(18.210.12.229) 您好!臺灣時間:2021/03/05 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳岱穎
研究生(外文):Dai-Ying Wu
論文名稱:硫化銅銦量子點合成、結構鑑定及其於線蟲體內穩定度探討
論文名稱(外文):Synthesis, structural characterization of CuInS2 quantum dots and its chemical stability in Caenorhabditis Elegans
指導教授:劉如熹劉如熹引用關係
指導教授(外文):Ru-Shi Liu
口試委員:羅禮強黃鵬林杜宜殷蕭宏昇
口試委員(外文):Lee-Chiang LoPung-Ling HuangYi-Ying DoMichael Hsiao
口試日期:2014-05-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:量子點硫化銅銦線蟲近邊緣吸收光譜
外文關鍵詞:quantum dotsCuInS2XANES
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新穎性奈米材料硫化銅銦量子點為近年來之主要研究目標。然此類量子點之毒性研究仍處於細胞毒性相關領域,較鮮少為人們於多細胞體系生物體中進行長時間消化與累積之探討,且於先前研究指出具銅元素之量子點其銅離子於生物體中仍具有生理與毒性之傷害。
於本研究中,使用水熱法合成硫化銅銦與包覆硫化鋅之量子點,其中硫化銅銦量子點放光波長於近紅外光範圍(700 nm),經由硫化鋅修飾後其放光波長藍位移至620 nm,且放光強度增強約十倍左右。
於生物應用,本研究使用具修飾羧基之甲殼素藉由超音波震盪使其均勻包覆於量子點外層,反應後之水溶性量子點之形貌呈現類似圓型團簇(cluster)之現象,其放光紅位移至700 nm左右。於生物毒性測試上,本研究選用子宮頸癌(Hela)與口腔癌(OECM)細胞進行in vivo相關實驗,藉以測試不同劑量之量子點於細胞毒性之影響。另外,於多細胞生物體系,本研究選用秀麗隱桿線蟲(Caenorhabditis elegans, C. elegans)作為簡單多細胞生物作為實驗模型,藉由不同時間點觀察量子點於線蟲體內累積多寡與分部分析量子點可能影響之位置,並由X光近邊緣吸收光譜(XANES)量測不同時間點之量子點之氧化態變化,分析其於線蟲體內化學穩定度與影響,並於吸收光譜中發現其吸收峰與其標準品相似,證實其於短時間與長時間消化作用下量子點並無明顯分解現象,推論其於長時間生物消化作用下本研究所選用之量子點仍可保持其化學穩定度並維持其低生物毒性之特性。


Novel nano material CuInS2 quantum dots have been the major research these years. However, these kinds quantum dots’ nano toxicity were only studied in cell cytotoxicity, seldom studied about long term digestion and accumulation effects in multi-cellular organism. In previous research, they point out that quantum dots content copper element will release copper cation into organism to be harmful and toxic in long term accumulation.
In our research, we synthesis CuInS2 and ZnS shell nanoparticle by hydrothermal method. Their wavelength is located at around near infrared region (700 nm). After coating ZnS shell the wavelength will be blue shift to 620 nm, and their emission intensity will be enhance ten times.
For biological application, we use carboxylate-modified chitosan coat outside the nanoparticle uniformly by ultra-sonication. After sonication, the quantum dots’ morphology will be change to “cluster-like” circle shape, and the wavelength is red shift to 700 nm. In biological toxicity effects, we select Hela and OECM cancer cell for in vitro to test nanoparticle cytotoxicity effects in different dots. Moreover, we select Caenorhabditis elegans (C. elegans) to be the simple multi-cellular organism model to analysis the accumulation location and possible influence location inside the elegans body. To confirm the nanoparticle chemical stability, we use X-ray Absorption Near Edge Spectra (XANES) to characterize nanoparticle chemical oxidation to analysis the decomposition extent inside the elegans body. From the XANES results, it can be confirm that quantum dots did not show significant decomposition phenomenon. We can conclude that CIS and CIS/ZnS quantum dots are still stable and low cytotoxicity in C. elegans after long term digestion.


