跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃琦雁
研究生(外文):Chi-Yen Huang
論文名稱:Ndst4缺陷小鼠促進急性大腸炎和大腸炎相關之腫瘤發展
論文名稱(外文):Ndst4 Deficiency Enhances Acute Colitis and Colitis-associated Tumor Progression in Mice
指導教授:楊雅倩
口試委員:林淑華陶秘華莊雅惠蔡明宏
口試日期:2014-01-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:Ndst4HSPG大腸炎發炎相關大腸腫瘤
外文關鍵詞:Ndst4HSPGcolitiscolitis-associated tumor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌在全世界和臺灣均是癌症死亡原因的前三名。本實驗室先前的研究,於人類第四號染色體4q26鑑定NDST4於大腸直腸癌可能扮演抑癌基因的角色。NDST4屬NDST (N-deacetylase/N-sulfotransferase heparan glucosaminyl)家族的一員,主要的功能是參與Heparan sulfate (HS)的生合成。HS鍵結於蛋白多醣(proteoglycan, PG)的核心蛋白,即為heparan sulfate proteoglycans (HSPGs)。HSPGs廣泛分布於許多組織,主要存在於細胞膜、細胞內與胞外基質。HS能夠連結許多蛋白質配體(ligand),包括生長因子、細胞激素和趨化素,進而調控許多生物活性。據此,實驗室製造Ndst4基因剔除小鼠,初步研究,此基因剔除鼠的發育和生育能力正常。本論文乃利用此小鼠模式探討Ndst4在急性大腸炎和發炎相關的大腸腫瘤生成所扮演的角色。我們將Ndst4異合子(N5F1)之公鼠與母鼠相互交配產生Ndst4基因剔除小鼠(N5F2)和野生型(wild-type,WT)小鼠。於急性大腸炎模式,我們選用六至八週WT及Ndst4基因剔除母鼠給予含3% dextran sodium sulfate (DSS)的飲用水連續七天,結果顯示Ndst4基因剔除小鼠體重下降程度、盲腸充血情形以及疾病活性指數(Desease activity index, DAI)皆較WT小鼠嚴重;進一步做組織切片染色,發現Ndst4基因剔除小鼠之遠端大腸黏膜層組織發炎程度比WT小鼠嚴重。另一方面,我們將四至六週WT及Ndst4基因剔除公鼠以腹腔注射12.5mg/kg azoxymethan (AOM),接續給予含2.5% DSS的飲用水,以誘導發炎相關的大腸腫瘤生成,結果顯示:Ndst4基因剔除小鼠有明顯脫肛現象,於腫瘤生成的數量及直徑超過2mm的腫瘤數量明顯較多,且具有侵犯特性。進一步以免疫組織化學染色觀察正常隱窩(crypt)及腫瘤組織之細胞增生和凋亡情形, WT及Ndst4基因剔除小鼠無顯著差異。接著定量分析小鼠正常黏膜及腫瘤組織之細胞激素、趨化素及轉錄因子的表現量,結果顯示:Ndst4基因剔除小鼠之腫瘤組織TNF-α、CXCL1及COX2基因表現量均比WT小鼠低,Foxp3基因表現量則比WT小鼠高,然而IL-1β、IL-6、CCL2、iNOS、IFN-γ、IL-4、IL-17A、IL-10、T-bet、GATA3及Rorγt mRNA表現量無顯著差異。於正常黏膜組織則皆無明顯差異。綜合以上結果,缺乏Ndst4可能影響特定HSPG的修飾結構,導致形成適合腫瘤生長的微環境及促進腫瘤的侵襲性。


Colorectal cancer (CRC) is one of the most important causes of cancer death in the world and Taiwan. Our previous study has identified that NDST4 located at chromosome 4q26 is a putative tumor suppressor gene in CRC. NDST4 belongs to the N-deacetylase/N-sulfotransferase (heparan glucosaminyl ) (NDST) family, which are responsible for heparan sulfate (HS) biosynthesis on a core protein to form heparan sulfate proteoglycans (HSPGs). The HS chains of HSPGs bind to and regulate the functions of various growth factors, cytokines and chemokines. HSPGs ubiquitously reside on cell surface, inside the cell, and in the extracellular matrix. We further generated an Ndst4-knockout (Ndst4 KO) mouse strain, which could develop and reproduce normally. In the thesis, the role of Ndst4 in acute colitis and colitis-associated tumorigenesis was investigated via in the genetically engineered mice. Using acute colitis model induced by dextran sodium sulfate, Ndst4 deficiency resulted in a significantly body weight loss, higher disease activity index and obviously hyperemic appearance in the cecum when compared with wild-type (WT) mice. In addition, histological examination in distal colon also showed an increased level of crypt erosion in Ndst4 KO mice. In the colitis-associated tumor model induced by azoxymethane/dextran sodium sulfate, the number and size of colonic tumors were significantly increased as compared with WT mice. Furthermore, tumor invasiveness and the prolapse frequency were also significantly increased in Ndst4 KO mice. Meanwhile, cell proliferation and/or apoptosis in normal crypt and/or tumor burden were studied by using immunohistochemistry. However, there was no significant difference between WT and Ndst4 KO mice. On the other hand, tumor tissues exhibited significantly lower expression of TNF-α, CXCL1 and COX2 RNA transcripts and higher expression of Foxp3 RNA transcripts in Ndst4 KO mice by quantitative RT-PCR analysis, IL-1β, IL-6, CCL2, iNOS, IFN-γ, IL-4, IL-17A, IL-10, T-bet, GATA3 and Rorγt expression were not different between the two groups. The gene expression studied in normal parts was not different between the two groups. Taken together, loss of Ndst4 might impair the modification of HS chains of specific HSPGs leading to tumor-promoting microenviroment and tumor
invasiveness in the colon.


