(3.231.166.56) 您好!臺灣時間:2021/03/08 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭仁華
研究生(外文):Jen-Hua Cheng
論文名稱:白色念珠球菌 Hog1 MAP kinase 對 White-Opaque 型態的轉換與穩定性之探討
論文名稱(外文):A Novel Function for Hog1 MAP kinase in Control of White-Opaque Switching and Its Stability in Candida albicans
指導教授:林晉玄
指導教授(外文):Ching-Hsuan Lin
口試委員:羅秀容呂俊毅陳穎練
口試委員(外文):Hsiu-Jung LoJun-Yi LeuYing-Lien Chen
口試日期:2014-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:51
中文關鍵詞:白色念珠球菌White-Opaque 型態轉換Hog1Wor1Msn2Msn4交配
外文關鍵詞:Candida albicansWhite-Opaque switchingHog1 MAP kinaseWor1Msn2Msn4Mating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白色念珠球菌 (Candida albicans) 是人類的伺機性病原真菌,主要棲息於人體的腸胃道以及女性的生殖道。對於免疫力正常的人,此菌並不會造成嚴重的感染,但是對於免疫力異常的患者則可能造成嚴重的真菌感染。一旦感染惡化,可能進一步引發菌血症,死亡率高達 47% 以上。C. albicans具有一種稱之為 White-Opaque的型態轉換與其致病力有很大的關聯性。研究發現 C. albicans 從 White 細胞轉換成 Opaque 細胞後被宿主巨噬細胞辨識、毒殺的比例會大幅度降低 ; 此外,相對於 White 細胞, Opaque 細胞才具有菌種交配的能力。目前發現White-Opaque 型態的轉換受許多因子調控,例如在分子調控機制的部分,主要是受Wor1 轉錄因子所調控。外在環境的部分,環境中的 PH 值、 CO2、 UV、 溫度、氧化壓力等都會對其轉換造成影響。因此,本研究將 C. albicans 調控氧化壓力的 HOG1 剔除後培養於 SC 培養基,發現性狀 a/a 與 α/α 的hog1突變株會從 White 細胞完全轉換至 Opaque 細胞,野生株則維持於 White 細胞的狀態。將實驗環境模擬體內腸胃道 (37oC + 5% CO2),性狀 a/a 與 α/α的 hog1突變株轉換至 Opaque 細胞的比率同樣為100%,野生珠則依舊無法轉換至 Opaque 細胞。然而,hog1 / wor1雙突變株無法轉換至 Opaque 細胞,顯示Hog1 調控 White-Opaque 型態的轉換仍受到 Wor1所調控。為了尋找 Hog1 下游可能參與調控White-Opaque 型態轉換的轉錄因子,將 MSN2 與 MSN4剔除後進行型態轉換的測試,結果顯示兩者形成的菌落均維持在 White 細胞的型態,顯示 Msn2 和 Msn4與 White-Opaque型態轉換之調控無關。 hog1突變株形成的 Opaque 被發現較不穩定,僅約 80% 細胞會維持在 Opaque 細胞型態;野生株則有 95% 是 Opaque 細胞的型態。當Opaque 細胞受到α-Pheromone誘導後野生株有 48% 細胞會產生mating projection, hog1突變株僅約 15% 細胞能生成。此外, hog1突變株生成的mating projection平均長度為 10.54 μm,低於野生株的平均長度24.39 μm。菌株交配效率測試結果顯示 hog1突變株的mating efficiency 為 2.71%,相較於野生株 9.92% 與互補株 8.45%,有顯著降低,顯示 Hog1 對菌株的交配能力亦扮演重要角色。綜合以上結果,C. albicans的 Hog1不只調控環境氧化壓力,更具有調控 White-Opaque 型態的轉換與影響 Opaque 細胞的性質。

Candida albicans is the opportunistic human fungal pathogen found in the gastrointestinal and urogenital tracts of healthy people. However, for the people who are immumocompromised, C. albicans can cause invasive candidiasis, which would result in systemic infection and high mortality rate. A phenotypic transition between White and Opaque states in C. albicans is associated with its virulence in different colonizing niches. Furthermore, comparised with white cells, opaque cells could escape attacks from macrophages. Besides, Opaque cells, but not white cells, have been shown to have the exclusive ability of mating. The White-Opaque phenotypic transition is majorly controlled by the Wor1 transcriptional feedback loop. Some environmental clues, including PH, oxidative stress, carbon sources, and temperature, also have influence on regulating the White-Opaque switching. Hog1 MAP kinase has been recognized as the main regulator for adapting to environmental oxidative stress of C. albicans. Therefore, we hypothesized that Hog1 MAP kinase not only has the ability to adapt to environmental stresses, but also has the ability to regulate the White-Opaque switching. In this study, knocking out the HOG1 gene in a/a and α/α cells resulted in 