口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 x
專有名詞列表 xi
第一章 緒論 1
1.1.1表面積效應 1
1.1.2物性變化 1
1.1.3 量子侷限效應 2
1.2 量子點介紹 4
1.2.1 量子點基本特性 4
1.2.2.1 單原子量子點 7
1.2.2.2 II-VI族量子點 7
1.2.2.3 III-V族量子點 9
1.2.2.4 I-III-VI族量子點 10
1.2.3 量子點應用 13
1.2.3.1 發光照明、背光顯示 13
1.2.3.2 太陽能電池應用 15
1.2.3.3 生物應用 16
1.3 線蟲特性簡介 20
1.3.1 線蟲介紹 20
1.3.2 線蟲研究優勢 21
1.4 線蟲相關研究文獻回顧 24
1.5 研究動機與目的 26
第二章 實驗步驟與儀器鑑定 27
2.1 硫化銅銦/硫化鋅核殼層結構量子點合成與轉相 27
2.1.1.1 藥品 27
2.1.1.2 硫化銅銦量子點合成 28
2.1.2 硫化銅銦/硫化鋅量子點合成 28
2.1.3 甲殼素(chitosan)羧基化(carboxylation)修飾 29
2.1.4 量子點轉相反應 30
2.2 細胞毒性測試與顯影 31
2.2.1細胞毒性測試(Cytotoxicity Assay) 31
2.2.2 細胞顯影 31
2.3 線蟲相關實驗 32
2.3.1 大腸桿菌(Escherichia coli, E.coli)培養 32
2.3.2 線蟲培養 32
2.3.3 量子點暴露於線蟲 32
2.3.4 線蟲顯影與X光吸收光譜實驗 33
2.4 鑑定儀器之原理 34
2.4.1 紫外光-可見光(UV-Visible)吸收光譜 35
2.4.2 螢光光譜儀(photoluminescence spectrometer) 37
2.4.3 粉末X光繞射儀(Powder X-ray Diffractometer) 39
2.4.4 粒徑分析儀(Particle size analyzer) 41
2.4.5 紅外光譜儀(Infrared spectrometer) 42
2.4.6 雷射共軛焦顯微鏡(Laser confocal microscope) 44
2.4.7 X光近邊緣吸收光譜(X-ray Absorption Near Edge Spectra, XANES) 46
第三章 實驗結果與討論 48
3.1 量子點合成與其相關鑑定 48
3.1.1 粉末X光繞射鑑定 48
3.1.2 穿透式電子顯微鏡形貌鑑定 50
3.1.3 紫外光-可見光光譜與螢光光譜鑑定 51
3.2 甲殼素修飾、量子點轉相與其相關鑑定 53
3.2.1 紅外線吸收光譜鑑定 53
3.2.2 水溶性量子點形貌與粒徑分析 55
3.2.3 水溶性量子點螢光光譜鑑定 57
3.3 細胞毒性測試與線蟲餵食 58
3.3.1 細胞毒性與in vitro測試 58
3.3.2 量子點於線蟲研究 61
3.4 X光吸收光譜鑑定 65
第四章 結論 68
參考文獻 69



[1]Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P., ''Melting in semiconductor nanocrystals''. Science 1992, 256, 1425.
[2]Buffat, P.; Borel, J. P., ''Size effect on the melting temperature of gold particles''. Phys. Rev. A 1976, 13, 2287.
[3]Kubo, R., ''Electronic properties of metallic fine particles. I''. J. Phys. Soc. Jpn 1962, 17, 975.
[4]Alivisatos, A. P., ''Semiconductor clusters, nanocrystals, and quantum dots''. Science 1996, 271, 933.
[5]Chen, H. M.; Liu, R.-S., ''Architecture of metallic nanostructures: synthesis strategy and specific applications''. J. Phys. Chem. C 2011, 115, 3513.
[6]Nan, W.; Niu, Y.; Qin, H.; Cui, F.; Yang, Y.; Lai, R.; Lin, W.; Peng, X., ''Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties''. J. Am. Chem. Soc 2012, 134, 19685.
[7]Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., ''Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission''. J. Am. Chem. Soc 2011, 133, 1176.
[8]Lippens, P.; Lannoo, M., ''Calculation of the band gap for small CdS and ZnS crystallites''. Phys. Rev. B 1989, 39, 10935.
