(54.236.58.220) 您好!臺灣時間:2021/02/28 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王柏堯
研究生(外文):Boyao Wang
論文名稱:使用螢光顯微鏡和流式細胞儀分析神經突觸中tau蛋白分布
論文名稱(外文):Analysis of synaptic tau protein localization by immunofluorescence microscopy and flow cytometry
指導教授:戴桓青戴桓青引用關係
指導教授(外文):Hwan-Ching Tai
口試委員:李弘文鄭菡若
口試委員(外文):Hung-Wen LiHan-Juo Cheng
口試日期:2014-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:77
中文關鍵詞:神經突觸tau蛋白螢光顯微鏡流式細胞術阿茲海默症
外文關鍵詞:synapseAlzheimer diseasetauflow cytometryimmunofluorescence microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症病患的神經纖維糾結的聚集在病人的腦中顯示會沿著腦的神經網路傳遞和蔓延,這暗示著tau 蛋白所造成的疾病可能是藉由穿透神經突觸而傳遞。Tau 蛋白傳遞理論最重要的觀察是錯誤摺疊的tau 蛋白會在神經突觸中發現,不論是神經前突觸或視神經後突觸中。一般來說tau 蛋白是存在於軸突中的蛋白,然而廣為科學家接受的概念是在阿茲海默症病患腦中的tau 蛋白會會因為錯置或是傳遞而出現在神經樹突中。在我們的實驗中成功的從阿茲海默症病患腦組織分離出完整的神經突觸和單獨的神經前突觸和神經後突觸。使用螢光顯微鏡觀察錯誤摺疊的tau 蛋白在完整神經突觸中的份部比例為15.4%、16.4%、2.9% (神經前突觸、神經後突觸、神經突觸的雙邊)。觀察多重磷酸化tau蛋白在完整神經突觸中的份部比例為23.1%、26.9%、3.8%。觀察所有形式的tau 蛋白在完整神經突觸中的份部比例為34.6、47.1、3.8。對一般人和阿茲海默症病患的神經突觸中所有形式tau蛋白染色結果顯示兩者的分布相似,而且在一般人的腦中可以觀察到微量的多重磷酸化tau 蛋白和錯誤摺疊的tau 蛋白。在神經突觸中我們也觀察到抗十二烷基硫酸&;#38048;的寡聚物。經由以上的觀察我們認為tau 蛋白並不是錯置,而是神經前突觸和神經後突觸吸收的多重磷酸化、錯誤摺疊或是寡聚型態的tau 蛋白。因此我們也提出了兩種可行的傳遞途徑。此後我們也著力於發展以流式細胞儀分析神經突觸中tau蛋白分布的技術,現階段我們分析得神經前突觸和神經後突觸占所有分析物比例為35.2%和33.5%,這樣的結果和我們以螢光顯微鏡的觀察結果是一致的。

The accumulation of neurofibrillary tangles in Alzheimer disease (AD) propagates with characteristic spatiotemporal patterns following brain network connections, which may imply trans-synaptic transmission of tauopathy. A prerequisite of this transmission theory would require misfolded tau to accumulate at synapses—i.e. that it be present in both pre- and post-synaptic locations. However, tau is thought to normally be primarily an axonal protein, and it is widely hypothesized that tau is mislocalized or mistrafficked to the neuronal somatodendritic compartment in AD. We isolated intact, bipartite synapses from cortical tissues of AD subjects and detected misfolded tau by immunofluorescence microscope with a distribution ratio of 15.4%:16.4%:2.9% (presynaptic-only/postsynaptic-only/both), while hyperphosphorylated tau exhibited a ratio of 23.1%:26.9%:3.8%; total tau (any form) exhibited a ratio of 34.6%:47.1%:3.8%. Non-demented controls showed total tau distribution similar to that of AD subjects, but with little phosphorylation or misfolding. In AD-affected synapses, we observed tau misfolded into SDS-resistant oligomers. Thus tau appears not to be mislocalized, but instead adopts misfolded, oligomeric, and phosphorylated forms within both pre- and post-synaptic sites. Based on these observations, we propose two models for the transmission of misfolded tau at synapses. We are also develop a high throughput method to analyze tau protein localization in synaptic terminals. We analyzed synaptosomes of mouse brains and immunostaining for pre- and post-synaptic terminals with synaptophysin and PSD-95 antibody. We found 35.2% and 33.5% of total particles to be pre- and post-synaptic terminals, respectively consistent with immunofluorescence counting under the microscope.

