(3.238.186.43) 您好!臺灣時間:2021/03/01 15:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫瑋廷
研究生(外文):Wei-Ting Sun
論文名稱:五苯荑衍生之分子煞車系統
論文名稱(外文):Pentiptycene-Derived Molecular Brakes
指導教授:楊吉水
指導教授(外文):Jye-Shane Yang
口試委員:林英智鄭原忠趙奕姼何郡軒
口試委員(外文):Ying-Chih LinYuan-Chung ChengIto ChaoJinn-Hsuan Ho
口試日期:2014-04-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:227
中文關鍵詞:五苯荑分子煞車光異構化光誘導電子轉移防鎖死煞車
外文關鍵詞:pentiptycenemolecular brakephotoisomerizationphotoinduced electron transferanti-lock brake system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微小的機械裝置可以增加工作的效率與精確度,利用由下而上的方式研究與設計合成分子機械可以來模擬微觀世界中機械的運作方法與模式。在本篇論文中我們以具有三度空間剛硬結構的五苯荑作為轉輪,與具有光致順反異構化的二苯乙烯做為能量輸入與煞車器,將兩者結合設計與合成一系列光驅動的分子煞車1R與2R。此系列煞車分子可以藉照光反應在反式(E-1R, E-2R)與順式(Z-1R, Z-2R)間轉換,藉由反、順式的立體障礙不同使五苯荑轉輪的轉速改變,反式與順式分別代表著煞車的啟動與關閉。本論文利用改變煞車分子上取代基團來研究煞車器與轉輪間的交互作用,並增加光誘導電子轉移的機制讓分子煞車具有防鎖死煞車系統,延長煞車分子的共軛長度引入絕熱異構化的機制以改善防鎖死煞車系統的運作與增加螢光警示功能。

In this thesis, we report on design and synthesis of a series of light-driven molecular brakes 1R and 2R. The molecular brakes are constructed by the three-dimensional rigid pentiptycene structure and light responsive stilbene scaffold. The switching process between the brake-off and the brake-on states relies on the stilbene E-Z photoisomerization. We have tested different substituents on the styryl moiety and discussed the steric and electronic effects between the rotor and the brake components. By introducing the photoinduced electron transfer (PET) module, we created an anti-lock brake system (ABS). The ABS operation is improved with elongated chromophores due to adiabatic isomerization and fluorescence properties.

目錄
中文摘要 I
Abstract III
目錄 V
圖表目錄 VII
化合物的結構與名稱 XIV
第一章、 導論 1
1-1. 分子機械的概念 1
1-2. 人工分子開關與機械 4
1-3. 分子機械所使用的能源 6
1-4. 分子煞車 8
1-5. 測量分子旋轉速率的技術 17
1-6. 二苯乙烯的絕熱光致異構化 25
1-7. 五苯荑衍生分子剎車 27
1-8. 研究目的 31
第二章、 取代基在五苯荑衍生之分子煞車中的影響 33
2-1. 研究動機 33
2-2. 合成 33
2-3. 核磁共振光譜標定 38
2-4. 變溫核磁共振光譜 47
2-5. 旋轉能障與活化能參數 53
2-6. 理論計算 58
2-7. 光控轉換效率 63
2-8. 結論 67
第三章、 防鎖死煞車系統 69
3-1. 研究動機 69
3-2. 合成 70
3-3. 變溫核磁共振光譜與旋轉活化能參數 71
3-4. 光誘導電子轉移行為 76
3-5. 結論 84
第四章、 具螢光警示之防鎖死煞車系統 85
4-1. 研究動機 85
4-2. 合成 86
4-3. 變溫核磁共振光譜與旋轉活化能參數 87
4-4. 吸收與放射光譜 93
4-5. 光誘導電子轉移與量子產率 98
4-6. 運作轉換 101
4-7. 結論 102
第五章、 結論 104
第六章、 實驗部分 105
文獻發表 155
附圖 S1


1.Boyer, P. D. Energy, Life, and ATP (Nobel Lecture). Angew. Chem. Int. Ed. 1998, 37, 2296-2307.
2.Walker, J. E. ATP Synthesis by Rotary Catalysis (Nobel lecture). Angew. Chem. Int. Ed. 1998, 37, 2308-2319.
