跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郁良溎
研究生(外文):Liang-Gui Yu
論文名稱:AtMAPR2於油菜固醇調控阿拉伯芥發育中扮演之功能研究
論文名稱(外文):Roles of AtMAPR2 in brassinosteroid-mediated development of Arabidopsis
指導教授:楊健志
指導教授(外文):Chien-Chih Yang
口試委員:王愛玉李昆達廖憶純黃楓婷
口試委員(外文):Ai-Yu WangKung-Ta LeeYi-Chun LiaoFeng-Ting Huang
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:111
中文關鍵詞:阿拉伯芥油菜固醇黃體素光週期
外文關鍵詞:Arabidopsis thalianabrassinosteroidprogesteronephotoperiod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿拉伯芥膜結合黃體素受體 (Arabidopsis thaliana membrane-associated progesterone receptors, AtMAPRs) 為阿拉伯芥四個具潛在固醇類結合口袋之蛋白質家族,其中位於第二號染色體的AtMAPR2為四個成員中唯一預測不含穿膜區塊者。本實驗室過去對AtMAPR2之相關研究發現,在正常光週期生長條件下,處理高濃度 (uM) 之油菜固醇 (Brassinosteroids) 會抑制AtMAPR2基因之表現。此外, AtMAPR2之基因靜默突變株幼苗對於油菜固醇的處理反應較不敏感。本研究主要探討AtMAPR2對油菜固醇調控之植物生理功能影響,在正常光週期生長條件下,AtMAPR2過度表現突變株幼苗對於低濃度 (nM) 之油菜固醇處理表現出下胚軸及主根延長較顯著之性狀;而AtMAPR2之基因靜默突變株則較不敏感;但在避光生長條件下,突變株間之差異則較不明顯,以上現象符合油菜固醇影響之植物幼苗階段發育與光照之關聯。在發育中晚期時,本研究亦發現AtMAPR2之過度表現突變株呈現較早開花與主莖延長等性狀;而AtMAPR2之基因靜默突變株則呈現較晚開花與主莖較短之性狀。根據以上觀察,推測AtMAPR2於油菜固醇所調控之植物發育與生理扮演一正向調控的角色。在油菜固醇對AtMAPR2之分子層次影響探討中,發現處理油菜固醇之野生型阿拉伯芥幼苗在接受光照後會導致AtMAPR2蛋白質大量累積,但在黑暗環境下並無此現象。在轉錄層次上,處理油菜固醇後幼苗是否接受光照對於AtMAPR2之基因表現並顯著的影響,這代表光照可能透過影響AtMAPR2蛋白質之後轉譯層次調控機制影響其穩定度或功能,進而影響於AtMAPR2相關突變株中觀察到之性狀。

Arabidopsis thaliana membrane-associated progesterone receptors (AtMAPRs) share the conserved putative cytochrome b5-like heme/steroid-binding pockets. Among the four members, AtMAPR2 which locates on the second chromosome is the only member without a predicted transmembrane domain. We found that application of micromolar level concentration of BR would suppress the expression of AtMAPR2 under normal photoperiod. Furthermore, the gene silencing mutant of AtMAPR2 seemed insensitive to treatment of BR. In this thesis, a few evidences that linked AtMAPR2’s physiological roles to BR and plant’s responses to light were observed. First, transgenic plant of Arabidopsis that overexpress AtMAPR2 (AtMAPR2-OX) showed an increased elongation in hypocotyls and primary roots in response to treatment of nanomolar level concentration of BR in light. On the contrary, the antisense transgenic plant AtMAPR2-RNAi appeared insensitive to these BR-mediated responses. Furthermore, these differences were not observed when these mutants were grown in dark. Second, AtMAPR2-OX showed an early flowering phenotype and possessed an elongated primary shoot, while the AtMAPR2-RNAi showed late flowering and shorter primary shoot. These results suggested that AtMAPR2 might play a positive role in BR-mediated responses. The protein levels of AtMAPR2 in wild type under BR treatments were monitored using western blot. AtMAPR2 accumulated in the BR-treated Arabidopsis seedlings under light but not under dark, suggesting that illumination might affect the stability of AtMAPR2 via post-translational regulation.