口試委員會審定書(#)
誌謝(i)
中文摘要(ii)
ABSTRACT(iii)
Table of Contents(iv)
LIST OF FIGURES(vii)
LIST OF TABLES(x)
Abbreviations(xi)
Chapter 1 Introduction (1)
1.1 Cell types in the brain (1)
1.2 The chemical synapse (2)
1.3 Alzheimer disease and synaptic dysfunction (6)
1.4 Tau protein (8)
1.5 Purification of Synaptosome (10)
1.6 Optical microscopy of isolated synapses (11)
1.7 Flow cytometry of Synaptosome (13)
1.8 Aim of this study (14)
Chapter 2 MATERIALS AND MTHODS (16)
2.1 Materials (16)
2.1.1 Human brains (16)
2.1.2 Primary antibodies (17)
2.1.3 Secondary antibodies (17)
2.1.4 Buffers (18)
2.1.5 Chemicals, materials, consumables, and kits (18)
2.2 Instrumentation (19)
2.2.1 Zeiss Axio Observer Z1 (19)
2.2.2 BD FACSCantoII (20)
2.3 Subcellular fractionation (21)
2.3.1 Crude synaptosomes preparation for flow cytometry (21)
2.3.2 Synaptoneurosomes preparation for imaging by optical microscopy (22)
2.4 Immunofluorescence labeling (23)
2.4.1 Immunolabeling synaptosome on glass slide (23)
2.4.2 Immunolabeling of scattering synaptosome for flow cytometry (24)
2.5 Human synaptosome imaging (25)
2.5.1 Epifluorescence microscopy (25)
2.5.2 Image process with ImageJ (26)
2.5.3 Analysis of imaging data (27)
2.6 Flow cytometry (29)
Chapter 3 RESULTS (31)
3.1 Direct visualization of tau in human synapses (31)
3.2 Synaptic localization of different tau forms (34)
3.2.1 Total tau localization in synaptosome (34)
3.2.2 Hyperphosphorylated tau localization in synaptosome (36)
3.2.3 Misfolded tau localization in synaptosome (37)
3.3 Tau localization in different forms of human synaptosomes (39)
3.3.1 Quantification of tau distribution in bipartite human neuronal synapses (39)
3.3.2 Quantification of tau distribution in scattered hemi-synapses (40)
3.4 Method of analysis synapses with flow cytometry (42)
3.4.1 Optimize condition with fluorescence polystyrene beads (42)
3.4.2 Detection pre-, and post- synapses with Synaptophysin, and PSD-95 antibody staining (44)
Chapter 4 DISCUSSION (50)
4.1 Tauopathy at synapses affected by AD (50)
4.1.1 Misfolded tau oligomers deposited at synapses have the potential to spread tauopathy (50)
4.1.2 Tau is present at synapses in sufficient quantities to plausibly impact neural system function (50)
4.1.3 Routes of synaptic tau transmission (51)
4.2 Analysis of mouse synaptosome with flow cytometry (53)
REFERENCE (56)
Appendix (66)
1 Deconvolve macro (66)
2 Overlay macro (68)
3 Protocol for preparing crude synaptosome (69)
4 Human or mouse synaptoneurosome preparation protocol (71)
5 Protocol for immunostaining synaptoneurosome / synaptosome (74)
6 Protocol for preparing 4% paraformaldehyde (77)

1.Agard, D.A., and Sedat, J.W. (1983). Three-dimensional architecture of a polytene nucleus. Nature 302, 676-681.
2.Ahmed, Z., Cooper, J., Murray, T.K., Garn, K., McNaughton, E., Clarke, H., Parhizkar, S., Ward, M.A., Cavallini, A., Jackson, S., et al. (2014). A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667-683.
3.Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208-215.
4.Arendt, T. (2009). Synaptic degeneration in Alzheimer''s disease. Acta Neuropathol. 118, 167-179.
5.Avila, J., Lucas, J.J., Perez, M., and Hernandez, F. (2004). Role of tau protein in both physiological and pathological conditions. Physiol. Rev. 84, 361-384.
6.Berchtold, N.C., and Cotman, C.W. (1998). Evolution in the conceptualization of dementia and Alzheimer''s disease: Greco-Roman period to the 1960s. Neurobiol. Aging 19, 173-189.
7.Braak, E., Braak, H., and Mandelkow, E.M. (1994). A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 87, 554-567.
8.Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239-259.
9.Brodal, P. (2010). The central nervous system : structure and function, 4th ed. (New York: Oxford University Press).
10.Brundin, P., Melki, R., and Kopito, R. (2010). Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301-307.