3.Wang, H. and Oster, G. Energy transduction in the F1 motor of ATP synthase. Nature 1998, 396, 279-282.
4.Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F., Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012, 41, 19-30.
5.Balzani, V., Credi, A., Raymo, F. M., Stoddart, J. F. Artificial Molecular Machines. Angew. Chem. Int. Ed. 2000, 39, 3348-3391.
6.Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T., Venturi, M. Artificial Molecular-Level Machines:&;#8201; Which Energy To Make Them Work?&;#8224;. Acc. Chem. Res. 2001, 34, 445-455.
7.Balzani, V., Credi, A., Venturi, M. Molecular Devices and Machines : Concepts and Perspectives for the nanoworld; ed.; Wiley-VCH, 2008; Vol.
8.Turro, N. J., Ramamurthy, V., Scaiano, J. C. Modern molecular photochemistry of organic molecules; ed.; University Science Books: Sausalito, Calif., 2010; Vol.
9.Irie, M. and Kato, M. Photoresponsive molecular tweezers. Photoregulated ion capture and release using thioindigo derivatives having ethylenedioxy side groups. J. Am. Chem. Soc. 1985, 107, 1024-1028.
10.Takeshita, M. and Irie, M. Photoresponsive Tweezers for Alkali Metal Ions. Photochromic Diarylethenes Having Two Crown Ether Moieties. J. Org. Chem. 1998, 63, 6643-6649.
11.Champin, B., Mobian, P., Sauvage, J. P. Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev. 2007, 36, 358-366.
12.Durola, F., Lux, J., Sauvage, J.-P. A Fast-Moving Copper-Based Molecular Shuttle: Synthesis and Dynamic Properties. Chem. Eur. J. 2009, 15, 4124-4134.
13.Korybut-Daszkiewicz, B., Wi&;#553;ckowska, A., Bilewicz, R., Domaga&;#322;a, S., Wo&;#378;niak, K. An Electrochemically Controlled Molecular Shuttle. Angew. Chem. Int. Ed. 2004, 43, 1668-1672.
14.Hawthorne, M. F., Zink, J. I., Skelton, J. M., Bayer, M. J., Liu, C., Livshits, E., Baer, R., Neuhauser, D. Electrical or Photocontrol of the Rotary Motion of a Metallacarborane. Science 2004, 303, 1849-1851.
15.Mateo-Alonso, A., Fioravanti, G., Marcaccio, M., Paolucci, F., Rahman, G. M. A., Ehli, C., Guldi, D. M., Prato, M. An electrochemically driven molecular shuttle controlled and monitored by C60. Chem. Commun. 2007, 1945-1947.
16.Balch, A. L. and Olmstead, M. M. Reactions of Transition Metal Complexes with Fullerenes (C(60), C(70), etc.) and Related Materials. Chem. Rev. 1998, 98, 2123-2166.
17.Saha, S., Flood, A. H., Stoddart, J. F., Impellizzeri, S., Silvi, S., Venturi, M., Credi, A. A redox-driven multicomponent molecular shuttle. J. Am. Chem. Soc. 2007, 129, 12159-12171.
18.Collier, C. P., Mattersteig, G., Wong, E. W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F. M., Stoddart, J. F., Heath, J. R. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch. Science 2000, 289, 1172-1175.
19.Juluri, B. K., Kumar, A. S., Liu, Y., Ye, T., Yang, Y.-W., Flood, A. H., Fang, L., Stoddart, J. F., Weiss, P. S., Huang, T. J. A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles. Acs Nano 2009, 3, 291-300.
20.R. Bryce, M., Devonport, W., M. Goldenberg, L., Wang, C. Macromolecular tetrathiafulvalene chemistry. Chem. Commun. 1998, 945-952.
21.Katz, E., Lioubashevsky, O., Willner, I. Electromechanics of a Redox-Active Rotaxane in a Monolayer Assembly on an Electrode. J. Am. Chem. Soc. 2004, 126, 15520-15532.
22.Lee, J. W., Hwang, I., Jeon, W. S., Ko, Y. H., Sakamoto, S., Yamaguchi, K., Kim, K. Synthetic Molecular Machine Based on Reversible End-to-Interior and End-to-End Loop Formation Triggered by Electrochemical Stimuli. Chem. Asian J. 2008, 3, 1277-1283.
