(3.239.33.139) 您好!臺灣時間:2021/03/07 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李厚寬
研究生(外文):Hou-Kuan Li
論文名稱:利用時間解析傅立葉轉換紅外光譜法研究乙醛與甲酸甲酯在308/248 nm的光解反應: 漫遊機制 vs. 過渡態機制
論文名稱(外文):Photodissociation of Acetaldehyde and Methyl Formate at 308 / 248 nm : Roaming vs. Transition State Mechanism Detected by Time-resolved Fourier Transform Infrared Spectroscopy
指導教授:林金全林金全引用關係
口試委員:張秀華陸維作
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:傅立葉轉換紅外光譜光分解乙醛甲酸甲酯漫遊機制
外文關鍵詞:TR-FTIRphotodissociationacetaldehydemethyl formateroaming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從2004年甲醛的光分解反應中被報導存在漫遊機制(roaming mechanism)
後這個主題的論文就如雨後春筍般的被發表,如乙醛(CH3CHO)、丙醛
(C2H5CHO)、甲酸甲酯(HCOOCH3)等都被發現有漫遊機制的蹤跡。他們觀察到在
H2+CO這個分子通道,CO有雙轉動分布(bi-rotational distribution),且隨著偵測轉動態的不同,兩個分布所貢獻的比例也不同,其中低轉動態的CO對應到的是一個非常低的移能。後來,經由半古典軌跡(quasi-classical trajectory)的計算也證實了如果經由ㄧ般
的途徑(過渡態機制)形成分子產物H2+CO,其CO會有較高的轉動態及移動能分
布。
本論文使用時間解析傅立葉轉換紅外光譜法研究乙醛與甲酸甲酯在308nm / 248nm下的光分解反應。其中,甲酸甲酯的研究我們有跟義大利佩魯賈大學prof. Aquilanti的研究團隊合作。在CH3OH+CO這個分子通道中,我們藉由取得1900-2200cm-1範圍的CO高解析(0.25cm-1)圖譜,並且配合光譜模擬來分析CO的內能分布。我們發現,在CO分子中v=1及2的振動態存在著雙轉動分布,我們排除其他通道產生CO的可能,並請prof. Aquilanti團隊執行半古典軌跡的計算,發現實驗與計算的結果相當吻合。而在乙醛的實驗中,我們得到CO在v=1的漫遊機制與過渡態機制的分支比,漫遊機制佔0.10

Since roaming mechanism have been reported in photolysis of formaldehyde at 2004, the papers on this topic have been published mushroomed, such as acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), methyl formate (HCOOCH3 ) etc. were found to have traces of the roaming mechanism. CO were found to be bi- rotational distribution and with the detection of different rotational states, the proportion contributed by the two mechanism are different. The low-J component of CO are correlated to a very low translational energy. Later, the quasi-classical trajectory calculations also confirmed that the conventional transition state mechanism to form molecular products H2 + CO, CO will have higher angular momentum and with substantial translational energy released.
We use time-resolved Fourier transform infrared spectroscopy to study photolysis reaction of acetaldehyde and methyl formate at 308nm / 248nm. In project of methyl formate, we collaborate with prof. Aquilanti research team in Perugia university in Italy. We obtain the range of 1900-2200cm-1 CO high-resolution (0.25cm-1) spectrum to analyze the internal energy of CO and with the aid of spectral simulation We found that the CO molecule in v = 1 and 2 are bi-rotational distribution. Prof. Aquilanti team perform quasi-classical trajectory calculations, and the experimental results and calculations are quite consistent. In acetaldehyde experiments, we got branching ratio of roaming mechanism in v=1 is 0.10±0.02. Compare to Kable’s LIF results of 0.13, which represents that the time-resolved Fourier transform infrared spectroscopy is a promising method to observe roaming reaction in the internal energy aspect.