致謝 i
中文摘要 iii
英文摘要 v
縮寫對照表 vii
圖目錄 xii
1. 研究背景 1
1.1大腸直腸癌 1
1.2 抑癌基因 2
1.3 發炎性腸道疾病 2
1.4 發炎相關大腸癌 5
1.5 腫瘤免疫編輯 6
1.6實驗動物模式 8
1.6.1 Dextran sodium sulfate動物模式 8
1.6.2 Azoxymethane/Dextran sodium sulfate動物模式 9
1.7 NDST(N-deacetylase/N-sulfotransferase heparan glucosaminyl)家族NDST4 11
1.8 Heparan sulfate proteoglycan與發炎性大腸疾病 12
1.9 Heparan sulfate proteoglycan與癌症發生及轉移 13
1.10 實驗室先前研究結果 15
1.10.1 第四號染色體之失異型性檢測 15
1.10.2 Ndst4基因剔除小鼠 16
2. 研究目標 17
3. 材料與方法 18
3.1 實驗小鼠 18
3.2 DNA萃取 18
3.3 多重PCR (multiplex PCR) 18
3.4 給予DSS誘發產生急性大腸炎 19
3.5 給予AOM/DSS誘導產生發炎相關大腸腫瘤生成 19
3.6 糞便潛血檢測 19
3.7 急性大腸炎之評估 20
3.8 病理組織處理及染色 20
3.8.1 病理組織處理 20
3.8.2 蘇木紫-伊紅染色 20
3.8.3 免疫組織化學染色 21
3.9 RNA表現量分析 22
3.9.1 RNA萃取 22
3.9.2 反轉錄合成cDNA 22
3.9.3 定量反轉錄聚合&;#37238;連鎖反應 23
3.10 統計分析 24
3.11 試劑和抗體 24
4. 結果 25
4.1 利用DSS誘發急性大腸炎動物模式以探討Ndst4之角色 25
4.1.1 Ndst4基因剔除小鼠體重明顯下降且疾病活性指數較高 25
4.1.2 Ndst4基因剔除小鼠盲腸充血情況較嚴重且大腸總長度有較短趨勢 25
4.1.3 Ndst4基因剔除小鼠遠端大腸發炎程度較嚴重 26
4.2 利用AOM/DSS誘發發炎相關大腸腫瘤生成動物模式以探討Ndst4之角色 27
4.2.1 疾病分析 27
4.2.1.1 Ndst4基因剔除小鼠體重沒有明顯差異但脫肛情況較嚴重……...27
4.2.1.2 Ndst4基因剔除小鼠腫瘤生成數量較多且大於2mm的腫瘤所佔
的比例也較高……………………………………………………………..27
4.2.1.3 Ndst4基因剔除小鼠之惡性腫瘤佔的比例較高……………………28
4.2.1.4 Ndst4基因剔除小鼠之腫瘤細胞具侵犯特性………………………28
4.2.1.5 Ndst4基因剔除小鼠之正常隱窩及腫瘤細胞增生沒有顯著差異…29
4.2.1.6 Ndst4基因剔除小鼠之正常隱窩及腫瘤細胞凋亡沒有明顯差異…29
4.2.2 基因表現分析 30
4.2.2.1 Ndst4基因剔除小鼠腫瘤組織表現細胞激素TNF-α程度低於WT
小鼠………………………………………………………………………..30
4.2.2.2 Ndst4基因剔除小鼠腫瘤組織表現趨化素CXCL1程度低於WT小
鼠…………………………………………………………...……………....31
4.2.2.3 Ndst4基因剔除小鼠腫瘤組織表現酵素COX2程度低於WT小鼠31
4.2.2.4 Ndst4基因剔除小鼠之腫瘤組織表現淋巴球分泌之細胞激素IFN-
γ、IL-4、IL-17A及IL-10與WT小鼠無顯著差異……………....…..…32
4.2.2.5 Ndst4基因剔除小鼠之腫瘤組織表現轉錄因子Foxp3 mRNA 程度
高於WT小鼠………………………………………………………….….32
5. 討論 33
6. 圖 38
7. 參考資料 58


1.http://www.doh.gov.tw/CHT2006/index_populace.aspx.