100% opaque cell formation on SC medium at both 25℃ and 37℃ + 5% CO2 culture condition (mimic gastrointestinal condition). However, hog1/wor1 mutants remained in the white state, suggesting that Wor1 still plays an important role in opaque cell formation. To indentify the potential downstram transcritption factors regulated by Hog1, deletion of both MSN2 and MSN4 did not induce the White-to-Opaque switching. The opaque cells forming from hog1 mutants are less stable than those of the wild-type, only 80% of the colonies remained in opaque phenotype, whereas the stability of opaque cells in the wild-type and complementary strain is near 95%. Besides, only 15% of the hog1 mutant cells formed pheromone-induced mating projection, whereas the shmoo formation of the wild-type reached to 48%. The average length of mating projections generated from hog1 mutants is 10.54 μm, which is shorter than those of the wild-type (24.39 μm). As the expectation, the mating efficiency of hog1 mutants significantly decreased to 2.71% compared to the wild-type (9.92%) and complementary strain (8.15%). In summary, my studies revealed that the Hog1 MAP kinase of C. albicans not only is required for oxidative stress, but also is involved in White-Opaque switching and the characteristics of opaque cells.

口試委員會審定書 #
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xi
附錄 xii
前言 1
念珠菌感染 (Candidiasis ) 1
白色念珠菌 (Candida albicans) 1
White-Opaque 型態轉換 2
交配 (Mating) 3
Mitogen activated protein kinase (MAP kinase) 訊息傳遞途徑 3
High osmotic glycerol 1 (Hog1) MAP kinase 4
研究的動機與目標 4
材料與方法 5
引子、質體、菌株、藥品、培養基 5
DNA 聚合&;#37238;鏈式反應 (polymerase chain reaction, PCR) 5
DNA Clean Up 與 Gel Recovery 5
洋菜膠體電泳分析 (Agarose gel electrophoresis) 5
DNA 接合反應 (Ligation) 6
大腸桿菌勝任細胞 (Competent cell) 之製備 6
大腸桿菌轉形作用 (Transformation) 6
質體DNA之抽取 8
C. albicans 轉形作用 (Transformation) 8
環境高滲透壓與氧化壓力敏感度之測試 11
White-Opaque 型態轉換之測試 11
SDS-PAGE (polyacrylamide) 蛋白質電泳分析 12
西方墨點法 (Western blot) 12
Opaque 細胞穩定度之測試 13
α-Pheromone 誘導 Opaque 細胞產生 mating projection 之測試 13
Mating Efficiency之測試 13
Fluorescence-activated cell sorting (FACS) 14
結果 15
構築 C. albicans 之 hog1突變株與 hog1::HOG1互補株 15
hog1突變株對環境高滲透壓與氧化壓力具有高度敏感性 15
於25oC環境性狀為a/a 與 α/α的 hog1突變株在SC 培養基有 White-to-Opaque 型態的轉換。 16
於37oC + 5% CO2 培養環境,性狀為a/a 與 α/α的 hog1突變株有 White-to-Opaque 型態的轉換。 16
螢光顯微鏡下鑑定 hog1突變株形成的橢圓形長條狀細胞為 Opaque 細胞 16
野生株之 White細胞與 Opaque 細胞均無偵測到Hog1-P磷酸化 17
構築 C. albicans wor1突變株 17
Wor1 參與 Hog1調控 White-Opaque型態的轉換。 18
構築 C. albicans msn2突變株與 msn2 / msn4雙突變株 18
Hog1 下游轉錄因子Msn2與 Msn4均無參與 White-Opaque 型態轉換之調控 18
hog1突變株形成之Opaque 細胞較不穩定 18
hog1突變株之Opaque 細胞對α-Pheromone較不敏感並產生長度較短之 mating projection。 19
構築帶有 nutrition marker (&;#8710;arg4、&;#8710;leu2) 之 C. albicans 野生株、 hog1突變株與hog1::HOG1互補株 19
hog1突變株Opaque 細胞交配能力降低 20
討論 21
未來研究方向 24
圖表 25
附錄 46
參考資料 48


1. Vazquez-Gonzalez D, Perusquia-Ortiz AM, Hundeiker M, Bonifaz A (2013) Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. J Dtsch Dermatol Ges 11: 381-393; quiz 394.
2. Pappas PG, Rex JH, Lee J, Hamill RJ, Larsen RA, et al. (2003) A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis 37: 634-643.