口試委員會審定書 i
謝誌 ii
Abbreviations iii
摘要 v
Abstract vi
Chapter 1 Introduction 1
1.1 Brassinosteroids 1
1.1.1 Biosynthesis of BRs 1
1.1.2 Physiological effects of BRs 2
1.1.3 Signal transduction of BRs 3
1.2 Membrane-Associated Progesterone Receptor (MAPR) family 6
1.2.1 Cytochrome b5 like ligand binding domain 7
1.2.2 Putative ligands of MAPR family 7
1.2.3 Putative physiological roles of MAPR family 9
1.3 Arabidopsis thaliana MAPRs (AtMAPRs) 10
1.3.1 Function of AtMAPR5/MSBP1 11
1.3.2 Previous studies on AtMAPR2 12
1.4 Aims of this study 13
Chapter 2 Materials and Methods 15
2.1 Experimental Materials 15
2.1.1 Plant Materials 15
2.2 Chemicals 16
2.2.1 Brassinolide 16
2.3 Instruments 16
2.4 Experimental Methods 18
2.4.1 Culture of Arabidopsis thaliana 18
2.4.2 Analysis of transcription 21
2.4.3 Analysis of translation 28
2.4.4 In silico analysis of protein 38
2.4.5 Observation and analysis of phenotype 40
Chapter 3 Results and Discussion 41
3.1 AtMAPR2-related mutants for phenotypic analysis 41
3.1.1 Selection of homozygous mutants by antibiotic screening 42
3.1.2 Quantitative real-time PCR confirmed the predicted expression level of AtMAPR2 in transgenic mutant lines (AtMAPR2-OX-1-1, AtMAPR2-RNAi-4-2) 43
3.1.3 Protein levels of AtMAPR2 in the mutants 44
3.2 AtMAPR2 might play roles in BR-mediated responses 47
3.2.1 AtMAPR2 might promote BR-mediated elongation of hypocotyl and primary root under illumination 47
3.2.2 AtMAPR2 might participate in shoot elongation and early flowering 51
3.2.3 In silico sequence analysis revealed interesting features of AtMAPR2 53
Chapter 4 Conclusions and Perspectives 57
4.1 Conclusions 57
4.2 Perspectives 58
4.2.1 Observation of other BR-mediated phenotypes 58
4.2.2 Confirmation of BR-mediated alterations in AtMAPR2 under illumination 59
4.2.3 Analysis of the roles that AtMAPR2 plays in BR-mediated development 59
References 61
Figures, Tables, and Scheme 72
Appendices 101
問答集 104

Altmann, T. (1999). Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208, 1-11.
Azpiroz, R., Wu, Y., LoCascio, J. C., and Feldmann, K. A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10, 219–230.
Bajguz, A. (2011). Brassinosteroids - occurence and chemical structures. In Brassinosteroids: A Class of Plant Hormones, Hayat, S. and Ahmad, A., eds (Dordrecht: Springer), pp. 1-27.
Bancos, S., Szatmari, A.-M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G. J., Nagy, F., and Szekeres, M. (2006). Diurnal regulation of the brassinosteroid biosynthetic CPD gene in Arabidopsis. Plant Physiol. 141, 299–309.
Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Ann. Rev. Plant Biol. 55, 429-457.
Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351-1362.
Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. Jr, Hoffman, N. E., Davis, K. R., and Gorlach, J (2001). Growth stage–based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-1510.
Briesemeister, S., Rahnenfuhrer, J., and Kohlbacher, O. (2010a). Going from where to why - interpretable prediction of protein subcellular localization, Bioinformatics 26, 1232-1238.
Briesemeister, S., Rahnenfuhrer, J., and Kohlbacher, O. (2010b). YLoc - an interpretable web server for predicting subcellular localization, Nucleic Acids Res. 38, 497-502.
Cahill, M. A. (2007). Progesterone receptor membrane component 1: An integrative review. J. Steroid Biochem. Mol. Biol. 105, 16-36.
Cano-Delgado, A., Yin, Y. H., Yu, C., Vafcados, D., Mora-Garcia, S., Cheng, J. C., Nam, K. H., Li, J. M., and Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341–5351.
Chen, J. G., Pandey, S., Huang, J., Alonso, J. M., Ecker, J. R., Assmann, S. M., and Jones, A. M. (2004). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol. 135, 907–915.
Clouse, S. D. (2011). Brassinosteroids. The Arabidopsis Book: e0151.
Clouse, S. D., and Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451.
Clouse, S. D., and Zurek, D. (1991). Molecular analysis of brassinolide action in plant growth and development. In Brassinosteroids Chemistry, Bioactivity, &; Applications, Cutler, H. G., Yokota, T., and Adam, G., eds (Washington, D.C.: American Chemical Society), pp. 122-140.
Clouse, S. D., Langford, M., and McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678.
Clouse, S., and Feldmann, K. (1999). Molecular genetics of brassinosteroid action. In Brassinosteroids: Steroidal Plant Hormones, Sakurai, A., Yokota, T., and Clouse, S., eds (Tokyo: Springer), pp. 163-190.