2.Soreide, K., E.A. Janssen, H. Soiland, H. Korner, and J.P. Baak, Microsatellite instability in colorectal cancer. Br J Surg, 2006. 93(4): p. 395-406.
3.Kitisin, K. and L. Mishra, Molecular biology of colorectal cancer: new targets. Semin Oncol, 2006. 33(6 Suppl 11): p. S14-23.
4.Walther, A., E. Johnstone, C. Swanton, R. Midgley, I. Tomlinson, and D. Kerr, Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009. 9(7): p. 489-99.
5.Gryfe, R., Inherited colorectal cancer syndromes. Clin Colon Rectal Surg, 2009. 22(4): p. 198-208.
6.Bodmer, W.F., Cancer genetics: colorectal cancer as a model. J Hum Genet, 2006. 51(5): p. 391-6.
7.Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. Gastroenterology, 2010. 138(6): p. 2059-72.
8.Soreide, K., [Genetics and molecular classification of colorectal cancer]. Tidsskr Nor Laegeforen, 2007. 127(21): p. 2818-23.
9.Shivapurkar, N., A. Maitra, S. Milchgrub, and A.F. Gazdar, Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol, 2001. 32(2): p. 169-77.
10.Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087 e3.
11.Kim, M.S., J. Lee, and D. Sidransky, DNA methylation markers in colorectal cancer. Cancer Metastasis Rev, 2010. 29(1): p. 181-206.
12.Schetter, A.J., N.H. Heegaard, and C.C. Harris, Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 2010. 31(1): p. 37-49.
13.Khansari, N., Y. Shakiba, and M. Mahmoudi, Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov, 2009. 3(1): p. 73-80.
14.Goh, K. and S.D. Xiao, Inflammatory bowel disease: a survey of the epidemiology in Asia. J Dig Dis, 2009. 10(1): p. 1-6.
15.Herszenyi, L., P. Miheller, and Z. Tulassay, Carcinogenesis in inflammatory bowel disease. Dig Dis, 2007. 25(3): p. 267-9.
16.Kaser, A., S. Zeissig, and R.S. Blumberg, Inflammatory bowel disease. Annu Rev Immunol, 2010. 28: p. 573-621.
17.Baumgart, D.C. and W.J. Sandborn, Crohn''s disease. Lancet, 2012. 380(9853): p. 1590-605.
18.Okayasu, I., T. Ohkusa, K. Kajiura, J. Kanno, and S. Sakamoto, Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 1996. 39(1): p. 87-92.
19.Ordas, I., L. Eckmann, M. Talamini, D.C. Baumgart, and W.J. Sandborn, Ulcerative colitis. Lancet, 2012. 380(9853): p. 1606-19.
20.Abraham, C. and J.H. Cho, Inflammatory bowel disease. N Engl J Med, 2009. 361(21): p. 2066-78.
21.Buhner, S., C. Buning, J. Genschel, K. Kling, D. Herrmann, A. Dignass, et al., Genetic basis for increased intestinal permeability in families with Crohn''s disease: role of CARD15 3020insC mutation? Gut, 2006. 55(3): p. 342-7.
22.Macdonald, T.T. and G. Monteleone, Immunity, inflammation, and allergy in the gut. Science, 2005. 307(5717): p. 1920-5.
23.Loftus, E.V., Jr., Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology, 2004. 126(6): p. 1504-17.
24.Lakatos, P.L., T. Szamosi, and L. Lakatos, Smoking in inflammatory bowel diseases: good, bad or ugly? World J Gastroenterol, 2007. 13(46): p. 6134-9.
25.Cosnes, J., Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol, 2004. 18(3): p. 481-96.
