|
1.Wells, R.D., Unusual DNA structures. J Biol Chem, 1988. 263(3): p. 1095-8. 2.Wells, R.D., Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci, 2007. 32(6): p. 271-8. 3.Raghavan, S.C. and M.R. Lieber, DNA structure and human diseases. Front Biosci, 2007. 12: p. 4402-8. 4.Bacolla, A. and R.D. Wells, Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem, 2004. 279(46): p. 47411-4. 5.Majumdar, A. and D.J. Patel, Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc Chem Res, 2002. 35(1): p. 1-11. 6.Wells, R.D., et al., The role of DNA structure in genetic regulation. CRC Crit Rev Biochem, 1977. 4(3): p. 305-40. 7.De, S. and F. Michor, DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol, 2011. 18(8): p. 950-5. 8.Henderson, E., et al., Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell, 1987. 51(6): p. 899-908. 9.Williamson, J.R., M.K. Raghuraman, and T.R. Cech, Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 1989. 59(5): p. 871-80. 10.Gellert, M., M.N. Lipsett, and D.R. Davies, Helix formation by guanylic acid. Proc Natl Acad Sci U S A, 1962. 48: p. 2013-8. 11.Guschlbauer, W., J.F. Chantot, and D. Thiele, Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J Biomol Struct Dyn, 1990. 8(3): p. 491-511. 12.Sen, D. and W. Gilbert, A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature, 1990. 344(6265): p. 410-4. 13.Simonsson, T., G-quadruplex DNA structures--variations on a theme. Biol Chem, 2001. 382(4): p. 621-8. 14.Keniry, M.A., Quadruplex structures in nucleic acids. Biopolymers, 2000. 56(3): p. 123-46. 15.Burge, S., et al., Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res, 2006. 34(19): p. 5402-15. 16.Arthanari, H. and P.H. Bolton, Functional and dysfunctional roles of quadruplex DNA in cells. Chem Biol, 2001. 8(3): p. 221-30. 17.Qin, Y. and L.H. Hurley, Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie, 2008. 90(8): p. 1149-71. 18.Eddy, J. and N. Maizels, Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res, 2006. 34(14): p. 3887-96. 19.Huppert, J.L. and S. Balasubramanian, Prevalence of quadruplexes in the human genome. Nucleic Acids Res, 2005. 33(9): p. 2908-16. 20.Huppert, J.L. and S. Balasubramanian, G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res, 2007. 35(2): p. 406-13. 21.Todd, A.K., M. Johnston, and S. Neidle, Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res, 2005. 33(9): p. 2901-7. 22.Zhang, R., Y. Lin, and C.T. Zhang, Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res, 2008. 36(Database issue): p. D372-6. 23.Lim, K.W., et al., Coexistence of two distinct G-quadruplex conformations in the hTERT promoter. J Am Chem Soc, 2010. 132(35): p. 12331-42. 24.Palumbo, S.L., S.W. Ebbinghaus, and L.H. Hurley, Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J Am Chem Soc, 2009. 131(31): p. 10878-91. 25.Han, H. and L.H. Hurley, G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci, 2000. 21(4): p. 136-42. 26.Mergny, J.L. and C. Helene, G-quadruplex DNA: a target for drug design. Nat Med, 1998. 4(12): p. 1366-7. 27.Marcu, K.B., S.A. Bossone, and A.J. Patel, myc function and regulation. Annu Rev Biochem, 1992. 61: p. 809-60. 28.Pelengaris, S., B. Rudolph, and T. Littlewood, Action of Myc in vivo - proliferation and apoptosis. Curr Opin Genet Dev, 2000. 10(1): p. 100-5. 29.Pelengaris, S. and M. Khan, The many faces of c-MYC. Arch Biochem Biophys, 2003. 416(2): p. 129-36. 30.Pelengaris, S. and M. Khan, The c-MYC oncoprotein as a treatment target in cancer and other disorders of cell growth. Expert Opin Ther Targets, 2003. 7(5): p. 623-42. 31.Cole, M.D. and S.B. McMahon, The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene, 1999. 18(19): p. 2916-24. 32.Spencer, C.A. and M. Groudine, Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res, 1991. 56: p. 1-48. 33.Yang, D. and L.H. Hurley, Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides Nucleotides Nucleic Acids, 2006. 25(8): p. 951-68. 34.Sakatsume, O., et al., Binding of THZif-1, a MAZ-like zinc finger protein to the nuclease-hypersensitive element in the promoter region of the c-MYC protooncogene. J Biol Chem, 1996. 271(49): p. 31322-33. 35.Cooney, M., et al., Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science, 1988. 241(4864): p. 456-9. 36.Siebenlist, U., et al., Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell, 1984. 37(2): p. 381-91. 37.Boles, T.C. and M.E. Hogan, DNA structure equilibria in the human c-myc gene. Biochemistry, 1987. 26(2): p. 367-76. 38.Simonsson, T., P. Pecinka, and M. Kubista, DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res, 1998. 26(5): p. 1167-72. 39.Siddiqui-Jain, A., et al., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11593-8. 40.Grand, C.L., et al., The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther, 2002. 1(8): p. 565-73. 