口試委員會審定書 i
中文摘要 ii
Abstract iii
內文目錄 iv
附圖目錄 vi
第一章 緒論 1
1.1概論 1
1.2 文獻回顧 5
1.2.1 乙醛的文獻回顧 5
1.2.2 甲酸甲酯的文獻回顧 7
第二章 時間解析傅立葉轉換紅外光譜儀的原理 8
2.1 麥克森干涉儀 (Michelson interferometer) 8
2.2 干涉圖與光譜圖的處理 9
2.3 取樣方式(Undersampling) 15
2.4 相位效應(Phase effect) 16
2.5 傅立葉轉換紅外光譜儀之優勢 18
2.6 時間解析傅立葉轉換紅外光譜的採集模式 19
第三章 實驗方法與系統架設 25
3.1實驗樣品 25
3.2 雷射光解系統 26
3.3 反應腔體 27
3.4 訊號偵測和時間控制系統 29
3.5 系統校正和對光步驟 32
3.6 光譜的校正 33
第四章 實驗結果與數據分析 37
4.1 紅外放光光譜原理及振動與轉動能量計算 37
4.2 雙原子分子之振動及轉動能量計算 37
4.3 躍遷選擇率(Selection rule) 39
4.4 計算相對佈居數 40
4.5 計算振動與轉動溫度及能量 41
第五章 實驗結果與討論 44
5.1 乙醛在308nm下的光分解實驗 44
5.1.1 產生CO的通道來源 44
5.1.2 CO光譜譜線的標定 45
5.1.3 CO隨時間變化之光譜 47
5.1.4 CO的振動與轉動溫度、佈居數及能量 48
5.1.5 討論 53
5.2 甲酸甲酯在248nm下的光分解實驗 56
5.2.1 產生CO的通道來源 56
5.2.2 CO光譜譜線的標定 57
5.2.3 CO隨時間變化之光譜 58
5.2.4 CO的振動與轉動溫度、佈居數及能量 59
5.2.5 CO訊號強度與雷射能量之依存性 63
5.2.6 CO訊號強度與焠熄氣體壓力之依存性 65
5.2.7討論 67
結論 71
參考文獻 72


[1] A. Suits, Acc. Chem. Res. 41, 873( 2008).
[2] M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, J. Chem. Phys. 99, 1093 (1993).
[3] X. Zhao, R. E. Continetti, A. Yokoyama, E. J. Hinsta, and Y. T. Lee, J. Chem. Phys. 91, 4118 (1989).
[4] D. H. Mordaunt, I. R. Lambert, G. P. Morley, M. N. R. Ashfold, R. N. Dixon, C. M. Western, L. Schnieder, and K. H. Welge, J. Chem. Phys. 98, 2054 (1993).
[5] R. D. van Zee, M. F. Foltz, and C. B. Moore, J. Chem. Phys. 99, 1664 (1993).
[6] D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Chambreau, A. G. Suits, X.
Zhang, J. Rheinecker, L. B. Harding, and J. M. Bowman, science 306, 1158 (2004).
[7] S. A. Lahankar, S. D. Chambreau, D. Townsend, F. Suits, J. Farnum, X. Zhang, J. M. Bowman, and A. G. Suits, J. Chem. Phys. 125, 044303 (2006).
[8] S. A. Lahankar, S. D. Chambreau, X. Zhang, J. M. Bowman, and A. G. Suits, J. Chem. Phys. 126, 044314 (2007).
[9] X. Zhang, J. L. Rheinecker, and J. M. Bowman, J. Chem. Phys. 122, 114313 (2005).
[10] J. L. Rheinecker, X. Zhang, and J. M. Bowman, Mol. Phys. 103, 1067 (2005).
[11] X. Zhang and J. M. Bowman, Phys. Chem. Chem. Phys. 8, 321 (2006).
[12] D. U. Andrews, S. H. Kable, and M. J. T. Jordan, J. Phys. Chem. A, 117, 7631 (2013)
[13] G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, and S. H. Kable, Faraday Discuss., 157, 227 (2012).
[14] P. L. Houston and S. H. Kable, Proc. Natl. Acad. Sci., 103, 16079 (2006).
[15] L. Rubio-Lago, G. A. Amaral, A. Arregui, J. G. Izquierdo, F. Wang, D. Zaouris, T. N. Kitsopoulosac, and L. Banares, Phys. Chem. Chem. Phys., 9, 6123 (2007).
[16] P. Y. Tsai, M. H. Chao, T. Kasai, K. C. Lin, A. Lombardi, F. Palazzetti, and V. Aquilanti, Phys. Chem. Chem. Phys., 16, 2854 (2014).
[17] P. Y. Tsai, K. C. Hung, H. K. Li, and K. C. Lin, J. Phys. Chem. Lett., 5, 190 (2014).
[18] M. J. T. Jordan and S. H. Kable, Science, 335, 6072 (2012).
[19] M. L. Hause, N. Herath, R. Zhu, M. C. Lin, and A. G. Suits, Nature Chemistry, 3, 932 (2011).
[20] J. G. Calvert and J. N. Pitts, Jr., Photochemistry (John Wiley, New York, 1966).
[21] H. A. Cruse and T. P. Softley, J. Chem. Phys., 122, 124303 (2005).
[22] B. R. Heazlewood, S. J. Rowling, A. T. Maccarone, M. J. T. Jordan, and S. H. Kable, J. Chem. Phys., 130, 054310 (2009).