26.Sakamoto, N., S. Kono, K. Wakai, Y. Fukuda, M. Satomi, T. Shimoyama, et al., Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis, 2005. 11(2): p. 154-63.
27.Persson, P.G., A. Ahlbom, and G. Hellers, Diet and inflammatory bowel disease: a case-control study. Epidemiology, 1992. 3(1): p. 47-52.
28.Andersen, V., A. Olsen, F. Carbonnel, A. Tjonneland, and U. Vogel, Diet and risk of inflammatory bowel disease. Dig Liver Dis, 2012. 44(3): p. 185-94.
29.Hou, J.K., D. Lee, and J. Lewis, Diet and Inflammatory Bowel Disease: Review of Patient-targeted Recommendations. Clin Gastroenterol Hepatol, 2013.
30.Bernstein, C.N. and F. Shanahan, Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut, 2008. 57(9): p. 1185-91.
31.Head, K. and J.S. Jurenka, Inflammatory bowel disease. Part II: Crohn''s disease--pathophysiology and conventional and alternative treatment options. Altern Med Rev, 2004. 9(4): p. 360-401.
32.Head, K.A. and J.S. Jurenka, Inflammatory bowel disease Part 1: ulcerative colitis--pathophysiology and conventional and alternative treatment options. Altern Med Rev, 2003. 8(3): p. 247-83.
33.Behr, M.A. and E. Schurr, Mycobacteria in Crohn''s disease: a persistent hypothesis. Inflamm Bowel Dis, 2006. 12(10): p. 1000-4.
34.Jernberg, C., S. Lofmark, C. Edlund, and J.K. Jansson, Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J, 2007. 1(1): p. 56-66.
35.Noverr, M.C. and G.B. Huffnagle, Does the microbiota regulate immune responses outside the gut? Trends Microbiol, 2004. 12(12): p. 562-8.
36.Rubin, D.C., A. Shaker, and M.S. Levin, Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol, 2012. 3: p. 107.
37.Rogler, G., Chronic ulcerative colitis and colorectal cancer. Cancer Lett, 2013.
38.Lakatos, P.L. and L. Lakatos, Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol, 2008. 14(25): p. 3937-47.
39.Eaden, J.A., K.R. Abrams, and J.F. Mayberry, The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001. 48(4): p. 526-35.
40.Meira, L.B., J.M. Bugni, S.L. Green, C.W. Lee, B. Pang, D. Borenshtein, et al., DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest, 2008. 118(7): p. 2516-25.
41.Yang, L., N. Belaguli, and D.H. Berger, MicroRNA and colorectal cancer. World J Surg, 2009. 33(4): p. 638-46.
42.Kanaan, Z., S.N. Rai, M.R. Eichenberger, C. Barnes, A.M. Dworkin, C. Weller, et al., Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat, 2012. 33(3): p. 551-60.
43.Grivennikov, S.I. and M. Karin, Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 11-9.
44.Erreni, M., A. Mantovani, and P. Allavena, Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenviron, 2011. 4(2): p. 141-54.
45.Grivennikov, S.I., Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol, 2013. 35(2): p. 229-44.
46.Dunn, G.P., A.T. Bruce, H. Ikeda, L.J. Old, and R.D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8.
47.Dunn, G.P., L.J. Old, and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004. 21(2): p. 137-48.
48.Schreiber, R.D., L.J. Old, and M.J. Smyth, Cancer immunoediting: integrating immunity''s roles in cancer suppression and promotion. Science, 2011. 331(6024): p. 1565-70.
49.Kaplan, D.H., V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L.J. Old, et al., Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7556-61.
50.Rubinstein, N., M. Alvarez, N.W. Zwirner, M.A. Toscano, J.M. Ilarregui, A. Bravo, et al., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell, 2004. 5(3): p. 241-51.
51.Terabe, M., S. Matsui, N. Noben-Trauth, H. Chen, C. Watson, D.D. Donaldson, et al., NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol, 2000. 1(6): p. 515-20.
52.Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998. 188(2): p. 287-96.
53.Mantovani, A., P. Romero, A.K. Palucka, and F.M. Marincola, Tumour immunity: effector response to tumour and role of the microenvironment. Lancet, 2008. 371(9614): p. 771-83.
54.Fridlender, Z.G., J. Sun, S. Kim, V. Kapoor, G. Cheng, L. Ling, et al., Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 2009. 16(3): p. 183-94.
55.Coussens, L.M., W.W. Raymond, G. Bergers, M. Laig-Webster, O. Behrendtsen, Z. Werb, et al., Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev, 1999. 13(11): p. 1382-97.