23.Bird, C. L. and Kuhn, A. T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49-82.
24.Altieri, A., Gatti, F. G., Kay, E. R., Leigh, D. A., Martel, D., Paolucci, F., Slawin, A. M. Z., Wong, J. K. Y. Electrochemically Switchable Hydrogen-Bonded Molecular Shuttles. J. Am. Chem. Soc. 2003, 125, 8644-8654.
25.Mart&;#305;&;#769;n, E. and Weigand, R. A correlation between redox potentials and photophysical behaviour of compounds with intramolecular charge transfer: application to N-substituted 1,8-naphthalimide derivatives. Chem. Phys. Lett. 1998, 288, 52-58.
26.Fioravanti, G., Haraszkiewicz, N., Kay, E. R., Mendoza, S. M., Bruno, C., Marcaccio, M., Wiering, P. G., Paolucci, F., Rudolf, P., Brouwer, A. M., Leigh, D. A. Three State Redox-Active Molecular Shuttle That Switches in Solution and on a Surface. J. Am. Chem. Soc. 2008, 130, 2593-2601.
27.Bissell, R. A., Cordova, E., Kaifer, A. E., Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 1994, 369, 133-137.
28.Wang, Q.-C., Qu, D.-H., Ren, J., Chen, K., Tian, H. A Lockable Light-Driven Molecular Shuttle with a Fluorescent Signal. Angew. Chem. Int. Ed. 2004, 43, 2661-2665.
29.Murakami, H., Kawabuchi, A., Matsumoto, R., Ido, T., Nakashima, N. A multi-mode-driven molecular shuttle: Photochemically and thermally reactive azobenzene rotaxanes. J. Am. Chem. Soc. 2005, 127, 15891-15899.
30.Chen, N. C., Lai, C. C., Liu, Y. H., Peng, S. M., Chiu, S. H. Parking and restarting a molecular shuttle in situ. Chem. Eur. J. 2008, 14, 2904-2908.
31.Crowley, J. D., Ha&;#776;nni, K. D., Leigh, D. A., Slawin, A. M. Z. Diels&;#8722;Alder Active-Template Synthesis of Rotaxanes and Metal-Ion-Switchable Molecular Shuttles. J. Am. Chem. Soc. 2010, 132, 5309-5314.
32.Leigh, D. A., Lusby, P. J., McBurney, R. T., Symes, M. D. Improved dynamics and positional bias with a second generation palladium(II)-complexed molecular shuttle. Chem. Commun. 2010, 46, 2382-2384.
33.Zhu, L., Yan, H., Wang, X.-J., Zhao, Y. Light-Controllable Cucurbit[7]uril-Based Molecular Shuttle. J. Org. Chem. 2012, 77, 10168-10175.
34.Jimenez, M. C., Dietrich-Buchecker, C., Sauvage, J.-P. Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer. Angew. Chem. Int. Ed. 2000, 39, 3284-3287.
35.Liu, Y., Flood, A. H., Bonvallet, P. A., Vignon, S. A., Northrop, B. H., Tseng, H.-R., Jeppesen, J. O., Huang, T. J., Brough, B., Baller, M., Magonov, S., Solares, S. D., Goddard, W. A., Ho, C.-M., Stoddart, J. F. Linear Artificial Molecular Muscles. J. Am. Chem. Soc. 2005, 127, 9745-9759.
36.Chuang, C.-J., Li, W.-S., Lai, C.-C., Liu, Y.-H., Peng, S.-M., Chao, I., Chiu, S.-H. A Molecular Cage-Based [2]Rotaxane That Behaves as a Molecular Muscle. Org. Lett. 2008, 11, 385-388.
37.Dawson, R. E., Lincoln, S. F., Easton, C. J. The foundation of a light driven molecular muscle based on stilbene and [small alpha]-cyclodextrin. Chem. Commun. 2008, 0, 3980-3982.
38.Rogez, G., Ferrer Ribera, B., Credi, A., Ballardini, R., Gandolfi, M. T., Balzani, V., Liu, Y., Northrop, B. H., Stoddart, J. F. A Molecular Plug&;#8722;Socket Connector. J. Am. Chem. Soc. 2007, 129, 4633-4642.