Cui, F., Liu, L. J., Zhao, Q. Z., Zhang, Z. H., Li, Q. L., Lin, B. Y., Wu, Y. R., Tang, S. Y., and Xie, Q. (2012). Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. The Plant Cell 24, 233-244.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17.
De Grauwe, L., Vandenbussche, F., Tietz, O., Palme, K., and Van Der Straeten, D. (2005). Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol. 46, 827–836.
Deslauriers, S. D., and Larsen, P. B. (2010). FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol. Plant 3, 626–640.
Domagalska, M. A., Sarnowska, E., Nagy, F., and Davis, S. J. (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One 5, e14012.
Domagalska, M. A., Schomburg, F. M., Amasino, R. M., Vierstra, R. D., Nagy, F., and Davis, S. J. (2007). Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134, 2841–2850.
Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387–415.
Fujioka, S. (1999). Natural occurrence of brassinosteroids in the plant kingdom. In Brassinosteroids: Steroidal plant hormones, Sakurai, A., Yokota, T., and Clouse, S., eds (Tokyo: Springer) pp. 21-45.
Fukaki, H., and Tasaka, M. (2009). Hormone interactions during lateral root formation. Plant Mol. Biol. 69, 437–449.
Fukuda, H. (1997). Tracheary element differentiation. Plant Cell 9, 1147-1156.
Gampala S. S., Kim, T. W., He, J. X., Tang, W., Deng, Z., Bai, M. Y., Guan, S., Lalonde, S., Sun, Y., Gendron, J. M., Chen, H., Shibagaki, N., Ferl, R. J., Ehrhardt, D., Chong, K., Burlingame, A. L., and Wang, Z. Y. (2007). An essential role for 14–3–3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell 13, 177–189.
Gao, Y., Wang, S., Asami, T., and Chen, J. G. (2008). Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants. Plant Cell Physiol. 49, 1013–1024.
Ghosh, K., Thompson, A. M., Goldbeck, R. A., Shi, X., Whitman, S., Oh, E., Zhiwu, Z., Vulpe, C., and Holman, T. R. (2005). Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p. Biochemistry 44, 16729–16736.
Gonzalez-Garcia, M. P., Vilarrasa-Blasi, J., Zhiponova, M., Divol, F., Mora-Garcia, S., Russinova, E., and Cano-Delgado, A. I. (2011). Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138, 849-859.
Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D. Jr, Steffens, G. L., Flippen-Anderson, J. L., and Cook, J. C. Jr (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281, 216–217.
Guerra, D. D., and Callis, J. (2012). Ubiquitin on the move: The ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56-64.
Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M. J., Chory, J., and Savaldi-Goldstein, S. (2011). Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839-848.
Hanano, S., Domagalska, M. A., Nagy, F., and Davis, S. J. (2006). Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells. 11, 1381–1392.
Hand, R. A., Jia, N., Bard, M., and Craven, R. J. (2003). Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryot. Cell 2, 306–317.
He, J. X., Gendron, J. M., Yang, Y., Li, J., and Wang, Z. Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 10185–10190.
Horvath, D. P., Schaffer, R., West, M., and Wisman, E. (2003). Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J. 34, 125–134.
Hughes, A. L., Powell, D. W., Bard, M., Eckstein, J., Barbuch, R., Link, A. J., and Espenshade, P. J. (2007). Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 5, 143–149.
Ibanes, M., Fabregas, N., Chory, J., and Cano-Delgado, A. I. (2009). Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc. Natl Acad. Sci. USA 106, 13630–13635.
Kang, B., Wang, H., Nam, K. H., and Li, J. (2010). Activation-tagged suppressors of a weak brassinosteroid receptor mutant. Mol. Plant 3, 260–268.
Kao, A. L. (2010). Molecular characterization of AtMAPRs in Arabidopsis. Doctoral Dissertation, Inst. Microbiol. Biochem., Nat’l. Taiwan. Univ.
Kao, A. L., Chang, T. Y., Chang, S. H., Su, J. C., and Yang, C. C. (2005). Characterization of a novel Arabidopsis protein family AtMAPR homologous to 25-Dx/IZAg/Hpr6.6 proteins. Bot. Bull. Acad. Sin 46, 107–118.
Katsumi, M. (1985). Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol. 26, 615–625.
Kelley, D. R., and Estelle, M. (2012). Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160, 47-55.
Kim, K. W., Franceschi, V. R., Davin, L. B., and Lewis, N. G. (2006). Beta-glucuronidase as reporter gene: advantages and limitations. Methods Mol. Biol. 323, 263–273.