56.Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature, 2006. 441(7092): p. 431-6.
57.de Visser, K.E., A. Eichten, and L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat Rev Cancer, 2006. 6(1): p. 24-37.
58.Araki, Y., K. Mukaisyo, H. Sugihara, Y. Fujiyama, and T. Hattori, Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice. Oncol Rep, 2010. 24(4): p. 869-74.
59.Tanaka, T., H. Kohno, R. Suzuki, Y. Yamada, S. Sugie, and H. Mori, A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci, 2003. 94(11): p. 965-73.
60.Tanaka, T., Colorectal carcinogenesis: Review of human and experimental animal studies. Journal of Carcinogenesis, 2009. 8(1): p. 5.
61.Okayasu, I., S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, and R. Nakaya, A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702.
62.Cooper, H.S., S.N. Murthy, R.S. Shah, and D.J. Sedergran, Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest, 1993. 69(2): p. 238-49.
63.Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 140(6): p. 883-99.
64.Quante, M. and T.C. Wang, Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology (Bethesda), 2008. 23: p. 350-9.
65.Rosenberg, D.W., C. Giardina, and T. Tanaka, Mouse models for the study of colon carcinogenesis. Carcinogenesis, 2009. 30(2): p. 183-96.
66.Neufert, C., C. Becker, and M.F. Neurath, An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc, 2007. 2(8): p. 1998-2004.
67.Suzuki, R., H. Kohno, S. Sugie, and T. Tanaka, Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci, 2004. 95(9): p. 721-7.
68.Perse, M. and A. Cerar, Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol, 2011. 2011: p. 473964.
69.Chen, J. and X.F. Huang, The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol Ther, 2009. 8(14): p. 1313-7.
70.Ben-Neriah, Y. and M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol, 2011. 12(8): p. 715-23.
71.Onizawa, M., T. Nagaishi, T. Kanai, K. Nagano, S. Oshima, Y. Nemoto, et al., Signaling pathway via TNF-alpha/NF-kappaB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol, 2009. 296(4): p. G850-9.
72.Burstein, E. and E.R. Fearon, Colitis and cancer: a tale of inflammatory cells and their cytokines. J Clin Invest, 2008. 118(2): p. 464-7.
73.Aikawa, J., K. Grobe, M. Tsujimoto, and J.D. Esko, Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem, 2001. 276(8): p. 5876-82.
74.Orellana, A., C.B. Hirschberg, Z. Wei, S.J. Swiedler, and M. Ishihara, Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem, 1994. 269(3): p. 2270-6.
75.Esko, J.D. and S.B. Selleck, Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002. 71: p. 435-71.
76.Yayon, A., M. Klagsbrun, J.D. Esko, P. Leder, and D.M. Ornitz, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991. 64(4): p. 841-8.
77.Turnbull, J.E., D.G. Fernig, Y. Ke, M.C. Wilkinson, and J.T. Gallagher, Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem, 1992. 267(15): p. 10337-41.
78.Ono, K., H. Hattori, S. Takeshita, A. Kurita, and M. Ishihara, Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology, 1999. 9(7): p. 705-11.
79.Lin, X., E.M. Buff, N. Perrimon, and A.M. Michelson, Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development, 1999. 126(17): p. 3715-23.
80.Lin, X. and N. Perrimon, Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 1999. 400(6741): p. 281-4.
81.Toyoda, H., A. Kinoshita-Toyoda, B. Fox, and S.B. Selleck, Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem, 2000. 275(29): p. 21856-61.
82.Fan, G., L. Xiao, L. Cheng, X. Wang, B. Sun, and G. Hu, Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett, 2000. 467(1): p. 7-11.
83.Ringvall, M., J. Ledin, K. Holmborn, T. van Kuppevelt, F. Ellin, I. Eriksson, et al., Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem, 2000. 275(34): p. 25926-30.
84.Forsberg, E., G. Pejler, M. Ringvall, C. Lunderius, B. Tomasini-Johansson, M. Kusche-Gullberg, et al., Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 1999. 400(6746): p. 773-6.
85.Humphries, D.E., G.W. Wong, D.S. Friend, M.F. Gurish, W.T. Qiu, C. Huang, et al., Heparin is essential for the storage of specific granule proteases in mast cells. Nature, 1999. 400(6746): p. 769-72.
86.Pallerla, S.R., R. Lawrence, L. Lewejohann, Y. Pan, T. Fischer, U. Schlomann, et al., Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem, 2008. 283(24): p. 16885-94.