39.Kolchinski, A. G., Busch, D. H., Alcock, N. W. Gaining control over molecular threading: benefits of second coordination sites and aqueous-organic interfaces in rotaxane synthesis. J. Chem. Soc., Chem. Commun. 1995, 0, 1289-1291.
40.Hubin, T. J. and Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 2000, 200–202, 5-52.
41.Ishow, E., Credi, A., Balzani, V., Spadola, F., Mandolini, L. A Molecular-Level Plug/Socket System: Electronic Energy Transfer from a Binaphthyl Unit Incorporated into a Crown Ether to an Anthracenyl Unit Linked to an Ammonium Ion. Chem. Eur. J. 1999, 5, 984-989.
42.Kottas, G. S., Clarke, L. I., Horinek, D., Michl, J. Artificial Molecular Rotors. Chem. Rev. 2005, 105, 1281-1376.
43.Alfonso, I., Burguete, M. I., Luis, S. V. A Hydrogen-Bonding-Modulated Molecular Rotor:&;#8201; Environmental Effect in the Conformational Stability of Peptidomimetic Macrocyclic Cyclophanes. J. Org. Chem. 2006, 71, 2242-2250.
44.Schoevaars, A. M., Kruizinga, W., Zijlstra, R. W. J., Veldman, N., Spek, A. L., Feringa, B. L. Toward a Switchable Molecular Rotor. Unexpected Dynamic Behavior of Functionalized Overcrowded Alkenes. J. Org. Chem. 1997, 62, 4943-4948.
45.Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 1999, 401, 152-155.
46.Comotti, A., Bracco, S., Valsesia, P., Beretta, M., Sozzani, P. Fast Molecular Rotor Dynamics Modulated by Guest Inclusion in a Highly Organized Nanoporous Organosilica. Angew. Chem. Int. Ed. 2010, 49, 1760-1764.
47.Dial, B. E., Rasberry, R. D., Bullock, B. N., Smith, M. D., Pellechia, P. J., Profeta, S., Shimizu, K. D. Guest-Accelerated Molecular Rotor. Org. Lett. 2010, 13, 244-247.
48.Yamauchi, K., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A. A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle. J. Org. Chem. 2010, 75, 1040-1046.
49.Jog, P. V., Brown, R. E., Bates, D. K. A Redox-Mediated Molecular Brake:&;#8201; Dynamic NMR Study of 2-[2-(Methylthio)phenyl]isoindolin-1-one and S-Oxidized Counterparts. J. Org. Chem. 2003, 68, 8240-8243.
50.Harrington, L. E., Cahill, L. S., McGlinchey, M. J. Toward an Organometallic Molecular Brake with a Metal Foot Pedal:&;#8201; Synthesis, Dynamic Behavior, and X-ray Crystal Structure of [(9-Indenyl)triptycene]chromium Tricarbonyl. Organometallics 2004, 23, 2884-2891.
51.Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y., Tobe, Y. A shuttling molecular machine with reversible brake function. Chem. Eur. J. 2008, 14, 3427-3433.
52.Hirose, K. Molecular brake systems controlled by light and heat. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 1-24.
53.Feringa, B. L. In Control of Motion:&;#8201; From Molecular Switches to Molecular Motors&;#8224;. Acc. Chem. Res. 2001, 34, 504-513.
54.Kelly, T. R. Progress toward a Rationally Designed Molecular Motor. Acc. Chem. Res. 2001, 34, 514-522.
55.Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A., Feringa, B. L. Second generation light-driven molecular motors. unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 2002, 124, 5037-5051.
56.Pijper, D., van Delden, R. A., Meetsma, A., Feringa, B. L. Acceleration of a Nanomotor:&;#8201; Electronic Control of the Rotary Speed of a Light-Driven Molecular Rotor. J. Am. Chem. Soc. 2005, 127, 17612-17613.
57.Pollard, M. M., Lubomska, M., Rudolf, P., Feringa, B. L. Controlled Rotary Motion in a Monolayer of Molecular Motors. Angew. Chem. Int. Ed. 2007, 46, 1278-1280.
58.Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R., Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nat Chem 2011, 3, 53-60.