11.Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P.R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95-130.
12.Caceres, A., Binder, L.I., Payne, M.R., Bender, P., Rebhun, L., and Steward, O. (1984). Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4, 394-410.
13.Christoph, B. (2012). Development of Fluorescence Activated Synaptosome Sorting (FASS) and analysis of VGLUT1 synapses from mouse brain. In Faculty of Biology (Doctoral dissertation) (Georg August University Gottingen) Retrieved from http://d-nb.info/1042305609/34
14.Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A.K., Beibel, M., Staufenbiel, M., et al. (2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909-913.
15.Cohen, T.J., Guo, J.L., Hurtado, D.E., Kwong, L.K., Mills, I.P., Trojanowski, J.Q., and Lee, V.M. (2011). The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252.
16.de Calignon, A., Polydoro, M., Suarez-Calvet, M., William, C., Adamowicz, D.H., Kopeikina, K.J., Pitstick, R., Sahara, N., Ashe, K.H., Carlson, G.A., et al. (2012). Propagation of tau pathology in a model of early Alzheimer''s disease. Neuron 73, 685-697.
17.Dodd, P.R., Hardy, J.A., Oakley, A.E., Edwardson, J.A., Perry, E.K., and Delaunoy, J.P. (1981). A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res. 226, 107-118.
18.Dubois, C., Manuguerra, J.C., Hauttecoeur, B., and Maze, J. (1990). Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J. Biol. Chem. 265, 2797-2803.
19.Dujardin, S., Lecolle, K., Caillierez, R., Begard, S., Zommer, N., Lachaud, C., Carrier, S., Dufour, N., Auregan, G., Winderickx, J., et al. (2014). Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol. Comm. 2, 14.
20.Fein, J.A., Sokolow, S., Miller, C.A., Vinters, H.V., Yang, F., Cole, G.M., and Gylys, K.H. (2008). Co-localization of amyloid beta and tau pathology in Alzheimer''s disease synaptosomes. Am. J. Pathol. 172, 1683-1692.
21.Frost, B., and Diamond, M.I. (2010). Prion-like mechanisms in neurodegenerative diseases. Nature Rev. Neurosci. 11, 155-159.
22.Frost, B., Jacks, R.L., and Diamond, M.I. (2009). Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845-12852.
23.Gendreau, K.L., and Hall, G.F. (2013). Tangles, Toxicity, and Tau Secretion in AD - New Approaches to a Vexing Problem. Front. Neurol. 4, 160.
24.Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J.H., Petersen, R.C., Parisi, J.E., and Hyman, B.T. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer''s disease. Ann. Neurol. 41, 17-24.
25.Gong, C.X., Liu, F., Grundke-Iqbal, I., and Iqbal, K. (2005). Post-translational modifications of tau protein in Alzheimer''s disease. J. Neural Transm. 112, 813-838.
26.Gray, E.G., and Whittaker, V.P. (1962). The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79-88.
27.Gu, Y., Oyama, F., and Ihara, Y. (1996). Tau is widely expressed in rat tissues. J. Neurochem. 67, 1235-1244.
28.Guo, J.L., and Lee, V.M. (2011). Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317-15331.
29.Gylys, K.H., Fein, J.A., and Cole, G.M. (2000). Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J. Neurosci. Res. 61, 186-192.
30.Gylys, K.H., Fein, J.A., Yang, F., and Cole, G.M. (2004). Enrichment of presynaptic and postsynaptic markers by size-based gating analysis of synaptosome preparations from rat and human cortex. Cytometry A 60, 90-96.
31.Gylys, K.H., Fein, J.A., Yang, F., Miller, C.A., and Cole, G.M. (2007). Increased cholesterol in Abeta-positive nerve terminals from Alzheimer''s disease cortex. Neurobiol. Aging 28, 8-17.
32.Hanger, D.P., and Noble, W. (2011). Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int. J. Alzheimers Dis. 2011, 352805.
33.Hebert, L.E., Weuve, J., Scherr, P.A., and Evans, D.A. (2013). Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80, 1778-1783.
34.Hill, R.M., and Bruzek, V.E. (1970). Apparatus for collecting fractions from density differential interfaces and its use in gravimetric measurement of total myelin. Clin. Chem. 16, 171-176.
35.Hollingsworth, E.B., McNeal, E.T., Burton, J.L., Williams, R.J., Daly, J.W., and Creveling, C.R. (1985). Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3'':5''-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5, 2240-2253.