41.Han, H., et al., Selective interactions of cationic porphyrins with G-quadruplex structures. J Am Chem Soc, 2001. 123(37): p. 8902-13. 42.Seenisamy, J., et al., Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J Am Chem Soc, 2005. 127(9): p. 2944-59. 43.Fry, M., Tetraplex DNA and its interacting proteins. Front Biosci, 2007. 12: p. 4336-51. 44.Chao, D.T. and S.J. Korsmeyer, BCL-2 family: regulators of cell death. Annu Rev Immunol, 1998. 16: p. 395-419. 45.Zhu, Q., et al., Impact of MTHFR gene C677T polymorphism on Bcl-2 gene methylation and protein expression in colorectal cancer. Scand J Gastroenterol, 2011. 46(4): p. 436-45. 46.Reed, J.C., Apoptosis-based therapies. Nat Rev Drug Discov, 2002. 1(2): p. 111-21. 47.Seto, M., et al., Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J, 1988. 7(1): p. 123-31. 48.Dexheimer, T.S., D. Sun, and L.H. Hurley, Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc, 2006. 128(16): p. 5404-15. 49.Hoffman, A.R. and J.F. Hu, Directing DNA methylation to inhibit gene expression. Cell Mol Neurobiol, 2006. 26(4-6): p. 425-38. 50.Lin, J., et al., Stabilization of G-quadruplex DNA by C-5-methyl-cytosine in bcl-2 promoter: implications for epigenetic regulation. Biochem Biophys Res Commun, 2013. 433(4): p. 368-73. 51.Kim, N.W., et al., Specific association of human telomerase activity with immortal cells and cancer. Science, 1994. 266(5193): p. 2011-5. 52.Bird, A.P., Functions for DNA methylation in vertebrates. Cold Spring Harb Symp Quant Biol, 1993. 58: p. 281-5. 53.Singal, R. and G.D. Ginder, DNA methylation. Blood, 1999. 93(12): p. 4059-70. 54.De Smet, C., et al., DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol, 1999. 19(11): p. 7327-35. 55.Suzuki, M.M. and A. Bird, DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008. 9(6): p. 465-76. 56.Nichol, K. and C.E. Pearson, CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res, 2002. 12(8): p. 1246-56. 57.Ehrlich, M., DNA hypomethylation in cancer cells. Epigenomics, 2009. 1(2): p. 239-59. 58.Mizuno, S., et al., Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood, 2001. 97(5): p. 1172-9. 59.Li, S., et al., DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol, 2003. 90(1): p. 123-30. 60.Miremadi, A., et al., Cancer genetics of epigenetic genes. Hum Mol Genet, 2007. 16 Spec No 1: p. R28-49. 61.Hermann, A., R. Goyal, and A. Jeltsch, The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem, 2004. 279(46): p. 48350-9. 62.Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p. 6-21. 63.Klose, R.J. and A.P. Bird, Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 2006. 31(2): p. 89-97. 64.Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8. 65.Gao, Z., et al., Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res, 2009. 29(6): p. 2025-30. 66.Barreto, G., et al., Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 2007. 445(7128): p. 671-5. 67.Jin, S.G., C. Guo, and G.P. Pfeifer, GADD45A does not promote DNA demethylation. PLoS Genet, 2008. 4(3): p. e1000013. 68.Engel, N., et al., Conserved DNA methylation in Gadd45a(-/-) mice. Epigenetics, 2009. 4(2): p. 98-9. 69.Schafer, A., et al., Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation. PLoS One, 2010. 5(11): p. e14060. 70.Schafer, A., et al., Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3. Genes Dev, 2013. 27(3): p. 261-73. 71.Chiba, T., et al., Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 2004. 66(6): p. 481-91. 72.Choi, J.H., et al., TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116. Biochem Biophys Res Commun, 2010. 391(1): p. 449-54. 73.江珮琪, 探討 CLIC4 於光動力致氧化壓力下之調控機制及其對細胞生物效應之影響 國立臺灣大學, 2013. 74.Boldrini, L., et al., Evaluation of telomerase mRNA (hTERT) in colon cancer. Int J Oncol, 2002. 21(3): p. 493-7. 75.Devereux, T.R., et al., DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res, 1999. 59(24): p. 6087-90. 76.Guilleret, I., et al., Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer, 2002. 101(4): p. 335-41. 77.Zinn, R.L., et al., hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res, 2007. 67(1): p. 194-201. 78.Renaud, S., et al., Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res, 2007. 35(4): p. 1245-56. 79.Kyo, S., et al., Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci, 2008. 99(8): p. 1528-38. 80.Cong, Y.S. and S. Bacchetti, Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem, 2000. 275(46): p. 35665-8. 81.Takakura, M., et al., Telomerase activation by histone deacetylase inhibitor in normal cells. Nucleic Acids Res, 2001. 29(14): p. 3006-11. 82.Doetzlhofer, A., et al., Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol, 1999. 19(8): p. 5504-11. 83.Lobanenkov, V.V., et al., A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5''-flanking sequence of the chicken c-myc gene. Oncogene, 1990. 5(12): p. 1743-53. 84.Bell, A.C. and G. Felsenfeld, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 2000. 