Kim, T. W., Guan, S. H., Sun, Y., Deng, Z. P., Tang, W. Q., Shang, J. X., Sun, Y., Burlingame, A. L., and Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260.
Krishna, P. (2003). Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 22, 289-297.
Kuppusamy, K. T., Chen, A. Y., and Nemhauser, J. L. (2009). Steroids are required for epidermal cell fate establishment in Arabidopsis roots. Proc. Natl Acad. Sci. USA 106, 8073–8076.
Laird, S. M., Vinson, G. P., and Whitehouse, B. J. (1988). Monoclonal antibodies against rat adrenocortical cell antigens. Acta Endocrinol. 119, 420–426.
Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299–1301.
Li, J., Li, Y., Chen, S., and An, L. (2010a). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J. Exp. Bot. 61, 4221–4230.
Li, J., Nagpal, P., Vitart, V., McMorris, T. C., and Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401.
Li, J., Nam, K. H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol. 127, 14–22.
Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222.
Li, L., Ye, H., Guo, H., and Yin, Y. (2010b). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc. Natl Acad. Sci. USA 107, 3918–3923.
Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., and Yin, Y. (2009). Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J. 58, 275–286.
Mallory, J. C., Crudden, G., Johnson, B. L., Mo, C., Pierson, C. A., Bard, M., and Craven, R. J. (2005). Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol. Cell Biol. 25, 1669–1679.
Mandava, N. (1988). Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 23–52.
Meyer, C., Schmid, R., Scriba, P. C., and Wehling, M. (1996). Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem. 239, 726–731.
Mifsud, W., and Bateman, A. (2002). Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biol. 3, research0068.
Min, L., Strushkevich, N. V., Harnastai, I. N., Iwamoto, H., Gilep, A. A., Takemori, H., Usanov, S. A., Nonaka, Y., Hori, H., Vinson, G. P., and Okamoto, M. (2005). Molecular identification of adrenal inner zone antigen as a heme-binding protein, FEBS J. 272, 5832–5843.
Min, L., Takemori, H., Nonaka, Y., Katoh, Y., Doi, J., Horike, N., Osamu, H., Raza, F. S., Vinson, G. P., and Okamoto M. (2004). Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol. Cell. Endocrinol. 215, 143–148.
Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., and Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448–460.
Mouchel, C. F., Osmont, K. S., and Hardtke, C. S. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443, 458–461.
Mussig, C., Shin, G. H., and Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiol. 133, 1261–1271.
Nakaya, M., Tsukaya, H., Murakami, N., and Kato, M. (2002). Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol. 43, 239–244.
Nam, K. H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203–212.
Nebert, D. W., and Russell, D. W. (2002). Clinical importance of the cytochromes P450. Lancet 360, 1155–1162.
Nemhauser, J. L., Mockler, T. C., and Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2, E258.
Peluso, J. J., Lodde, V., and Liu, X. F. (2012). Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology 153, 3929-3939.
Peluso, J. J., Romak, J., and Liu, X. (2008). Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology 149, 534–543
Peng, P., Yan, Z., Zhu, Y., and Li, J. (2008). Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol. Plant 1, 338–346.
Radivojac, P., Vacic, V., Haynes, C., Cocklin, R. R., Mohan, A., Heyen, J. W., Goebl, M. G., and Iakoucheva, L. M. (2010). Identification, analysis and prediction of protein ubiquitination sites. Proteins 78, 365-380.
Ren, J., Gao, X. J., Jin, C. J., Zhu, M., Wang, X. W., Shaw, A., Wen, L. P., Yao, X. B., and Xue, Y. (2009). Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9, 3409–3412.
Rietz, S., Dermendjiev, G., Oppermann, E., Tafesse, F. G., Effendi, Y., Holk, A., Parker, J. E., Teige, M., and Scherer, G. F. E. (2010). Roles of Arabidopsis patatin-related phospholipases A in root development are related to auxin responses and phosphate deficiency. Mol. Plant 3, 524–538.
Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., and Hwang, I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749–2762.
Salchert, K., Bhalerao, R., Koncz-Kalman, Z., and Koncz, C. (1998). Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 1517–1520.
Sasse, J. M. (1994). Brassinosteroids and roots. Proc. Plant Growth Regul. Soc. Am. 21, 228–232.
Sasse, J. M. (2003). Physiological actions of brassinosteroids: An update. J. Plant Growth Regul. 22, 276-288.
Savaldi-Goldstein, S., Peto, C., and Chory, J. (2007). The epidermis both drives and restricts plant shoot growth. Nature 446, 199–202.
