|
1.http://www.doh.gov.tw/CHT2006/index_populace.aspx. 2.Soreide, K., E.A. Janssen, H. Soiland, H. Korner, and J.P. Baak, Microsatellite instability in colorectal cancer. Br J Surg, 2006. 93(4): p. 395-406. 3.Kitisin, K. and L. Mishra, Molecular biology of colorectal cancer: new targets. Semin Oncol, 2006. 33(6 Suppl 11): p. S14-23. 4.Walther, A., E. Johnstone, C. Swanton, R. Midgley, I. Tomlinson, and D. Kerr, Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009. 9(7): p. 489-99. 5.Gryfe, R., Inherited colorectal cancer syndromes. Clin Colon Rectal Surg, 2009. 22(4): p. 198-208. 6.Bodmer, W.F., Cancer genetics: colorectal cancer as a model. J Hum Genet, 2006. 51(5): p. 391-6. 7.Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. Gastroenterology, 2010. 138(6): p. 2059-72. 8.Soreide, K., [Genetics and molecular classification of colorectal cancer]. Tidsskr Nor Laegeforen, 2007. 127(21): p. 2818-23. 9.Shivapurkar, N., A. Maitra, S. Milchgrub, and A.F. Gazdar, Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol, 2001. 32(2): p. 169-77. 10.Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087 e3. 11.Kim, M.S., J. Lee, and D. Sidransky, DNA methylation markers in colorectal cancer. Cancer Metastasis Rev, 2010. 29(1): p. 181-206. 12.Schetter, A.J., N.H. Heegaard, and C.C. Harris, Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 2010. 31(1): p. 37-49. 13.Khansari, N., Y. Shakiba, and M. Mahmoudi, Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov, 2009. 3(1): p. 73-80. 14.Goh, K. and S.D. Xiao, Inflammatory bowel disease: a survey of the epidemiology in Asia. J Dig Dis, 2009. 10(1): p. 1-6. 15.Herszenyi, L., P. Miheller, and Z. Tulassay, Carcinogenesis in inflammatory bowel disease. Dig Dis, 2007. 25(3): p. 267-9. 16.Kaser, A., S. Zeissig, and R.S. Blumberg, Inflammatory bowel disease. Annu Rev Immunol, 2010. 28: p. 573-621. 17.Baumgart, D.C. and W.J. Sandborn, Crohn''s disease. Lancet, 2012. 380(9853): p. 1590-605. 18.Okayasu, I., T. Ohkusa, K. Kajiura, J. Kanno, and S. Sakamoto, Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 1996. 39(1): p. 87-92. 19.Ordas, I., L. Eckmann, M. Talamini, D.C. Baumgart, and W.J. Sandborn, Ulcerative colitis. Lancet, 2012. 380(9853): p. 1606-19. 20.Abraham, C. and J.H. Cho, Inflammatory bowel disease. N Engl J Med, 2009. 361(21): p. 2066-78. 21.Buhner, S., C. Buning, J. Genschel, K. Kling, D. Herrmann, A. Dignass, et al., Genetic basis for increased intestinal permeability in families with Crohn''s disease: role of CARD15 3020insC mutation? Gut, 2006. 55(3): p. 342-7. 22.Macdonald, T.T. and G. Monteleone, Immunity, inflammation, and allergy in the gut. Science, 2005. 307(5717): p. 1920-5. 23.Loftus, E.V., Jr., Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology, 2004. 126(6): p. 1504-17. 24.Lakatos, P.L., T. Szamosi, and L. Lakatos, Smoking in inflammatory bowel diseases: good, bad or ugly? World J Gastroenterol, 2007. 13(46): p. 6134-9. 25.Cosnes, J., Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol, 2004. 18(3): p. 481-96. 26.Sakamoto, N., S. Kono, K. Wakai, Y. Fukuda, M. Satomi, T. Shimoyama, et al., Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis, 2005. 11(2): p. 154-63. 27.Persson, P.G., A. Ahlbom, and G. Hellers, Diet and inflammatory bowel disease: a case-control study. Epidemiology, 1992. 3(1): p. 47-52. 28.Andersen, V., A. Olsen, F. Carbonnel, A. Tjonneland, and U. Vogel, Diet and risk of inflammatory bowel disease. Dig Liver Dis, 2012. 44(3): p. 185-94. 