59.Wang, J. and Feringa, B. L. Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor. Science 2011, 331, 1429-1432.
60.Yamamoto, G. Dynamic stereochemistry of molecular gears, 9-benzyltriptycene and 9-phenoxytriptycene. studied by 13C dynamic NMR spectroscopy and molecular mechanics calculations. Tetrahedron 1990, 46, 2761-2772.
61.Stevens, A. M. and Richards, C. J. A metallocene molecular gear. Tetrahedron Lett. 1997, 38, 7805-7808.
62.Clayden, J. and Pink, J. H. Concerted Rotation in a Tertiary Aromatic Amide: Towards a Simple Molecular Gear. Angew. Chem. Int. Ed. 1998, 37, 1937-1939.
63.Setaka, W., Nirengi, T., Kabuto, C., Kira, M. Introduction of Clutch Function into a Molecular Gear System by Silane&;#8722;Silicate Interconversion. J. Am. Chem. Soc. 2008, 130, 15762-15763.
64.Ogi, S., Ikeda, T., Takeuchi, M. Synthetic Molecular Gear Based on Double-Decker Porphyrin Complexes. J. Inorg. Organomet. Polym. 2013, 23, 193-199.
65.Kelly, T. R., Bowyer, M. C., Bhaskar, V., Bebbington, D., Garcia, A., Lang, F., Kim, M. H., Jette, M. P. A Molecular Brake. J. Am. Chem. Soc. 1994, 116, 3657-3658.
66.Annunziata, R., Benaglia, M., Cinquini, M., Raimondi, L., Cozzi, F. A molecular gate: control of free intramolecular rotation by application of an external signal. J. Phys. Org. Chem. 2004, 17, 749-751.
67.Zhang, D., Zhang, Q., Sua, J. H., Tian, H. A dual-ion-switched molecular brake based on ferrocene. Chem. Commun. 2009, 1700-1702.
68.Chong, Y. S., Dial, B. E., Burns, W. G., Shimizu, K. D. Covalent locking and unlocking of an atropisomeric molecular switch. Chem. Commun. 2012, 48, 1296-1298.
69.Nikitin, K., Muller-Bunz, H., Ortin, Y., McGlinchey, M. J. A Molecular Paddlewheel with a Sliding Organometallic Latch: Syntheses, X-Ray Crystal Structures and Dynamic Behaviour of [Cr(CO)3{η6-2-(9-triptycyl)indene}], and of [M(CO)3{η5-2-(9-triptycyl)indenyl}] (M=Mn, Re). Chem. Eur. J. 2009, 15, 1836-1843.
70.Dial, B. E., Pellechia, P. J., Smith, M. D., Shimizu, K. D. Proton Grease: An Acid Accelerated Molecular Rotor. J. Am. Chem. Soc. 2012, 134, 3675-3678.
71.ter Wiel, M. K. J., van Delden, R. A., Meetsma, A., Feringa, B. L. Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. Org. Biomol. Chem. 2005, 3, 4071-4076.
72.Gaede Holly, C. In Modern NMR Spectroscopy in Education; ed.; Ed.^Eds.; American Chemical Society: 2007; Vol. 969, 176-189.
73.Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63-103.
74.Jackman, L. M., Cotton, F. A., Adams, R. D. Dynamic nuclear magnetic resonance spectroscopy; ed.; Academic Press: New York,, 1975; Vol.
75.Sandstro&;#776;m, J. Dynamic NMR spectroscopy; ed.; Academic Press: London ; New York, 1982; Vol.
76.Barzaghi, M., Gamba, A., Oliva, C., Branca, M. Dynamic EPR and ENDOR spectroscopies of organic radicals. Int. Rev. Phys. Chem. 1987, 6, 315-336.
77.Von Gersdorff, J., Kirste, B., Niethammer, D., Harrer, W., Kurreck, H. EPR and ENDOR investigations of dynamic processes in sterically overcrowded phenoxyl-type galvinoxyl radicals. Magn. Reson. Chem. 1988, 26, 416-424.
78.von Borczyskowski, C., Mobius, K., Plato, M. ENDOR investigation of restricted rotation of phenyl rings in silacyclopentadiene anion radicals. J. Magn. Reson. 1975, 17, 202-211.