[9]Brus, L., ''Electronic wave functions in semiconductor clusters: experiment and theory''. J. Phys. Chem. 1986, 90, 2555.
[10]Kucur, E.; Bucking, W.; Giernoth, R.; Nann, T., ''Determination of defect states in semiconductor nanocrystals by cyclic voltammetry''. J .Phys. Chem. B 2005, 109, 20355.
[11]Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I., ''Type-II core/shell CdS/ZnSe nanocrystals:&;#8201; synthesis, electronic structures, and spectroscopic properties''. J. Am. Chem. Soc. 2007, 129, 11708.
[12]Ghosh Chaudhuri, R.; Paria, S., ''Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications''. Chem. Rev. 2011, 112, 2373.
[13]Fan, J.; Chu, P. K., ''Group IV nanoparticles: synthesis, properties, and biological applications''. Small 2010, 6, 2080.
[14]Cassette, E.; Helle, M.; Bezdetnaya, L.; Marchal, F.; Dubertret, B.; Pons, T., ''Design of new quantum dot materials for deep tissue infrared imaging''. Adv. Drug. Deliv. Rev. 2013, 65, 719.
[15]Murray, C. B.; Norris, D. J.; Bawendi, M. G., ''Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites''. J. Am. Chem. Soc. 1993, 115, 8706.
[16]Peng, Z. A.; Peng, X., ''Nearly monodisperse and shape-controlled cdse nanocrystals via alternative routes:&;#8201; nucleation and growth''. J. Am. Chem. Soc. 2002, 124, 3343.
[17]Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W., ''Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability''. J. Am. Chem. Soc. 2003, 125, 8589.
[18]Wang, W.; Germanenko, I.; El-Shall, M. S., ''Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS''. Chem. Mater. 2002, 14, 3028.
[19]Srivastava, B. B.; Jana, S.; Pradhan, N., ''Doping Cu in semiconductor nanocrystals: some old and some new physical insights''. J. Am. Chem. Soc. 2011, 133, 1007.
[20]Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M., ''Type-II quantum dots:&;#8201; CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures''. J. Am. Chem. Soc. 2003, 125, 11466.
[21]Xie, R.; Battaglia, D.; Peng, X., ''Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared''. J. Am. Chem. Soc. 2007, 129, 15432.
[22]Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J., ''Synthesis and characterization of InP quantum dots''. J. Phys. Chem. 1994, 98, 4966.
[23]Qian, Y., ''Solvothermal synthesis of nanocrystalline III–V semiconductors''. Adv. Mater. 1999, 11, 1101.
[24]Matsumoto, T.; Maenosono, S.; Yamaguchi, Y., ''Organometallic synthesis of InP quantum dots using tris(dimethylamino)phosphine as a phosphorus source''. Chem. Lett. 2004, 33, 1492.
[25]Li, L.; Reiss, P., ''One-pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without precursor injection''. J. Am. Chem. Soc. 2008, 130, 11588.
[26]Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R., ''Synthesis of size-selected, surface-passivated InP nanocrystals''. J. Phys. Chem. 1996, 100, 7212.
[27]Zhong, H.; Bai, Z.; Zou, B., ''Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications''. J. Phys. Chem. Lett 2012, 3, 3167.
[28]Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F., ''Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor''. J. Phys. Chem. B 2004, 108, 12429.
[29]Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F., ''nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors''. Chem. Mater. 2003, 15, 3142.
[30]Zhong, H.; Lo, S. S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G. D., ''Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties''. ACS Nano 2010, 4, 5253.
[31]Song, W.-S.; Yang, H., ''Efficient White-Light-Emitting Diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots''. Chem. Mater. 2012, 24, 1961.
[32]Booth, M.; Brown, A. P.; Evans, S. D.; Critchley, K., ''Determining the concentration of CuInS2 quantum dots from the size-dependent molar extinction coefficient''. Chem. Mater. 2012, 24, 2064.
[33]Ronda, C. R., ''Emission and excitation mechanisms of phosphors''. In Luminescence, Wiley-VCH Verlag GmbH &; Co. KGaA: 2007; pp 8.