29.Hou, J.K., D. Lee, and J. Lewis, Diet and Inflammatory Bowel Disease: Review of Patient-targeted Recommendations. Clin Gastroenterol Hepatol, 2013. 30.Bernstein, C.N. and F. Shanahan, Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut, 2008. 57(9): p. 1185-91. 31.Head, K. and J.S. Jurenka, Inflammatory bowel disease. Part II: Crohn''s disease--pathophysiology and conventional and alternative treatment options. Altern Med Rev, 2004. 9(4): p. 360-401. 32.Head, K.A. and J.S. Jurenka, Inflammatory bowel disease Part 1: ulcerative colitis--pathophysiology and conventional and alternative treatment options. Altern Med Rev, 2003. 8(3): p. 247-83. 33.Behr, M.A. and E. Schurr, Mycobacteria in Crohn''s disease: a persistent hypothesis. Inflamm Bowel Dis, 2006. 12(10): p. 1000-4. 34.Jernberg, C., S. Lofmark, C. Edlund, and J.K. Jansson, Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J, 2007. 1(1): p. 56-66. 35.Noverr, M.C. and G.B. Huffnagle, Does the microbiota regulate immune responses outside the gut? Trends Microbiol, 2004. 12(12): p. 562-8. 36.Rubin, D.C., A. Shaker, and M.S. Levin, Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol, 2012. 3: p. 107. 37.Rogler, G., Chronic ulcerative colitis and colorectal cancer. Cancer Lett, 2013. 38.Lakatos, P.L. and L. Lakatos, Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol, 2008. 14(25): p. 3937-47. 39.Eaden, J.A., K.R. Abrams, and J.F. Mayberry, The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001. 48(4): p. 526-35. 40.Meira, L.B., J.M. Bugni, S.L. Green, C.W. Lee, B. Pang, D. Borenshtein, et al., DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest, 2008. 118(7): p. 2516-25. 41.Yang, L., N. Belaguli, and D.H. Berger, MicroRNA and colorectal cancer. World J Surg, 2009. 33(4): p. 638-46. 42.Kanaan, Z., S.N. Rai, M.R. Eichenberger, C. Barnes, A.M. Dworkin, C. Weller, et al., Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat, 2012. 33(3): p. 551-60. 43.Grivennikov, S.I. and M. Karin, Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 11-9. 44.Erreni, M., A. Mantovani, and P. Allavena, Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenviron, 2011. 4(2): p. 141-54. 45.Grivennikov, S.I., Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol, 2013. 35(2): p. 229-44. 46.Dunn, G.P., A.T. Bruce, H. Ikeda, L.J. Old, and R.D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002. 3(11): p. 991-8. 47.Dunn, G.P., L.J. Old, and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004. 21(2): p. 137-48. 48.Schreiber, R.D., L.J. Old, and M.J. Smyth, Cancer immunoediting: integrating immunity''s roles in cancer suppression and promotion. Science, 2011. 331(6024): p. 1565-70. 49.Kaplan, D.H., V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L.J. Old, et al., Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7556-61. 50.Rubinstein, N., M. Alvarez, N.W. Zwirner, M.A. Toscano, J.M. Ilarregui, A. Bravo, et al., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell, 2004. 5(3): p. 241-51. 51.Terabe, M., S. Matsui, N. Noben-Trauth, H. Chen, C. Watson, D.D. Donaldson, et al., NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol, 2000. 1(6): p. 515-20. 52.Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998. 188(2): p. 287-96. 53.Mantovani, A., P. Romero, A.K. Palucka, and F.M. Marincola, Tumour immunity: effector response to tumour and role of the microenvironment. Lancet, 2008. 371(9614): p. 771-83. 54.Fridlender, Z.G., J. Sun, S. Kim, V. Kapoor, G. Cheng, L. Ling, et al., Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 2009. 