79.Arai, T. and Tokumaru, K. Photochemical one-way adiabatic isomerization of aromatic olefins. Chem. Rev. 1993, 93, 23-39.
80.Arai, T., Karatsu, T., Tsuchiya, M., Sakuragi, H., Tokumaru, K. Triplet energy surfaces of one-way isomerizing olefins as studied by singlet oxygen luminescence technique. Chem. Phys. Lett. 1988, 149, 161-166.
81.Saltiel, J., Waller, A., Sun, Y. P., Sears, D. F. cis-Stilbene fluorescence in solution. Adiabatic 1c*.fwdarw.1t* conversion. J. Am. Chem. Soc. 1990, 112, 4580-4581.
82.Saltiel, J., Waller, A. S., Sears Jr, D. F. Dynamics of cis-stilbene photoisomerization: the adiabatic pathway to excited trans-stilbene. J. Photochem. Photobiol. A: Chem. 1992, 65, 29-40.
83.Spalletti, A., Bartocci, G., Mazzucato, U., Galiazzo, G. Decay pathways of the first excited singlet state of cis-1-styrylpyrene. Chem. Phys. Lett. 1991, 186, 297-302.
84.Yang, J.-S., Huang, Y.-T., Ho, J.-H., Sun, W.-T., Huang, H.-H., Lin, Y.-C., Huang, S.-J., Huang, S.-L., Lu, H.-F., Chao, I. A Pentiptycene-Derived Light-Driven Molecular Brake. Org. Lett. 2008, 10, 2279-2282.
85.Chen, Y.-C., Sun, W.-T., Lu, H.-F., Chao, I., Huang, G.-J., Lin, Y.-C., Huang, S.-L., Huang, H.-H., Lin, Y.-D., Yang, J.-S. A Pentiptycene-Derived Molecular Brake: Photochemical E→Z and Electrochemical Z→E Switching of an Enone Module. Chem. Eur. J. 2011, 17, 1193-1200.
86.Yang, C.-H., Prabhakar, C., Huang, S.-L., Lin, Y.-C., Tan, W. S., Misra, N. C., Sun, W.-T., Yang, J.-S. A Redox-Gated Slow-Fast-Stop Molecular Rotor. Org. Lett. 2011, 13, 5632-5635.
87.Basheer, M. C., Oka, Y., Mathews, M., Tamaoki, N. A Light-Controlled Molecular Brake with Complete ON–OFF Rotation. Chem. Eur. J. 2010, 16, 3489-3496.
88.Eliel, E. L., Wilen, S. H., Mander, L. N. Stereochemistry of Organic Compounds; ed.; Wiley: New York, 1994; Vol.
89.Yang, J.-S. and Ko, C.-W. Pentiptycene Chemistry:&;#8201; New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem 2005, 71, 844-847.
90.Diemer, V., Chaumeil, H., Defoin, A., Fort, A., Boeglin, A., Carre, C. Syntheses of Sterically Hindered Pyridinium Phenoxides as Model Compounds in Nonlinear Optics. Eur. J. Org. Chem. 2006, 2006, 2727-2738.
91.Lide, D. R. Handbook of Chemistry and Physics; ed.; CRC Press: Baoca Raton, 1997; Vol.
92.Liu, L. and Guo, Q.-X. Isokinetic Relationship, Isoequilibrium Relationship, and Enthalpy&;#8722;Entropy Compensation. Chem. Rev. 2001, 101, 673-696.
93.Zhao, Y. and Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157-167.
94.在尋找這些構形異構物時,有下面幾個變化:在所有Z-1R中旋轉五苯荑轉輪尾端甲氧基的Csp2- Osp3鍵,位於Z-1Pr與 Z-1Bu煞車器上苯環與取代基相連的Csp2-Csp3鍵與Z-1OM煞車器上苯環與取代基相連的Csp2- Osp3鍵。在基態時Z-1H與Z-1NO有兩個構形異構物,而在Z-1OM、Z-1Pr與Z-1Bu中構形異構物則增加到八種。在五苯荑轉輪旋轉的過渡態中,Z-1H與Z-1NO只有一個構形異構物而Z-1OM、Z-1Pr與Z-1Bu有四種構形異構物。在煞車器自旋的過渡態中,Z-1H、Z-1NO與Z-1Bu的構形異構物有兩個,Z-1OM與Z-1Pr有八種不同的構形異構物。
95.Gorner, H. and Kuhn, H. J. Cis-Trans Photoisomerization of Stilbenes and Stilbene-Like Molecules. Adv. Photochem. 1995, 1-117.