[34]Hofhuis, J.; Schoonman, J.; Goossens, A., ''Elucidation of the Excited-State Dynamics in CuInS2 Thin Films''. J. Phys. Chem. C 2008, 112, 15052.
[35]Krustok, J.; Scho&;#776;n, J. H.; Collan, H.; Yakushev, M.; Ma&;#776;dasson, J.; Bucher, E., ''Origin of the deep center photoluminescence in CuGaSe2 and CuInS2 crystals''. J. Appl. Phys. 1999, 86, 364.
[36]Zott, S.; Leo, K.; Ruckh, M.; Schock, H. W., ''Radiative recombination in CuInSe2 thin films''. J. Appl. Phys. 1997, 82, 356.
[37]Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S., ''Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals''. J. Appl. Phys. 2009, 105.
[38]Chen, Y.; Li, S.; Huang, L.; Pan, D., ''Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots''. Inorg. Chem. 2013, 52, 7819.
[39]Chen, B.; Zhong, H.; Zhang, W.; Tan, Z. a.; Li, Y.; Yu, C.; Zhai, T.; Bando, Y.; Yang, S.; Zou, B., ''Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance''. Adv. Func. Mater. 2012, 22, 2081.
[40]Zhang, J.; Xie, R.; Yang, W., ''A Simple Route for Highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters''. Chem. Mater. 2011, 23, 3357.
[41]Schlotter, P.; Baur, J.; Hielscher, C.; Kunzer, M.; Obloh, H.; Schmidt, R.; Schneider, J., ''Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs''. Mater. Sci. Eng., B 1999, 59, 390.
[42]Xie, R.-J.; Hirosaki, N.; Kimura, N.; Sakuma, K.; Mitomo, M., ''2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors''. Appl. Phys. Lett. 2007, 90, 191101.
[43]Yoon, C.; Hong, H.-G.; Kim, H. C.; Hwang, D.; Lee, D. C.; Kim, C.-K.; Kim, Y.-J.; Lee, K., ''High luminescence efficiency white light emitting diodes based on surface functionalized quantum dots dispersed in polymer matrices''. Colloid Surf. A-Physicochem. Eng. Asp. 2013, 428, 86.
[44]Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; Hwang, S.; Lee, J. E.; Kim, S. K.; Kim, S. W., ''Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes''. J. Am. Chem. Soc. 2012, 134, 3804.
[45]Aboulaich, A.; Michalska, M.; Schneider, R.; Potdevin, A.; Deschamps, J.; Deloncle, R.; Chadeyron, G.; Mahiou, R., ''Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index''. ACS Appl. Mater. Interfaces 2014, 6, 252.
[46]Demir, H. V.; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik, N.; Eychmuller, A., ''Quantum dot integrated LEDs using photonic and excitonic color conversion''. Nano Today 2011, 6, 632.
[47]Brian O''Regan, M. G., ''A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films''. Nature 1991, 353, 737.
[48]Loef, R.; Houtepen, A. J.; Talgorn, E.; Schoonman, J.; Goossens, A., ''Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells''. Nano Lett. 2009, 9, 856.
[49]Kim, S.; Kang, M.; Kim, S.; Heo, J.-H.; Noh, J. H.; Im, S. H.; Seok, S. I.; Kim, S.-W., ''Fabrication of CuInTe2 and CuInTe2–xSex Ternary Gradient Quantum Dots and Their Application to Solar Cells''. ACS Nano 2013, 7, 4756.
[50]Sablon, K. A.; Little, J. W.; Mitin, V.; Sergeev, A.; Vagidov, N.; Reinhardt, K., ''Strong enhancement of solar cell efficiency due to quantum dots with built-in charge''. Nano Lett. 2011, 11, 2311.
[51]Xu, L.; Chen, C., ''Physiological behavior of quantum dots''. Wires Nanomed. Nanobi. 2012, 4, 620.
[52]Wang, M.; Liu, X.; Cao, C.; Wang, L., ''Highly luminescent CuInS2–ZnS nanocrystals: achieving phase transfer and nuclear homing property simultaneously through simple TTAB modification''. J. Mater. Chem. 2012, 22, 21979.