16(3): p. 183-94. 55.Coussens, L.M., W.W. Raymond, G. Bergers, M. Laig-Webster, O. Behrendtsen, Z. Werb, et al., Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev, 1999. 13(11): p. 1382-97. 56.Karin, M., Nuclear factor-kappaB in cancer development and progression. Nature, 2006. 441(7092): p. 431-6. 57.de Visser, K.E., A. Eichten, and L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat Rev Cancer, 2006. 6(1): p. 24-37. 58.Araki, Y., K. Mukaisyo, H. Sugihara, Y. Fujiyama, and T. Hattori, Increased apoptosis and decreased proliferation of colonic epithelium in dextran sulfate sodium-induced colitis in mice. Oncol Rep, 2010. 24(4): p. 869-74. 59.Tanaka, T., H. Kohno, R. Suzuki, Y. Yamada, S. Sugie, and H. Mori, A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci, 2003. 94(11): p. 965-73. 60.Tanaka, T., Colorectal carcinogenesis: Review of human and experimental animal studies. Journal of Carcinogenesis, 2009. 8(1): p. 5. 61.Okayasu, I., S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, and R. Nakaya, A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702. 62.Cooper, H.S., S.N. Murthy, R.S. Shah, and D.J. Sedergran, Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest, 1993. 69(2): p. 238-49. 63.Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 140(6): p. 883-99. 64.Quante, M. and T.C. Wang, Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology (Bethesda), 2008. 23: p. 350-9. 65.Rosenberg, D.W., C. Giardina, and T. Tanaka, Mouse models for the study of colon carcinogenesis. Carcinogenesis, 2009. 30(2): p. 183-96. 66.Neufert, C., C. Becker, and M.F. Neurath, An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc, 2007. 2(8): p. 1998-2004. 67.Suzuki, R., H. Kohno, S. Sugie, and T. Tanaka, Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci, 2004. 95(9): p. 721-7. 68.Perse, M. and A. Cerar, Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol, 2011. 2011: p. 473964. 69.Chen, J. and X.F. Huang, The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol Ther, 2009. 8(14): p. 1313-7. 70.Ben-Neriah, Y. and M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol, 2011. 12(8): p. 715-23. 71.Onizawa, M., T. Nagaishi, T. Kanai, K. Nagano, S. Oshima, Y. Nemoto, et al., Signaling pathway via TNF-alpha/NF-kappaB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol, 2009. 296(4): p. G850-9. 72.Burstein, E. and E.R. Fearon, Colitis and cancer: a tale of inflammatory cells and their cytokines. J Clin Invest, 2008. 118(2): p. 464-7. 73.Aikawa, J., K. Grobe, M. Tsujimoto, and J.D. Esko, Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem, 2001. 276(8): p. 5876-82. 74.Orellana, A., C.B. Hirschberg, Z. Wei, S.J. Swiedler, and M. Ishihara, Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem, 1994. 269(3): p. 2270-6. 75.Esko, J.D. and S.B. Selleck, Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002. 71: p. 435-71. 76.Yayon, A., M. Klagsbrun, J.D. Esko, P. Leder, and D.M. Ornitz, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991. 64(4): p. 841-8. 77.Turnbull, J.E., D.G. Fernig, Y. Ke, M.C. Wilkinson, and J.T. Gallagher, Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem, 1992. 267(15): p. 10337-41. 78.Ono, K., H. Hattori, S. Takeshita, A. Kurita, and M. Ishihara, Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology, 1999. 9(7): p. 705-11. 79.Lin, X., E.M. Buff, N. Perrimon, and A.M. Michelson, Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development, 1999. 126(17): p. 3715-23. 