96.Meier, H. The Photochemistry of Stilbenoid Compounds and Their Role in Materials Technology. Angew. Chem. Int. Ed. 1992, 31, 1399-1420.
97.Kla&;#769;n, P. and Wirz, J. Photochemistry of organic compounds : from concepts to practice; ed.; Wiley: Chichester, West Sussex, U.K., 2009; Vol.
98.Yang, J.-S. and Ko, C.-W. Pentiptycene Chemistry:&;#8201; New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2005, 71, 844-847.
99.Yang, J.-S. and Yan, J.-L. Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, 1501-1512.
100.Yang, J. S., Yan, J. L., Jin, Y. X., Sun, W. T., Yang, M. C. Synthesis of New Halogenated Pentiptycene Building Blocks. Org. Lett. 2009, 11, 1429-1432.
101.Qu, D. H. and Feringa, B. L. Controlling molecular rotary motion with a self-complexing lock. Angew. Chem. Int. Ed. 2010, 49, 1107-1110.
102.Chong, Y. S., Dial, B. E., Burns, W. G., Shimizu, K. D. Covalent locking and unlocking of an atropisomeric molecular switch. Chem. Commun. 2012, 48, 1296-1298.
103.Hub, W., Schneider, S., Dorr, F., Oxman, J. D., Lewis, F. D. Trans-Stilbene Amine Exciplexes - Behavior of the Exciplex, Solvent-Separated Radical Ion-Pair, and Free-Radical Ions. J. Am. Chem. Soc. 1984, 106, 708-715.
104.Ho, T.-I. Structure-reactivity relationship for fluorescence quenching of trans-stilbene by tertiary amines. J. Photochem. 1987, 36, 185-192.
105.Lewis, F. D. and Kultgen, S. G. Photochemical synthesis of medium-ring azalactams from N-(aminoalkyl)-2-stilbenecarboxamides. J. Photochem. Photobiol., A 1998, 112, 159-164.
106.Buruiana, E. C., Zamfir, M., Buruiana, T. Synthesis, characterization and fluorescence study of new polyacrylates containing stilbene. Eur. Polym. J. 2007, 43, 4316-4324.
107.Fornasier, R., Scrimin, P., Tecilla, P., Tonellato, U. Bolaform and classical cationic metallomicelles as catalysts of the cleavage of p-nitrophenyl picolinate. J. Am. Chem. Soc. 1989, 111, 224-229.
108.Levanon, H. and Neta, P. Electron transfer, equilibrium, and protonation in the system of cis- and trans-stilbene in 2-propanol. Chem. Phys. Lett. 1977, 48, 345-349.
109.Lewis, F. D., Wu, T., Zhang, Y., Letsinger, R. L., Greenfield, S. R., Wasielewski, M. R. Distance-Dependent Electron Transfer in DNA Hairpins. Science 1997, 277, 673-676.
110.Bissell, R. A., de Silva, A. P., Thilak, W., Fernando, M. L., Patuwathavithana, S. T., Shantha, T. K., Samarasinghe, D. Fluorescent PET (photoinduced electron transfer) indicators for solvent polarity with quasi-step functional response. Tetrahedron Lett. 1991, 32, 425-428.
111.Wiczk, W., Rzeska, A., &;#321;ukomska, J., Stachowiak, K., Karolczak, J., Malicka, J., &;#321;ankiewicz, L. Mechanism of fluorescence quenching of tyrosine derivatives by amide group. Chem. Phys. Lett. 2001, 341, 99-106.
112.Hirayama, T., Okuda, K., Nagasawa, H. A highly selective turn-on fluorescent probe for iron(ii) to visualize labile iron in living cells. Chem. Sci. 2013, 4, 1250-1256.
113.Sutariya, P. G., Pandya, A., Modi, N. R., Menon, S. K. A highly efficient PET switch on-off-on fluorescence receptor based on calix[4]arene for the selective recognition of Cd2+ and Sr2+. Analyst 2013, 138, 2244-2248.