[53]Deng, D.; Qu, L.; Zhang, J.; Ma, Y.; Gu, Y., ''Quaternary Zn-Ag-In-Se quantum dots for biomedical optical imaging of RGD-modified micelles''. ACS Appl. Mater. Interfaces 2013, 5, 10858.
[54]Hsu, J.-C.; Huang, C.-C.; Ou, K.-L.; Lu, N.; Mai, F.-D.; Chen, J.-K.; Chang, J.-Y., ''Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery''. J. Mater. Chem. 2011, 21, 19257.
[55]Forster, T., ''Zwischenmolekulare Energiewanderung und Fluoreszenz''. Ann. Phys. 1948, 437, 55.
[56]B. W. Van Der Meer, G. C. I., S.-Y. Chen, ''Resonance energy transfer : theoretical foundations and developing applications''. In Resonance Energy Transfer: Theory and Data, Wiley; 1 edition: 1994; p 461.
[57]Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., ''Semiconductor nanocrystals as fluorescent biological labels''. Science 1998, 281, 2013.
[58]Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C., ''In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans''. Nano Lett. 2010, 10, 3692.
[59]Contreras, E. Q.; Cho, M.; Zhu, H.; Puppala, H. L.; Escalera, G.; Zhong, W.; Colvin, V. L., ''Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure''. Environ. Sci. Technol. 2013, 47, 1148.
[60]Kim, S. W.; Kwak, J. I.; An, Y. J., ''Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure''. Environ. Sci. Technol. 2013, 47, 5393.
[61]Charan, S.; Chien, F. C.; Singh, N.; Kuo, C. W.; Chen, P., ''Development of lipid targeting Raman probes for in vivo imaging of Caenorhabditis elegans''. Chem. Eur. J 2011, 17, 5165.
[62]Donner, J. S.; Thompson, S. A.; Alonso-Ortega, C.; Morales, J.; Rico, L. G.; Santos, S. I. C. O.; Quidant, R., ''Imaging of Plasmonic Heating in a Living Organism''. ACS Nano 2013, 7, 8666.
[63]Panthani, M. G.; Khan, T. A.; Reid, D. K.; Hellebusch, D. J.; Rasch, M. R.; Maynard, J. A.; Korgel, B. A., ''In Vivo Whole Animal Fluorescence Imaging of a microparticle-based oral vaccine containing (CuInSexS2–x)/ZnS core/shell quantum dots''. Nano Lett. 2013, 13, 4294.
[64]Ding, K.; Jing, L.; Liu, C.; Hou, Y.; Gao, M., ''Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors''. Biomaterials 2014, 35, 1608.
[65]''Introduction to C. elegans anatomy ''. http://www.wormatlas.org/hermaphrodite/introduction/Introframeset.html.
[66]Consortium, T. C. e. S., ''Genome sequence of the nematode c. elegans: a platform for investigating biology''. Science 1998, 282, 2012.
[67]Brenner, S., ''The genetics of Caenorhabdztzs elegans''. Genetlcs 1974, 77, 171.
[68]Andrew Fire, S. X., Mary K. Montgomery,; Steven A. Kostas, S. E. D., Craig C. Mello, ''Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans''. Nature 1998, 391, 806.
[69]Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.; Prasher, D., ''Green fluorescent protein as a marker for gene expression''. Science 1994, 263, 802.
[70]Qu, Y.; Li, W.; Zhou, Y.; Liu, X.; Zhang, L.; Wang, L.; Li, Y. F.; Iida, A.; Tang, Z.; Zhao, Y.; Chai, Z.; Chen, C., ''Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism''. Nano Lett. 2011, 11, 3174.
[71]Kim, S. W.; Nam, S. H.; An, Y. J., ''Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans''. Ecotoxicol. Environ. Saf. 2012, 77, 64.
[72]Collin, B.; Oostveen, E.; Tsyusko, O. V.; Unrine, J. M., ''Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans''. Environ. Sci. Technol. 2014, 48, 1280.
[73]Yang, X.; Jiang, C.; Hsu-Kim, H.; Badireddy, A. R.; Dykstra, M.; Wiesner, M.; Hinton, D. E.; Meyer, J. N., ''Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter''. Environ. Sci. Technol. 2014, 48, 3486.
