-3聚苯胺的奈米結構 23
1-4-4聚苯胺的合成方式 27
1-5超電容器的電化學分析 31
1-5-1電化學分析簡介 31
1-5-2循環伏安法 31
1-5-3恆電流充放電法 32
1-5-4電化學阻抗光譜 33
1-6聚苯胺在超電容器的應用 37
1-6-1聚苯胺超電容器的限制和改善 37
1-6-2奈米結構和表面性質的改善 38
1-6-2混合式超電容器的利用 40
1-6-3聚苯胺高分子鏈的本質的改變 43
1-7苯荑之化學 49
1-7-1苯荑分子應用於高分子之研究背景 49
1-7-2苯荑分子之結構與性質 49
1-7-2苯荑分子之結構與性質 50
1-7-3五苯荑&;#37260;之官能化 51
1-7-4苯荑分子於共軛高分子之應用 53
1-8研究動機 55
第二章 結果與討論 59
2-1化合物之合成 59
2-1-1含苯胺五苯荑系列化合物之分子設計概念 59
2-1-2目標化合物APAN和TAP之合成 60
2-2含胺基五苯荑單體分子的光物理及電化學性質 62
2-2-1單體之吸收光譜 62
2-2-2單體之電化學性質與氧化電位比較 63
2-2-3單體在酸性條件下之電化學性質與氧化電位比較 64
2-3 APAN、TAP與苯胺單體電化學共聚合高分子薄膜 65
2-3-1 PANI、PPANI及SPPANI之循環伏安法電聚合 67
2-3-2 PANI、PPANI及SPPANI之電化學聚合定量 71
2-4 聚苯胺高分子薄膜之奈米結構和表面形態與其生成反應機制 73
2-4-1 PANI、PPANI及SPPANI之TEM影像圖 74
2-4-2 PANI、PPANI及SPPANI之SEM影像圖 76
2-4-3 PANI、PPANI及SPPANI之聚苯胺高分子粒子形態分析 79
2-5 聚苯胺高分子薄膜作為超電容器電極材料之電化學分析 80
2-5-1 電解質濃度與超電容器電極電容之關係 80
2-5-2 聚苯胺高分子之超電容器電極循環伏安法分析 81
2-5-3 聚苯胺高分子之超電容器電極恆電流充放電法分析 82
2-5-4 聚苯胺高分子之超電容器電極電化學阻抗光譜分析 86
2-6 SPPANI-PCBM及PPANI-PCBM之超電容器電極 87
2-6-1 PPANI-PCBM和SPPANI-PCBM超電容器電極之表面形態 88
2-6-2 PPANI-PCBM和SPPANI-PCBM超電容器電極之電化學分析 89
第三章 結論 95
第四章 實驗部分 96
4-1 實驗的藥品與溶劑 96
4-2 實驗儀器 100
4-2-1化合物結構之鑑定 100
4-2-2 化合物光物理與電化學性質之量測 101
4-2-3 聚苯胺高分子超電容器電極之電化學性質之量測 103
4-2-4 聚苯胺高分子之奈米結構和其電極表面形態之量測 104
4-2-5 聚苯胺高分子薄膜質量測定 105
4-3實驗步驟 108
參考資料 118
附圖 121


1.International Energy Agency / SOT, S. P. G. L.-B.-S. G., Total Global Primary Energy Supply in Mtoe. 2010.
2.Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V., Overview of Current and Future Energy Storage Technologies for Electric Power Applications. Renew. Sustainable Energy Rev. 2009, 13, 1513-1522.
3.Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845-854.
4.Halper, M. S.; Ellenbogen, J. C. Supercapacitors: a Brief Overview; MITRE Nanosystems Group, 2006.
5.MILLER, J. R. A Brief History of Supercapacitors; 2007; pp 61-78.
6.Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
7.Pieta, P.; Obraztsov, I.; D''Souza, F.; Kutner, W., Composites of Conducting Polymers and Various Carbon Nanostructures for Electrochemical Supercapacitors. ECS J. Solid State Sci. Technol. 2013, 2, M3120-M3134.
8.Yu, A.; Chabot, V.; Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications. Taylor &; Francis: 2013.
9.Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1-12.
10.Gerard, M.; Chaubey, A.; Malhotra, B. D., Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359.
11.Bredas, J. L.; Street, G. B., Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 1985, 18, 309-315.
12.Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H., Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783-810.
13.Lota, K.; Khomenko, V.; Frackowiak, E., Capacitance Properties of Poly(3,4-ethylenedioxythiophene)/carbon Nanotubes Composites. J. Phys. Chem. Solids 2004, 65, 295-301.
14.Snook, G. A.; Chen, G. Z., The Measurement of Specific Capacitances of Conducting Polymers Using the Quartz Crystal Microbalance. J. Electroanal. Chem. 2008, 612, 140-146.
15.Stafstrom, S.; Bredas, J.; Epstein, A.; Woo, H.; Tanner, D.; Huang, W.; MacDiarmid, A., Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464-1467.
16.MacDiarmid, A. G., Synthetic Metals: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581-2590.
17.MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D., Polyaniline: Electrochemistry and Application to Rechargeable Batteries. 1987, 18, 393-398.
18.WEI, Y.; TANG, X.; SUN, Y., A Study of the Mechanism of Aniline Polymerization. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2385-2396.