87.Lortat-Jacob, H., A. Grosdidier, and A. Imberty, Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A, 2002. 99(3): p. 1229-34.
88.Proudfoot, A.E., T.M. Handel, Z. Johnson, E.K. Lau, P. LiWang, I. Clark-Lewis, et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1885-90.
89.Matsuo, I. and C. Kimura-Yoshida, Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development. Curr Opin Genet Dev, 2013. 23(4): p. 399-407.
90.Schenauer, M.R., Y. Yu, M.D. Sweeney, and J.A. Leary, CCR2 chemokines bind selectively to acetylated heparan sulfate octasaccharides. J Biol Chem, 2007. 282(35): p. 25182-8.
91.Lantz, M., H. Thysell, E. Nilsson, and I. Olsson, On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin. J Clin Invest, 1991. 88(6): p. 2026-31.
92.Lortat-Jacob, H. and J.A. Grimaud, Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS Lett, 1991. 280(1): p. 152-4.
93.Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7).
94.Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): p. 1030-7.
95.Lee, J.S. and C.B. Chien, When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet, 2004. 5(12): p. 923-35.
96.Parish, C.R., The role of heparan sulphate in inflammation. Nat Rev Immunol, 2006. 6(9): p. 633-43.
97.Iozzo, R.V., Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol, 2005. 6(8): p. 646-56.
98.Kolset, S.O. and H. Tveit, Serglycin--structure and biology. Cell Mol Life Sci, 2008. 65(7-8): p. 1073-85.
99.Hacker, U., K. Nybakken, and N. Perrimon, Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol, 2005. 6(7): p. 530-41.
100.Yamamoto, S., H. Nakase, M. Matsuura, Y. Honzawa, K. Matsumura, N. Uza, et al., Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/beta-catenin signaling. Am J Physiol Gastrointest Liver Physiol, 2013. 305(3): p. G241-9.
101.Bode, L., C. Salvestrini, P.W. Park, J.P. Li, J.D. Esko, Y. Yamaguchi, et al., Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest, 2008. 118(1): p. 229-38.
102.Day, R., M. Ilyas, P. Daszak, I. Talbot, and A. Forbes, Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci, 1999. 44(12): p. 2508-15.
103.Oshiro, M., K. Ono, Y. Suzuki, H. Ota, T. Katsuyama, and N. Mori, Immunohistochemical localization of heparan sulfate proteoglycan in human gastrointestinal tract. Histochem Cell Biol, 2001. 115(5): p. 373-80.
104.Wang, X., Y. Chen, Y. Song, S. Zhang, X. Xie, and X. Wang, Activated Syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci, 2011. 56(4): p. 1047-56.
105.Wang, X.F., A.M. Li, J. Li, S.Y. Lin, C.D. Chen, Y.L. Zhou, et al., Low molecular weight heparin relieves experimental colitis in mice by downregulating IL-1beta and inhibiting syndecan-1 shedding in the intestinal mucosa. PLoS One, 2013. 8(7): p. e66397.
106.Kato, M., S. Saunders, H. Nguyen, and M. Bernfield, Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell, 1995. 6(5): p. 559-76.
107.Day, R.M., X. Hao, M. Ilyas, P. Daszak, I.C. Talbot, and A. Forbes, Changes in the expression of syndecan-1 in the colorectal adenoma-carcinoma sequence. Virchows Arch, 1999. 434(2): p. 121-5.
108.Stickens, D., B.M. Zak, N. Rougier, J.D. Esko, and Z. Werb, Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development, 2005. 132(22): p. 5055-68.
109.Hecht, J.T., D. Hogue, L.C. Strong, M.F. Hansen, S.H. Blanton, and M. Wagner, Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet, 1995. 56(5): p. 1125-31.
110.Grigorieva, E., T. Eshchenko, V.I. Rykova, A. Chernakov, E. Zabarovsky, and S.V. Sidorov, Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer, 2008. 122(5): p. 1172-6.
111.Uchimura, K., M. Morimoto-Tomita, A. Bistrup, J. Li, M. Lyon, J. Gallagher, et al., HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem, 2006. 7: p. 2.
112.Michos, O., A. Goncalves, J. Lopez-Rios, E. Tiecke, F. Naillat, K. Beier, et al., Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development, 2007. 134(13): p. 2397-405.
113.Lamanna, W.C., M.A. Frese, M. Balleininger, and T. Dierks, Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem, 2008. 283(41): p. 27724-35.
114.Iozzo, R.V. and J.D. San Antonio, Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest, 2001. 108(3): p. 349-55.