[74]Cheng, C. Y.; Ou, K. L.; Huang, W. T.; Chen, J. K.; Chang, J. Y.; Yang, C. H., ''Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging''. ACS Appl. Mater. Interfaces 2013, 5, 4389.
[75]Chuang, P.-H.; Lin, C. C.; Yang, H.; Liu, R.-S., ''Enhancing the color rendering index for phosphor-converted white leds using cadmium-free CuInS2/ZnS QDs''. J. Chin. Chem. Soc 2013, 60, 801.
[76]Chen, X.-G.; Park, H.-J., ''Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions''. Carbohydr. Polym. 2003, 53, 355.
[77]Deng, D.; Chen, Y.; Cao, J.; Tian, J.; Qian, Z.; Achilefu, S.; Gu, Y., ''High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging''. Chem. Mater. 2012, 24, 3029.
[78]Stiernagle, T., ''Maintenance of C. elegans''. WormBook : the online review of C. elegans biology 2006, 1.
[79]Skoog, D. A.; Holler, J. F.; Crouch, S. R., ''An Introduction to Ultraviolet-visible molecular absorption spectrometry ''. In Principles of Instrumental Analysis, 6 ed.; David Harris: USA, 2007; p 336.
[80]Skoog, D. A.; Holler, J. F.; Crouch, S. R., ''Molecular luminescence spectrometry''. In Principles of Instrumental Analysis, 6 ed.; David Harris: USA, 2007; p 399.
[81]林麗娟, ''X光繞射原理及其應用''. 工業材料 1994, 86, 100.
[82]鄭信民; 林麗娟, ''X光繞射應用簡介''. 工業材料 2002, 181, 100.
[83]美嘉儀器-共軛焦小組, ''LEICA Confocal Laser Scanning Microscope Technical &; Application''. 2000, 3.
[84]Lee, J. F.; Hsu, I. J.; Yu, S. F.; Lo, F. C.; Li, M.; Shiu, Y. J., ''Applications of hard X-ray absorption spectroscopy in life science''. 科儀新知 2009, 30, 32.
[85]Nam, D.-E.; Song, W.-S.; Yang, H., ''Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields''. J. Mater. Chem. 2011, 21, 18220.
[86]Kim, Y.-K.; Ahn, S.-H.; Chung, K.; Cho, Y.-S.; Choi, C.-J., ''The photoluminescence of CuInS2 nanocrystals: effect of non-stoichiometry and surface modification''. J. Mater. Chem. 2012, 22, 1516.
[87]Wiedemeier, H.; Santandrea, R., ''Mass spectrometric studies of the decomposition and the heat of formation of CuInS2(s)''. Z. Anorg. Allg. Chem. 1983, 497, 105.
[88]Deore, S.; Navrotsky, A., ''Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite''. Am. Mineral. 2006, 91, 400.
[89]Ouchi, T.; Nishizawa, H.; Ohya, Y., ''Aggregation phenomenon of PEG-grafted chitosan in aqueous solution''. Polymer 1998, 39.
[90]Holme, K. R.; Perlin, A. S., ''Chitosan N-sulfate. A water-soluble polyelectrolyte''. Carbohydr. Res. 1997, 302.
[91]Krause, T. J.; Goldsmith, N. K.; Ebner, S.; Zazanis, G. A.; McKinnon, R. D., ''An inhibitor of cell proliferation associated with adhesion formation is suppressed by N,O-carboxymethyl chitosan''. J. Invest. Surg. 1998, 11, 105.
[92]Wang, B.; Wang, Z.; Feng, W.; Wang, M.; Hu, Z.; Chai, Z.; Zhao, Y., ''New methods for nanotoxicology: synchrotron radiation-based techniques''. Anal. Bioanal. Chem. 2010, 398, 667.
[93]Chen, Z.; Chen, H.; Meng, H.; Xing, G.; Gao, X.; Sun, B.; Shi, X.; Yuan, H.; Zhang, C.; Liu, R.; Zhao, F.; Zhao, Y.; Fang, X., ''Bio-distribution and metabolic paths of silica coated CdSeS quantum dots''. Toxicol. Appl. Pharmacol. 2008, 230, 364.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