3. Wenzel RP, Gennings C (2005) Bloodstream infections due to Candida species in the intensive care unit: identifying especially high-risk patients to determine prevention strategies. Clin Infect Dis 41 Suppl 6: S389-393.
4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, et al. (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39: 309-317.
5. Martins N, Ferreira IC, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240.
6. Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49: 171-177.
7. Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289: 310-313.
8. Lockhart SR, Wu W, Radke JB, Zhao R, Soll DR (2005) Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of Candida albicans. Genetics 169: 1883-1890.
9. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, et al. (1987) "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol 169: 189-197.
10. Morrow B, Srikantha T, Anderson J, Soll DR (1993) Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect Immun 61: 1823-1828.
11. Srikantha T, Soll DR (1993) A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131: 53-60.
12. Lan CY, Newport G, Murillo LA, Jones T, Scherer S, et al. (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99: 14907-14912.
13. Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389-399.
14. Bennett RJ, Johnson AD (2005) Mating in Candida albicans and the search for a sexual cycle. Annu Rev Microbiol 59: 233-255.
15. Kolotila MP, Diamond RD (1990) Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun 58: 1174-1179.
16. Kvaal CA, Srikantha T, Soll DR (1997) Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun 65: 4468-4475.
17. Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, et al. (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67: 6652-6662.
18. Lohse MB, Johnson AD (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS One 3: e1473.
19. Geiger J, Wessels D, Lockhart SR, Soll DR (2004) Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun 72: 667-677.
20. Alby K, Bennett RJ (2009) Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell 20: 3178-3191.
21. Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO(2) regulates white-to-opaque switching in Candida albicans. Curr Biol 19: 330-334.
22. Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, et al. (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog 6: e1000806.
23. Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J (2008) Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog 4: e1000089.
24. Slutsky B, Buffo J, Soll DR (1985) High-frequency switching of colony morphology in Candida albicans. Science 230: 666-669.
25. Huang G, Wang H, Chou S, Nie X, Chen J, et al. (2006) Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci U S A 103: 12813-12818.
26. Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, et al. (2006) TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell 5: 1674-1687.
27. Zordan RE, Galgoczy DJ, Johnson AD (2006) Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A 103: 12807-12812.
28. Vinces MD, Kumamoto CA (2007) The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology 153: 2877-2884.
29. Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD (2007) Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5: e256.
30. Hull CM, Johnson AD (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285: 1271-1275.
31. Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293-302.
32. Lockhart SR, Zhao R, Daniels KJ, Soll DR (2003) Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell 2: 847-855.
33. Bennett RJ, Miller MG, Chua PR, Maxon ME, Johnson AD (2005) Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol Microbiol 55: 1046-1059.
34. Wu W, Pujol C, Lockhart SR, Soll DR (2005) Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169: 1311-1327.
35. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18: 128-131.
36. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435-2444.
37. Dickman MB, Yarden O (1999) Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genet Biol 26: 99-117.
38. Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80: 187-197.
39. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 1264-1300.
40. Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314-1317.
41. Cook JG, Bardwell L, Thorner J (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390: 85-88.
42. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 231-241.
43. San Jose C, Monge RA, Perez-Diaz R, Pla J, Nombela C (1996) The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178: 5850-5852.
44. Whiteway M, Dignard D, Thomas DY (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci U S A 89: 9410-9414.
45. Navarro-Garcia F, Sanchez M, Pla J, Nombela C (1995) Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15: 2197-2206.
46. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259: 1760-1763.
47. Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, et al. (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2: 351-361.
48. Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, et al. (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181: 3058-3068.
49. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360.
50. Erkina TI, Lavrova MV, Erkin AM (2009) [Alternative ways of stress regulation in cells of Saccharomyces cerevisiae: transcriptional activators Msn2 and Msn4]. Tsitologiia 51: 271-278.
51. Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, et al. (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3: 1111-1123.
52. Arana DM, Nombela C, Alonso-Monge R, Pla J (2005) The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 151: 1033-1049.
53. Cheetham J, Smith DA, da Silva Dantas A, Doris KS, Patterson MJ, et al. (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18: 4603-4614.
54. Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, et al. (2010) The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet 6: e1001070.
55. Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, et al. (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell 5: 347-358.
56. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
57. Gillum AM, Tsay EY, Kirsch DR (1984) Isolation of the Candida albicans gene for orotidine-5''-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198: 179-182.
58. Bennett RJ, Uhl MA, Miller MG, Johnson AD (2003) Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23: 8189-8201.
59. Bennett RJ, Johnson AD (2006) The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Mol Microbiol 62: 100-119.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