115.Escobar Galvis, M.L., J. Jia, X. Zhang, N. Jastrebova, D. Spillmann, E. Gottfridsson, et al., Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol, 2007. 3(12): p. 773-8.
116.Robinson, J., M. Viti, and M. Hook, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol, 1984. 98(3): p. 946-53.
117.Nackaerts, K., E. Verbeken, G. Deneffe, B. Vanderschueren, M. Demedts, and G. David, Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer, 1997. 74(3): p. 335-45.
118.Matsumoto, A., M. Ono, Y. Fujimoto, R.L. Gallo, M. Bernfield, and Y. Kohgo, Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer, 1997. 74(5): p. 482-91.
119.Vlodavsky, I. and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001. 108(3): p. 341-7.
120.Dempsey, L.A., G.J. Brunn, and J.L. Platt, Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci, 2000. 25(8): p. 349-51.
121.Parish, C.R., C. Freeman, and M.D. Hulett, Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta, 2001. 1471(3): p. M99-108.
122.Wang, Z., H. Xu, L. Jiang, X. Zhou, C. Lu, and X. Zhang, Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol, 2005. 18(2): p. 205-11.
123.Tang, W., Y. Nakamura, M. Tsujimoto, M. Sato, X. Wang, K. Kurozumi, et al., Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol, 2002. 15(6): p. 593-8.
124.Sato, T., A. Yamaguchi, T. Goi, Y. Hirono, K. Takeuchi, K. Katayama, et al., Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol, 2004. 87(4): p. 174-81.
125.Shinyo, Y., J. Kodama, A. Hongo, M. Yoshinouchi, and Y. Hiramatsu, Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol, 2003. 14(10): p. 1505-10.
126.Koliopanos, A., H. Friess, J. Kleeff, X. Shi, Q. Liao, I. Pecker, et al., Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res, 2001. 61(12): p. 4655-9.
127.Hoffmann, A.C., R. Mori, D. Vallbohmer, J. Brabender, U. Drebber, S.E. Baldus, et al., High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg, 2008. 12(10): p. 1674-81; discussion 1681-2.
128.Liu, Y.B., S.L. Gao, X.P. Chen, S.Y. Peng, H.Q. Fang, Y.L. Wu, et al., Expression and significance of heparanase and nm23-H1 in hepatocellular carcinoma. World J Gastroenterol, 2005. 11(9): p. 1378-81.
129.Chen, G., Y.W. Dang, D.Z. Luo, Z.B. Feng, and X.L. Tang, Expression of heparanase in hepatocellular carcinoma has prognostic significance: a tissue microarray study. Oncol Res, 2008. 17(4): p. 183-9.
130.Ogishima, T., H. Shiina, J.E. Breault, L. Tabatabai, W.W. Bassett, H. Enokida, et al., Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res, 2005. 11(3): p. 1028-36.
131.Gohji, K., M. Okamoto, S. Kitazawa, M. Toyoshima, J. Dong, Y. Katsuoka, et al., Heparanase protein and gene expression in bladder cancer. J Urol, 2001. 166(4): p. 1286-90.
132.Lerner, I., L. Baraz, E. Pikarsky, A. Meirovitz, E. Edovitsky, T. Peretz, et al., Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res, 2008. 14(3): p. 668-76.
133.Inamine, M., Y. Nagai, M. Hirakawa, K. Mekaru, C. Yagi, H. Masamoto, et al., Heparanase expression in endometrial cancer: analysis of immunohistochemistry. J Obstet Gynaecol, 2008. 28(6): p. 634-7.
134.Shafat, I., D. Pode, T. Peretz, N. Ilan, I. Vlodavsky, and B. Nisman, Clinical significance of urine heparanase in bladder cancer progression. Neoplasia, 2008. 10(2): p. 125-30.
135.Lerner, I., E. Hermano, E. Zcharia, D. Rodkin, R. Bulvik, V. Doviner, et al., Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest, 2011. 121(5): p. 1709-21.
136.Tzeng, S.T., M.H. Tsai, C.L. Chen, J.X. Lee, T.M. Jao, S.L. Yu, et al., NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One, 2013. 8(6): p. e67040.
137.Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, et al., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis, 2009. 15(3): p. 341-52.
138.Viennois, E., F. Chen, H. Laroui, M.T. Baker, and D. Merlin, Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res Notes, 2013. 6: p. 360.
139.Trivedi, P.P. and G.B. Jena, Dextran sulfate sodium-induced ulcerative colitis leads to increased hematopoiesis and induces both local as well as systemic genotoxicity in mice. Mutat Res, 2012. 744(2): p. 172-83.