36.Hoover, B.R., Reed, M.N., Su, J., Penrod, R.D., Kotilinek, L.A., Grant, M.K., Pitstick, R., Carlson, G.A., Lanier, L.M., Yuan, L.L., et al. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067-1081.
37.Hyman, B.T., Van Hoesen, G.W., Wolozin, B.L., Davies, P., Kromer, L.J., and Damasio, A.R. (1988). Alz-50 antibody recognizes Alzheimer-related neuronal changes. Ann. Neurol. 23, 371-379.
38.Jessell, T.M., and Kandel, E.R. (1993). Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72 Suppl, 1-30.
39.Jucker, M., and Walker, L.C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45-51.
40.Kfoury, N., Holmes, B.B., Jiang, H., Holtzman, D.M., and Diamond, M.I. (2012). Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440-19451.
41.Klein, C., Kramer, E.M., Cardine, A.M., Schraven, B., Brandt, R., and Trotter, J. (2002). Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci. 22, 698-707.
42.Koffie, R.M., Hashimoto, T., Tai, H.C., Kay, K.R., Serrano-Pozo, A., Joyner, D., Hou, S., Kopeikina, K.J., Frosch, M.P., Lee, V.M., et al. (2012). Apolipoprotein E4 effects in Alzheimer''s disease are mediated by synaptotoxic oligomeric amyloid-beta. Brain 135, 2155-2168.
43.Koob, A. (2009). The root of thought : unlocking glia--the brain cell that will help us sharpen our wits, heal injury, and treat brain disease (Upper Saddle River, N.J.: FT Press).
44.Kretzschmar, H. (2009). Brain banking: opportunities, challenges and meaning for the future. Nat. Rev. Neurosci. 10, 70-78.
45.Lathia, D., and Wesemann, W. (1975). Serotonin uptake and release by biochemically characterized nerve endings isolated from rat brain by concomitant flotation and sedimentation centrifugation. J. Neural Transm. 37, 111-126.
46.Lee, S., Kim, W., Li, Z., and Hall, G.F. (2012). Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int. J. Alzheimers Dis. 2012, 172837.
47.Lee, V.M., Goedert, M., and Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121-1159.
48.Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S.A., Clelland, C., and Duff, K. (2012). Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302.
49.Martin, L., Latypova, X., Wilson, C.M., Magnaudeix, A., Perrin, M.L., Yardin, C., and Terro, F. (2013). Tau protein kinases: involvement in Alzheimer''s disease. Ageing Res. Rev. 12, 289-309.
50.Micheva, K.D., Busse, B., Weiler, N.C., O''Rourke, N., and Smith, S.J. (2010). Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639-653.
51.Mohamed, N.V., Herrou, T., Plouffe, V., Piperno, N., and Leclerc, N. (2013a). Spreading of tau pathology in Alzheimer''s disease by cell-to-cell transmission. Eur. J. Neurosci. 37, 1939-1948.
52.Mohamed, N.V., Herrou, T., Plouffe, V., Piperno, N., and Leclerc, N. (2013b). Spreading of tau pathology in Alzheimer''s disease by cell-to-cell transmission. Eur. J. Neurosci. 37, 1939-1948.
53.Morales, M., and Fifkova, E. (1989). Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron-microscope study. Cell Tissue Res. 256, 447-456.
54.Morris, M., Maeda, S., Vossel, K., and Mucke, L. (2011). The many faces of tau. Neuron 70, 410-426.
55.Nonaka, T., Watanabe, S.T., Iwatsubo, T., and Hasegawa, M. (2010). Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases. J. Biol. Chem. 285, 34885-34898.
56.Pearce, J.M. (2004). Sir Charles Scott Sherrington (1857-1952) and the synapse. J. Neurol. Neurosurg. Psychiatry 75, 544.
57.Perez-Nievas, B.G., Stein, T.D., Tai, H.C., Dols-Icardo, O., Scotton, T.C., Barroeta-Espar, I., Fernandez-Carballo, L., de Munain, E.L., Perez, J., Marquie, M., et al. (2013). Dissecting phenotypic traits linked to human resilience to Alzheimer''s pathology. Brain 136, 2510-2526.
58.Ramon y Cajal, S. (1909). Histologie du systeme nerveux de l''homme &; des vertebres Vol 1 (Paris: Maloine).
59.Rizzoli, S.O., and Betz, W.J. (2005). Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57-69.
60.Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, N.C., et al. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287, 3842-3849.
61.Simon, D., Garcia-Garcia, E., Gomez-Ramos, A., Falcon-Perez, J.M., Diaz-Hernandez, M., Hernandez, F., and Avila, J. (2012). Tau overexpression results in its secretion via membrane vesicles. Neurodegener. Dis. 10, 73-75.