114.Murale, D. P., Manjare, S. T., Lee, Y.-S., Churchill, D. G. Fluorescence probing of the ferric Fenton reaction via novel chelation. Chem. Commun. 2014, 50, 359-361.
115.Li, J., Zhang, C.-F., Ming, Z.-Z., Hao, G.-F., Yang, W.-C., Yang, G.-F. Coumarin-based novel fluorescent zinc ion probe in aqueous solution. Tetrahedron 2013, 69, 4743-4748.
116.Ashton, P. R., Ballardini, R., Balzani, V., Baxter, I., Credi, A., Fyfe, M. C. T., Gandolfi, M. T., Gomez-Lopez, M., Martinez-Diaz, M. V., Piersanti, A., Spencer, N., Stoddart, J. F., Venturi, M., White, A. J. P., Williams, D. J. Acid&;#8722;Base Controllable Molecular Shuttles. J. Am. Chem. Soc. 1998, 120, 11932-11942.
117.Zhang, H., Zhou, B., Li, H., Qu, D.-H., Tian, H. A Ferrocene-Functionalized [2]Rotaxane with Two Fluorophores as Stoppers. J. Org. Chem. 2012, 78, 2091-2098.
118.Qu, D. H., Wang, Q. C., Ma, X., Tian, H. A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. Chem. Eur. J. 2005, 11, 5929-5937.
119.Yang, J.-S., Chiou, S.-Y., Liau, K.-L. Fluorescence Enhancement of trans-4-Aminostilbene by N-Phenyl Substitutions:&;#8201; The “Amino Conjugation Effect”. J. Am. Chem. Soc. 2002, 124, 2518-2527.
120.Yang, J.-S., Wang, C.-M., Hwang, C.-Y., Liau, K.-L., Chiou, S.-Y. Origin of the N-methyl and N-phenyl substituent effects on the fluorescence vibronic structures of trans-4-aminostilbene and its derivatives in hexane. Photochem. Photobiol. Sci. 2003, 2, 1225-1231.
121.Koumura, N., Geertsema, E. M., Meetsma, A., Feringa, B. L. Light-Driven Molecular Rotor:&;#8201; Unidirectional Rotation Controlled by a Single Stereogenic Center. J. Am. Chem. Soc. 2000, 122, 12005-12006.
122.Muraoka, T., Kinbara, K., Aida, T. Reversible operation of chiral molecular scissors by redox and UV light. Chem. Commun. 2007, 1441-1443.
123.Coskun, A., Friedman, D. C., Li, H., Patel, K., Khatib, H. A., Stoddart, J. F. A light-gated STOP-GO molecular shuttle. J. Am. Chem. Soc. 2009, 131, 2493-2495.
124.Weist, S., Kittel, C., Bischoff, D., Bister, B., Pfeifer, V., Nicholson, G. J., Wohlleben, W., Sussmuth, R. D. Mutasynthesis of Glycopeptide Antibiotics:&;#8201; Variations of Vancomycin''s AB-Ring Amino Acid 3,5-Dihydroxyphenylglycine. J. Am. Chem. Soc. 2004, 126, 5942-5943.
125.Adams, R., MacKenzie, S., Loewe, S. Tetrahydrocannabinol Homologs with Doubly Branched Alkyl Groups in the 3-Position. XVIII1. J. Am. Chem. Soc. 1948, 70, 664-668.
126.Marsh, G. P., Parsons, P. J., McCarthy, C., Corniquet, X. G. An Efficient Synthesis of Nitroalkenes by Alkene Cross Metathesis:&;#8201; Facile Access to Small Ring Systems. Org. Lett. 2007, 9, 2613-2616.
127.Popeney, C. S., Levins, C. M., Guan, Z. Systematic Investigation of Ligand Substitution Effects in Cyclophane-Based Nickel(II) and Palladium(II) Olefin Polymerization Catalysts(1). Organometallics 2011, 30, 2432-2452.
128.Ballav, N., Schupbach, B., Dethloff, O., Feulner, P., Terfort, A., Zharnikov, M. Direct Probing Molecular Twist and Tilt in Aromatic Self-Assembled Monolayers. J. Am. Chem. Soc. 2007, 129, 15416-15417.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