[23] L. Rubio-Lago, A. Garcia-Vela, A. Arregui, G. A. Amaral, and L. Banares, J. Chem. Phys., 131, 174309 (2009).
[24]G. A. Amaral, A. Arregui, L. Rubio-Lago, J. D. Rodriguez, and L. Banares,
J. Chem. Phys. 133, 064303 (2010).
[25]B. R. Heazlewood, M. J. T. Jordan, S. H. Kable, T. M. Selby, D. L. Osborn,
B. C. Shepler, B. J. Braams, and J. M. Bowman, Proc. Natl. Acad. Sci., 105, 12719 (2008).
[26] E. W. R. Steacie, Proc. R. Soc. (London), 4127, 314 (1930).
[27] D. V. S. Jain and B. S. Murwaha, Indian J. Chem., 7, 901 (1969).
[28] C. P. Davis, PhD Thesis, University of Mississippi, Oxford, Mississippi, (1983).
[29] J. S. Francisco, J. Am. Chem. Soc., 125, 10475 (2003).
[30] R. C. L. Pereira and P. C. Isolani, J. Photochem. Photobiol., A, 42, 51 (1998).
[31] S. H. Lee, J. Chem. Phys., 129, 194304 (2008).
[32] P.Y. Tsai, M. H. Chao, T. Kasai, K. C. Lin, A. Lombardi, F. Palazzetti, and V. Aquilanti, Phys. Chem. Chem. Phys., 16, 2854 (2014).
[33] A. A. Michelson, Phil. Mag., 5, 31 256 (1891).
[34] http://www.ericweisstein.com/research/thesis/node37.html
[35] R. S. Bretzlaff and T. B. Bahder, Rev. Phys. Appl., 21, 833 (1986).
[36] M. Woodward, Probability and Information Theory;Pergamon Press:New York, (1955).
[37] P. R. Griffiths, Transform Techniques in Chemistry;Plenum Press:New York, (1978).
[38] P. Fellgett, J. Phys. Radium, 19, 187, (1958).
[39] P. Jacquinot, Rep. Prog. Phys., 23, 267 (1960).
[40] J. Connes, J. Phys. Radium, 19, 197 (1958).
[41] P .R. Griffiths, B. L. Hirsehe, and C. J. Manning, Vib. Spectrosc., 19, 165(1999).
[42] 劉昱廷,碩士論文,台灣大學 (2009)。
[43] 洪楷展,碩士論文,台灣大學 (2013).
[44] http://www.bruker.com
[45] http://www.scitec.uk.com/irsources/ir-12
[46]J. R. Ferraro and L. J. Basile, Fourier transform infrared spectroscopy:applications to chemical systems;Academic Press:New York, (1978).
[47] R. P. Wayne, Principles and applications of photochemistry, Oxford University Press:Oxford [Eng.], New York, (1988).
[48] J. A. Barltrop, J. D. Coyle, Principles of photochemistry, Wiley:Chichester [Eng.], New York, (1978).
[49] C. N. Banwell and E. M. McCash, Fundamental of Molecular Spectroscopy;McGraw-Hill:London, (1994).
[50] P. F. Bernath, Spectra of atms and molecules, 2nd ed., Oxford University Press:Oxford, New York, (2005).
[51] G. Herzberg, Molecular spectra and molecular structure, 2nd ed., R.E. Krieger Pub. Co.:Malabar, Fla., (1989).
[52] http://webbook.nist.gov/chemistry/
[53] H. Liu, E. C. Lim, C. Munoz-Caro, A. Nino, R. H. Judge, and D. C. Moule, J Chem Phys, 105, 2547 (1996).
[54] J. M. Martell, H. Yu, and J. D. Goddard, Mol. Phys., 92, 497 (1997).
[55] M. H. Chao, P. Y. Tsai , and K. C. Lin, Phys. Chem. Chem. Phys., 13, 7154 (2011).
[56] G. de Wit, B. R. Heazlewood, M. S. Quinn, A. T. Maccarone, K. Nauta, S. A. Reid, M. J. T. Jordan, S. H. Kable, Faraday Discuss., 2012, 157, 227.
[57] J. S. Francisco, Chem. Phys. 237, 1 (1998).
[58] Z. Zhou, X. Cheng, X. Zhou, and H. Fu, Chem. Phys. Lett. 353, 281 (2002).
[59] B. Wang, H. Hou, and Y. Gu, J. Phys. Chem. A, 103, 8021 (1999).
[60] L. R. McCunn, K. C. Lau, M. J. Krisch, L. J. Butler, J. W Tsung, and J J. Lin, J. Phys. Chem. A, 110, 1625 (2006).







QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