62.Smith, A.D. (2006). Prevention of dementia: a role for B vitamins? Nutr. Health 18, 225-226.
63.Song, J.S., and Yang, S.D. (1995). Tau protein kinase I/GSK-3 beta/kinase FA in heparin phosphorylates tau on Ser199, Thr231, Ser235, Ser262, Ser369, and Ser400 sites phosphorylated in Alzheimer disease brain. J. Protein Chem. 14, 95-105.
64.Spires-Jones, T.L., Stoothoff, W.H., de Calignon, A., Jones, P.B., and Hyman, B.T. (2009). Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 32, 150-159.
65.Tai, H.C., Serrano-Pozo, A., Hashimoto, T., Frosch, M.P., Spires-Jones, T.L., and Hyman, B.T. (2012). The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426-1435.
66.Takayasu, Y., Iino, M., Takatsuru, Y., Tanaka, K., and Ozawa, S. (2009). Functions of glutamate transporters in cerebellar Purkinje cell synapses. Acta Physiol. 197, 1-12.
67.Tamir, H., and Huang, Y.L. (1974). Binding of serotonin to soluble protein from synaptosomes. Life Sci. 14, 83-93.
68.Tang, Y., Nyengaard, J.R., De Groot, D.M., and Gundersen, H.J. (2001). Total regional and global number of synapses in the human brain neocortex. Synapse 41, 258-273.
69.Tashiro, K., Hasegawa, M., Ihara, Y., and Iwatsubo, T. (1997). Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport 8, 2797-2801.
70.Thies, W., Bleiler, L., and Alzheimer''s, A. (2013). 2013 Alzheimer''s disease facts and figures. Alzheimers Dement. 9, 208-245.
71.Thomas, S.N., Funk, K.E., Wan, Y., Liao, Z., Davies, P., Kuret, J., and Yang, A.J. (2012). Dual modification of Alzheimer''s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. 123, 105-117.
72.Tolnay, M., and Probst, A. (1999). REVIEW: tau protein pathology in Alzheimer''s disease and related disorders. Neuropathol. Appl. Neurobiol. 25, 171-187.
73.Trojanowski, J.Q., Schuck, T., Schmidt, M.L., and Lee, V.M. (1989). Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37, 209-215.
74.van der Pol, E., van Gemert, M.J., Sturk, A., Nieuwland, R., and van Leeuwen, T.G. (2012). Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 10, 919-930.
75.Walker, L.C., Diamond, M.I., Duff, K.E., and Hyman, B.T. (2012). Mechanisms of Protein Seeding in Neurodegenerative Diseases. Arch. Neurol. 1-7.
76.Walker, L.C., Diamond, M.I., Duff, K.E., and Hyman, B.T. (2013). Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70, 304-310.
77.Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., and Kirschner, M.W. (1975). A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U. S. A. 72, 1858-1862.
78.Wilhelmus, M.M., Grunberg, S.C., Bol, J.G., van Dam, A.M., Hoozemans, J.J., Rozemuller, A.J., and Drukarch, B. (2009). Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer''s disease brain. Brain Pathol. 19, 612-622.
79.Wolf, M.E., Granneman, J.G., and Kapatos, G. (1991a). Characterization of the distribution of G alpha o in rat striatal synaptosomes and its colocalization with tyrosine hydroxylase. Synapse 9, 66-74.
80.Wolf, M.E., and Kapatos, G. (1989a). Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals from rat striatum. J. Neurosci. 9, 106-114.
81.Wolf, M.E., and Kapatos, G. (1989b). Flow cytometric analysis of rat striatal nerve terminals. J. Neurosci. 9, 94-105.
82.Wolf, M.E., and Kapatos, G. (1989c). Stimulation of D2 dopamine receptors decreases intracellular calcium levels in rat anterior pituitary cells but not striatal synaptosomes: a flow cytometric study using indo-1. Synapse 4, 353-370.
83.Wolf, M.E., LeWitt, P.A., Bannon, M.J., Dragovic, L.J., and Kapatos, G. (1991b). Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J. Neurochem. 56, 1191-1200.
84.Wolozin, B., and Davies, P. (1987). Alzheimer-related neuronal protein A68: specificity and distribution. Ann. Neurol. 22, 521-526.
85.Wu, J.W., Herman, M., Liu, L., Simoes, S., Acker, C.M., Figueroa, H., Steinberg, J.I., Margittai, M., Kayed, R., Zurzolo, C., et al. (2013). Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856-1870.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