Schenkman, J. B., and Jansson, I. (2003). The many roles of cytochrome b5. Pharmacol. Ther. 97, 139–152.
Schluter, U., Kopke, D., Altmann, T., and Mussig, C. (2002). Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid deficient cbb1 mutant. Plant Cell Environ. 25, 783–791.
Shi, Q. M., Yang, X., Song, L., and Xue, H. W. (2011). Arabidopsis MSBP1 is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation. Mol. Plant 4, 1092-1104.
Song, J., Vinarov, D., Tyler, E. M., Shahan, M. N., Tyler, R. C., and Markley, J. L. (2004). Hypothetical protein At2g24940.1 from Arabidopsis thaliana has a cytochrome b5 like fold, J. Biomol. NMR 30, 215–218.
Song, L., Shi, Q. M., Yang, X. H., Xu, Z. H., and Xue, H. W. (2009). Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res. 19, 864-876.
Steber, C. M., and McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763–769.
Sun, Y., Fan, X. Y., Cao, D. M., Tang, W. Q., He, K., Zhu, J. Y., He, J. X., Bai, M. Y., Zhu, S. W., Oh, E., Patil, S., Kim, T. W., Ji, H. K., Wong, W. H., Rhee, S. Y. and Wang, Z. Y. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell. 19, 765–777.
Szekeres, M., Ne&;#769;meth, K., Koncz-Ka&;#769;lma&;#769;n, Z., Mathur, J., Kauschmann, A., Altmann, T., Re&;#769;dei, G. P., Nagy, F., Schell, J., and Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis. Cell 85, 171–182.
Tang, W. Q., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z. P., Zhu, S. W., Wang, R. J., Burlingame, A. L., and Wang, Z. Y. (2008). Brassinosteroid-Signaling Kinases (BSKs) mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560.
Vert, G., and Chory, J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature 441, 96–100.
Vert, G., Walcher, C. L., Chory, J., and Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc. Natl Acad. Sci. USA 105, 9829–9834.
Wang X. L., Li, X. Q., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J. (2005). Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell 8, 855–865.
Wang X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M. B., Huber, S. C., and Clouse, S. D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220–235.
Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118–1122.
Wang, Z. Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383.
Wang, Z. Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505–513.
Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C., and Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7, 1555–1567.
Yang, C. J., Zhang, C., Lu, Y. N., Jin, J. Q., and Wang, X. L. (2011). The mechanisms of brassinosteroids'' action: From signal transduction to plant development. Mol. Plant 4, 588-600.
Yang, X. H., Xu, Z. H., and Xue, H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17, 116-131.
Yang, X., Song, L., and Xue, H. W. (2008). Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. Mol. Plant 1, 1077-1087.
Ye, H. X., Li. L, and Yin, Y. H. (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J. Integr. Plant Biol. 53, 455-468.
Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y., Ma, H., and Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl. Acad. Sci. USA 107, 6100-6105.
Yeh, S. H. (2006). Construction and analysis of transgenic Arabidopsis with AtMAPRs gene silencing vectors. Master Thesis, Inst. Microbiol. Biochem., Nat’l. Taiwan. Univ.
Yin, Y. H., Vafeados, D., Tao, Y., Yokoda, T., Asami, T., Chory, J. (2005). A new class of transcription factorsmediate brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249–259.
Yin, Y. H., Wang, Z. Y., Mora-Garcia, S., Li, J. M., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191.
Yokota, T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci. 2, 137-143.
Yokota, T., Ogino, Y., Suzuki, H., Takahashi, N., Saimoto, H., Fujioka, S., and Sakurai, A. (1991). Metabolism and biosynthesis of brassinosteroids. In Brassinosteroids Chemistry, Bioactivity, &; Applications, Cutler, H., Yokota, T., and Adam, G., eds (Washington, D.C.: American Chemical Society), pp. 86-96.
Yoshitani, N., Satou, K., Saito, K., Suzuki, S., Hatanaka, H., Seki, M., Shinozaki, K., Hirota, H., Yokoyama, S. (2005). A structure-based strategy for discovery of small ligands binding to functionally unknown proteins: combination of in silico screening and surface plasmon resonance measurements, Proteomics 5, 1472–1480.
Yu, X., Li, L., Guo, M., Chory, J., and Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. USA 105, 7618-7623.
Zhang, S., Cai, Z., and Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl Acad. Sci. USA 106, 4543–4548.
Zhao, J., Peng, P., Schmitz, R. J., Decker, A. D., Tax, F. E., and Li, J. (2002). Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol. 130, 1221–1229.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top