19.Wei, Y.; Hariharan, R.; Pate1, S. A., Chemical and Electrochemical Copolymerization of Aniline with Alkyl Ring-Substituted Anilines. Macromolecules 1990, 23, 158-164.
20.Stejskal, J.; Sapurina, I.; Trchova, M., Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation. Prog. Polym. Sci. 2010, 35, 1420-1481.
21.Kr&;#305;z, J.; Konyushenko, E. N.; Trchov’a, M.; Stejskal, J., NMR Investigation of Aniline Oligomers Produced in the Oxidation of Aniline in Alkaline Medium. Polym. Int. 2011, 60, 1296–1302.
22.Stejskal, J.; Trchova, M., Aniline Oligomers Versus Polyaniline. Polym. Int. 2012, 61, 240-251.
23.Chen, W.-C.; Wen, T.-C.; Hu, C.-C.; Gopalan, A., Identification of Inductive Behavior for Polyaniline via Electrochemical Impedance Spectroscopy. Electrochim. Acta 2002, 47, 1305-1315.
24.Fusalba, F.; Goue&;#769;rec, P.; Villers, D.; Be&;#769;langer, D., Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148, A1.
25.Giri, S.; Ghosh, D.; Mandal, A.; Das, C. K., Preparation and Characterization of Zr (IV) Doped Polyaniline for Supercapacitor Application. Macromol. Symp. 2013, 327, 54-63.
26.Zhu, Z.-z.; Wang, G.-c.; Sun, M.-q.; Li, X.-w.; Li, C.-z., Fabrication and Electrochemical Characterization of Polyaniline Nanorods Modified with Sulfonated Carbon Nanotubes for Supercapacitor Applications. Electrochim. Acta 2011, 56, 1366-1372.
27.Giri, S.; Ghosh, D.; Malas, A.; Das, C. K., A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors. J. Electron. Mater. 2013, 42, 2595-2605.
28.Basnayaka, P. A.; Ram, M. K.; Stefanakos, L.; Kumar, A., High Performance Graphene-poly (o-anisidine) Nanocomposite for Supercapacitor Applications. Mater. Chem. Phys. 2013, 141, 263-271.
29.Arslan, A.; Hur, E., Supercapacitor Applications of Polyaniline and Poly(N-methylaniline) Coated Pencil Graphite Electrode. Int. J. Electrochem. Sci. 2012, 7, 12558-12572.
30.Yano, J.; Kokura, M.; Ogura, K., Electrocatalytic Behaviour of a Poly(N-methylaniline) Filmed Electrode to Hydroquinone. J. Appl. Electrochem. 1994, 24, 1164-1169.
31.Arslan, A.; Hur, E., Electrochemical Characterisation of Poly(aniline-co-N-methylaniline) and Poly(aniline-co-N-ethylaniline) Films on Pencil Graphite Electrode for Supercapacitor Applications. Aust. J. Chem. 2013, 66, 825.
32.Xiong, S.; Yang, F.; Jiang, H.; Ma, J.; Lu, X., Covalently Bonded Polyaniline/fullerene Hybrids with Coral-like Morphology for High-performance Supercapacitor. Electrochim. Acta 2012, 85, 235-242.
33.Bartlett, P.; Ryan, J.; Cohen, S., Triptycene (9,10-o-Benzenoanthracene). J. Am. Chem. Soc. 1942, 64, 2649-2653.
34.Hart, H.; Shamouilian, S.; Takehira, Y., Generalization of the Triptycene Concept. Use of Diaryne Equivalents in the Synthesis of Iptycenes. J. Org. Chem. 1981, 46, 4427-4432.
35.Clar, E., Ober die Konstitution des Anthracens (Zur Kenntnis mehrkerniger aromatischer Kohlenwasserstoffe und ihrer Abk&;nmlinge, IX. Mitteil.). Chem. Ber. 1931, 64, 1676-1688.
36.Yang, J.-S.; Swager, T. M., Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864-11873.
37.Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2005, 71, 844-847.
38.Yang, J.-S.; Jin, J.-L. Y.-X.; Sun, W.-T.; Yang, M.-C., Synthesis of New Halogenated Pentiptycene Building Blocks. Org. Lett. 2009, 11, 1429-1432.
39.Kundu, S. K.; Tan, W. S.; Yan, J. L.; Yang, J. S., Pentiptycene Building Blocks Derived from Nucleophilic Aromatic Substitution of Pentiptycene Triflates and Halides. J. Org. Chem. 2010, 75, 4640-4643.
40.Esser, B.; Swager, T. M., Detection of Ethylene Gas by Fluorescence Turn-on of a Conjugated Polymer. Angew. Chem. Int. Ed. Engl. 2010, 49, 8872-8875.
41.Veen, E. M.; Postmab, P. M.; Jonkman, H. T.; Spek, A. L.; Feringa, B. L., Solid State Organisation of C60 by Inclusion Crystallisation with Triptycenes. Chem. Commun. 1999, 1709-1710.
42.Satyanarayana, V. S.; Kessler, F.; Singh, V.; Scheffer, F. R.; Weibel, D. E.; Ghosh, S.; Gonsalves, K. E., Radiation-Sensitive Novel Polymeric Resist Materials: Iterative Synthesis and Their EUV Fragmentation Studies. ACS Appl. Mater. Interfaces 2014, 6, 4223-4232.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