140.Matta, R., J.A. Barnard, L.M. Wancket, J. Yan, J. Xue, J. Grieves, et al., Knockout of Mkp-1 exacerbates colitis in Il-10-deficient mice. Am J Physiol Gastrointest Liver Physiol, 2012. 302(11): p. G1322-35.
141.Chen, C.W., C.W. Hsiao, C.C. Wu, and S.W. Jao, Rectal prolapse as initial clinical manifestation of colon cancer. Z Gastroenterol, 2008. 46(4): p. 348-50.
142.Rashid, Z. and M.D. Basson, Association of rectal prolapse with colorectal cancer. Surgery, 1996. 119(1): p. 51-5.
143.Abdalla, S.I., I.R. Sanderson, and R.C. Fitzgerald, Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis, 2005. 26(9): p. 1627-33.
144.Ganster, R.W., B.S. Taylor, L. Shao, and D.A. Geller, Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8638-43.
145.Kleinert, H., P.M. Schwarz, and U. Forstermann, Regulation of the expression of inducible nitric oxide synthase. Biol Chem, 2003. 384(10-11): p. 1343-64.
146.Higashiyama, M., R. Hokari, H. Hozumi, C. Kurihara, T. Ueda, C. Watanabe, et al., HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine colitis. J Leukoc Biol, 2012. 91(6): p. 901-9.
147.Tokuyama, H., S. Ueha, M. Kurachi, K. Matsushima, F. Moriyasu, R.S. Blumberg, et al., The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol, 2005. 17(8): p. 1023-34.
148.Sedhom, M.A., M. Pichery, J.R. Murdoch, B. Foligne, N. Ortega, S. Normand, et al., Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut, 2013. 62(12): p. 1714-23.
149.Vanhooren, V., R.E. Vandenbroucke, S. Dewaele, E. Van Hamme, J.J. Haigh, T. Hochepied, et al., Mice Overexpressing beta-1,4-Galactosyltransferase I Are Resistant to TNF-Induced Inflammation and DSS-Induced Colitis. PLoS One, 2013. 8(12): p. e79883.
150.Yoshimi, K., T. Hashimoto, Y. Niwa, K. Hata, T. Serikawa, T. Tanaka, et al., Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay. BMC Cancer, 2012. 12: p. 448.
151.Barrett, C.W., B. Fingleton, A. Williams, W. Ning, M.A. Fischer, M.K. Washington, et al., MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res, 2011. 71(4): p. 1302-12.
152.Salcedo, R., A. Worschech, M. Cardone, Y. Jones, Z. Gyulai, R.M. Dai, et al., MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med, 2010. 207(8): p. 1625-36.
153.Saleiro, D., G. Murillo, R.V. Benya, M. Bissonnette, J. Hart, and R.G. Mehta, Estrogen receptor-beta protects against colitis-associated neoplasia in mice. Int J Cancer, 2012. 131(11): p. 2553-61.
154.Zheng, B., M.E. Morgan, H.J. van de Kant, J. Garssen, G. Folkerts, and A.D. Kraneveld, Transcriptional modulation of pattern recognition receptors in acute colitis in mice. Biochim Biophys Acta, 2013. 1832(12): p. 2162-72.
155.Melgar, S., A. Karlsson, and E. Michaelsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol, 2005. 288(6): p. G1328-38.
156.Zhou, L., J.E. Lopes, M.M. Chong, Ivanov, II, R. Min, G.D. Victora, et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008. 453(7192): p. 236-40.
157.Klotz, L., S. Burgdorf, I. Dani, K. Saijo, J. Flossdorf, S. Hucke, et al., The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med, 2009. 206(10): p. 2079-89.
158.Dubuquoy, L., E.A. Jansson, S. Deeb, S. Rakotobe, M. Karoui, J.F. Colombel, et al., Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology, 2003. 124(5): p. 1265-76.
159.Eun, C.S., D.S. Han, S.H. Lee, C.H. Paik, Y.W. Chung, J. Lee, et al., Attenuation of colonic inflammation by PPARgamma in intestinal epithelial cells: effect on Toll-like receptor pathway. Dig Dis Sci, 2006. 51(4): p. 693-7.
160.Vesely, M.D., M.H. Kershaw, R.D. Schreiber, and M.J. Smyth, Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71.
161.Lundin, M., S. Nordling, J. Lundin, J. Isola, J.P. Wiksten, and C. Haglund, Epithelial syndecan-1 expression is associated with stage and grade in colorectal cancer. Oncology, 2005. 68(4-6): p. 306-13.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top