405(6785): p. 482-5. 85.Hark, A.T., et al., CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature, 2000. 405(6785): p. 486-9. 86.Kanduri, C., et al., Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol, 2000. 10(14): p. 853-6. 87.Vostrov, A.A. and W.W. Quitschke, The zinc finger protein CTCF binds to the APBbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation. J Biol Chem, 1997. 272(52): p. 33353-9. 88.Kim, T.H., et al., Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 2007. 128(6): p. 1231-45. 89.Davalos-Salas, M., et al., Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter. BMC Cancer, 2011. 11: p. 232. 90.Shukla, S., et al., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011. 479(7371): p. 74-9. 91.Lai, A.Y., et al., DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med, 2010. 207(9): p. 1939-50. 92.Filippova, G.N., et al., An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol, 1996. 16(6): p. 2802-13. 93.Arnold, R., et al., DNA bending by the silencer protein NeP1 is modulated by TR and RXR. Nucleic Acids Res, 1996. 24(14): p. 2640-7. 94.Bell, A.C., A.G. West, and G. Felsenfeld, The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell, 1999. 98(3): p. 387-96. 95.Vostrov, A.A., M.J. Taheny, and W.W. Quitschke, A region to the N-terminal side of the CTCF zinc finger domain is essential for activating transcription from the amyloid precursor protein promoter. J Biol Chem, 2002. 277(2): p. 1619-27. 96.Izumi, R., et al., Positive and negative regulatory elements for the expression of the Alzheimer''s disease amyloid precursor-encoding gene in mouse. Gene, 1992. 112(2): p. 189-95. 97.Chernak, J.M., Structural features of the 5'' upstream regulatory region of the gene encoding rat amyloid precursor protein. Gene, 1993. 133(2): p. 255-60. 98.Baniahmad, A., et al., Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell, 1990. 61(3): p. 505-14. 99.Kohne, A.C., A. Baniahmad, and R. Renkawitz, NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing. J Mol Biol, 1993. 232(3): p. 747-55. 100.Filippova, G.N., et al., Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter tts DNA-binding specificity. Cancer Res, 2002. 62(1): p. 48-52. 101.Yeh, A., et al., Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer, 2002. 35(2): p. 156-63. 102.Chu, E.S. and C.M. Yow, Modulation of telomerase and signal transduction proteins by hexyl-ALA-photodynamic therapy (PDT) in human doxorubicin resistant cancer cell models. Photodiagnosis Photodyn Ther, 2012. 9(3): p. 243-55. 103.Chu, E.S., T.K. Wong, and C.M. Yow, Photodynamic effect in medulloblastoma: downregulation of matrix metalloproteinases and human telomerase reverse transcriptase expressions. Photochem Photobiol Sci, 2008. 7(1): p. 76-83. 104.Ngan, C.Y.L.M. and E.C.S. Meir, Modulation of COX2 and hTERT expression by Photodynamic Therapy in human colon cancer cells. Proceedings of SPIE, 2009. 7380: p. 738065-1-13. 105.Renaud, S., et al., CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res, 2005. 33(21): p. 6850-60. 106.Klenova, E.M., et al., CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol, 1993. 13(12): p. 7612-24. 107.Micheli, E., et al., Selective G-quadruplex ligands: the significant role of side chain charge density in a series of perylene derivatives. Bioorg Med Chem Lett, 2009. 19(14): p. 3903-8. 108.Frees, S., et al., QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum Genomics, 2014. 8(1): p. 8. 109.Wang, Y. and D.J. Patel, Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1993. 1(4): p. 263-82. 110.Ambrus, A., et al., Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res, 2006. 34(9): p. 2723-35. 111.Dolmans, D.E., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-7. 112.Jeltsch, A. and R.Z. Jurkowska, New concepts in DNA methylation. Trends Biochem Sci, 2014. 113.Subramaniam, D., et al., DNA methyltransferases: a novel target for prevention and therapy. Front Oncol, 2014. 4: p. 80. 114.Ou, J.N., et al., Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol, 2007. 73(9): p. 1297-307. 115.Sui, X., et al., Epigenetic regulation of the human telomerase reverse transciptase gene: A potential therapeutic target for the treatment of leukemia (Review). Oncol Lett, 2013. 6(2): p. 317-322. 116.Mladenova, V., E. Mladenov, and G. Russev, Organization of Plasmid DNA into Nucleosome-Like Structures after Transfection in Eukaryotic Cells. Biotechnology &; Biotechnological Equipment, 2009. 23(1): p. 1044-1047. 117.Uhlen, M., et al., A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics, 2005. 4(12): p. 1920-32. 118.Halder, R., et al., Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol Biosyst, 2010. 6(12): p. 2439-47. 119.Guerrero-Bosagna, C., S. Weeks, and M.K. Skinner, Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One, 2014. 9(6): p. e100194.
|