80.Lin, X. and N. Perrimon, Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 1999. 400(6741): p. 281-4. 81.Toyoda, H., A. Kinoshita-Toyoda, B. Fox, and S.B. Selleck, Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem, 2000. 275(29): p. 21856-61. 82.Fan, G., L. Xiao, L. Cheng, X. Wang, B. Sun, and G. Hu, Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett, 2000. 467(1): p. 7-11. 83.Ringvall, M., J. Ledin, K. Holmborn, T. van Kuppevelt, F. Ellin, I. Eriksson, et al., Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem, 2000. 275(34): p. 25926-30. 84.Forsberg, E., G. Pejler, M. Ringvall, C. Lunderius, B. Tomasini-Johansson, M. Kusche-Gullberg, et al., Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 1999. 400(6746): p. 773-6. 85.Humphries, D.E., G.W. Wong, D.S. Friend, M.F. Gurish, W.T. Qiu, C. Huang, et al., Heparin is essential for the storage of specific granule proteases in mast cells. Nature, 1999. 400(6746): p. 769-72. 86.Pallerla, S.R., R. Lawrence, L. Lewejohann, Y. Pan, T. Fischer, U. Schlomann, et al., Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem, 2008. 283(24): p. 16885-94. 87.Lortat-Jacob, H., A. Grosdidier, and A. Imberty, Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A, 2002. 99(3): p. 1229-34. 88.Proudfoot, A.E., T.M. Handel, Z. Johnson, E.K. Lau, P. LiWang, I. Clark-Lewis, et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1885-90. 89.Matsuo, I. and C. Kimura-Yoshida, Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development. Curr Opin Genet Dev, 2013. 23(4): p. 399-407. 90.Schenauer, M.R., Y. Yu, M.D. Sweeney, and J.A. Leary, CCR2 chemokines bind selectively to acetylated heparan sulfate octasaccharides. J Biol Chem, 2007. 282(35): p. 25182-8. 91.Lantz, M., H. Thysell, E. Nilsson, and I. Olsson, On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin. J Clin Invest, 1991. 88(6): p. 2026-31. 92.Lortat-Jacob, H. and J.A. Grimaud, Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS Lett, 1991. 280(1): p. 152-4. 93.Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7). 94.Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): p. 1030-7. 95.Lee, J.S. and C.B. Chien, When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet, 2004. 5(12): p. 923-35. 96.Parish, C.R., The role of heparan sulphate in inflammation. Nat Rev Immunol, 2006. 6(9): p. 633-43. 97.Iozzo, R.V., Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol, 2005. 6(8): p. 646-56. 98.Kolset, S.O. and H. Tveit, Serglycin--structure and biology. Cell Mol Life Sci, 2008. 65(7-8): p. 1073-85. 99.Hacker, U., K. Nybakken, and N. Perrimon, Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol, 2005. 6(7): p. 530-41. 100.Yamamoto, S., H. Nakase, M. Matsuura, Y. Honzawa, K. Matsumura, N. Uza, et al., Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/beta-catenin signaling. Am J Physiol Gastrointest Liver Physiol, 2013. 305(3): p. G241-9. 101.Bode, L., C. Salvestrini, P.W. Park, J.P. Li, J.D. Esko, Y. Yamaguchi, et al., Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest, 2008. 118(1): p. 229-38. 102.Day, R., M. Ilyas, P. Daszak, I. Talbot, and A. Forbes, Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci, 1999. 44(12): p. 2508-15. 103.Oshiro, M., K. Ono, Y. Suzuki, H. Ota, T. Katsuyama, and N. Mori, Immunohistochemical localization of heparan sulfate proteoglycan in human gastrointestinal tract. Histochem Cell Biol, 2001. 115(5): p. 373-80. 104.Wang, X., Y. Chen, Y. Song, S. Zhang, X. Xie, and X. Wang, Activated Syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci, 2011. 56(4): p. 1047-56. 105.Wang, X.F., A.M. Li, J. Li, S.Y. Lin, C.D. Chen, Y.L. Zhou, et al., Low molecular weight heparin relieves experimental colitis in mice by downregulating IL-1beta and inhibiting syndecan-1 shedding in the intestinal mucosa. PLoS One, 2013. 8(7): p. e66397. 106.Kato, M., S. Saunders, H. Nguyen, and M. Bernfield, Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell, 1995. 6(5): p. 559-76. 107.Day, R.M., X. Hao, M. Ilyas, P. Daszak, I.C. Talbot, and A. Forbes, Changes in the expression of syndecan-1 in the colorectal adenoma-carcinoma sequence. Virchows Arch, 1999. 434(2): p. 121-5. 108.Stickens, D., B.M. Zak, N. Rougier, J.D. Esko, and Z. Werb, Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development, 2005. 132(22): p. 5055-68. 109.Hecht, J.T., D. Hogue, L.C. Strong, M.F. Hansen, S.H. Blanton, and M. Wagner, Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet, 1995. 56(5): p. 1125-31. 110.Grigorieva, E., T. Eshchenko, V.I. Rykova, A. Chernakov, E. Zabarovsky, and S.V. Sidorov, Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer, 2008. 122(5): p. 1172-6. 111.Uchimura, K., M. Morimoto-Tomita, A. Bistrup, J. Li, M. Lyon, J. Gallagher, et al., HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem, 2006. 7: p. 2. 112.Michos, O., A. Goncalves, J. Lopez-Rios, E. Tiecke, F. Naillat, K. Beier, et al., Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development, 2007. 134(13): p. 2397-405. 113.Lamanna, W.C., M.A. Frese, M. Balleininger, and T. Dierks, Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem, 2008. 283(41): p. 27724-35. 114.Iozzo, R.V. and J.D. San Antonio, Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest, 2001. 108(3): p. 349-55. 115.Escobar Galvis, M.L., J. Jia, X. Zhang, N. Jastrebova, D. Spillmann, E. Gottfridsson, et al., Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol, 2007. 3(12): p. 773-8. 116.Robinson, J., M. Viti, and M. Hook, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol, 1984. 98(3): p. 946-53. 117.Nackaerts, K., E. Verbeken, G. Deneffe, B. Vanderschueren, M. Demedts, and G. David, Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer, 1997. 74(3): p. 335-45. 118.Matsumoto, A., M. Ono, Y. Fujimoto, R.L. Gallo, M. Bernfield, and Y. Kohgo, Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer, 1997. 74(5): p. 482-91. 119.Vlodavsky, I. and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001. 108(3): p. 341-7. 120.Dempsey, L.A., G.J. Brunn, and J.L. Platt, Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci, 2000. 25(8): p. 349-51. 121.Parish, C.R., C. Freeman, and M.D. Hulett, Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta, 2001. 1471(3): p. M99-108. 122.Wang, Z., H. Xu, L. Jiang, X. Zhou, C. Lu, and X. Zhang, Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol, 2005. 18(2): p. 205-11. 123.Tang, W., Y. Nakamura, M. Tsujimoto, M. Sato, X. Wang, K. Kurozumi, et al., Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol, 2002. 15(6): p. 593-8. 124.Sato, T., A. Yamaguchi, T. Goi, Y. Hirono, K. Takeuchi, K. Katayama, et al., Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol, 2004. 87(4): p. 174-81. 125.Shinyo, Y., J. Kodama, A. Hongo, M. Yoshinouchi, and Y. Hiramatsu, Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol, 2003. 14(10): p. 1505-10. 126.Koliopanos, A., H. Friess, J. Kleeff, X. Shi, Q. Liao, I. Pecker, et al., Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res, 2001. 61(12): p. 4655-9. 127.Hoffmann, A.C., R. Mori, D. Vallbohmer, J. Brabender, U. Drebber, S.E. Baldus, et al., High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg, 2008. 12(10): p. 1674-81; discussion 1681-2. 128.Liu, Y.B., S.L. Gao, X.P. Chen, S.Y. Peng, H.Q. Fang, Y.L. Wu, et al., Expression and significance of heparanase and nm23-H1 in hepatocellular carcinoma. World J Gastroenterol, 2005. 11(9): p. 1378-81. 129.Chen, G., Y.W. Dang, D.Z. Luo, Z.B. Feng, and X.L. Tang, Expression of heparanase in hepatocellular carcinoma has prognostic significance: a tissue microarray study. Oncol Res, 2008. 17(4): p. 183-9. 130.Ogishima, T., H. Shiina, J.E. Breault, L. Tabatabai, W.W. Bassett, H. Enokida, et al., Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res, 2005. 11(3): p. 1028-36. 131.Gohji, K., M. Okamoto, S. Kitazawa, M. Toyoshima, J. Dong, Y. Katsuoka, et al., Heparanase protein and gene expression in bladder cancer. J Urol, 2001. 166(4): p. 1286-90. 132.Lerner, I., L. Baraz, E. Pikarsky, A. Meirovitz, E. Edovitsky, T. Peretz, et al., Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res, 2008. 14(3): p. 668-76. 133.Inamine, M., Y. Nagai, M. Hirakawa, K. Mekaru, C. Yagi, H. Masamoto, et al., Heparanase expression in endometrial cancer: analysis of immunohistochemistry. J Obstet Gynaecol, 2008. 28(6): p. 634-7. 134.Shafat, I., D. Pode, T. Peretz, N. Ilan, I. Vlodavsky, and B. Nisman, Clinical significance of urine heparanase in bladder cancer progression. Neoplasia, 2008. 10(2): p. 125-30. 135.Lerner, I., E. Hermano, E. Zcharia, D. Rodkin, R. Bulvik, V. Doviner, et al., Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest, 2011. 121(5): p. 1709-21. 136.Tzeng, S.T., M.H. Tsai, C.L. Chen, J.X. Lee, T.M. Jao, S.L. Yu, et al., NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One, 2013. 8(6): p. e67040. 137.Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, et al., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis, 2009. 15(3): p. 341-52. 138.Viennois, E., F. Chen, H. Laroui, M.T. Baker, and D. Merlin, Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res Notes, 2013. 6: p. 360. 139.Trivedi, P.P. and G.B. Jena, Dextran sulfate sodium-induced ulcerative colitis leads to increased hematopoiesis and induces both local as well as systemic genotoxicity in mice. Mutat Res, 2012. 744(2): p. 172-83. 140.Matta, R., J.A. Barnard, L.M. Wancket, J. Yan, J. Xue, J. Grieves, et al., Knockout of Mkp-1 exacerbates colitis in Il-10-deficient mice. Am J Physiol Gastrointest Liver Physiol, 2012. 302(11): p. G1322-35. 141.Chen, C.W., C.W. Hsiao, C.C. Wu, and S.W. Jao, Rectal prolapse as initial clinical manifestation of colon cancer. Z Gastroenterol, 2008. 46(4): p. 348-50. 142.Rashid, Z. and M.D. Basson, Association of rectal prolapse with colorectal cancer. Surgery, 1996. 119(1): p. 51-5. 143.Abdalla, S.I., I.R. Sanderson, and R.C. Fitzgerald, Effect of inflammation on cyclooxygenase (COX)-2 expression in benign and malignant oesophageal cells. Carcinogenesis, 2005. 26(9): p. 1627-33. 144.Ganster, R.W., B.S. Taylor, L. Shao, and D.A. Geller, Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8638-43. 145.Kleinert, H., P.M. Schwarz, and U. Forstermann, Regulation of the expression of inducible nitric oxide synthase. Biol Chem, 2003. 384(10-11): p. 1343-64. 146.Higashiyama, M., R. Hokari, H. Hozumi, C. Kurihara, T. Ueda, C. Watanabe, et al., HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine colitis. J Leukoc Biol, 2012. 91(6): p. 901-9. 147.Tokuyama, H., S. Ueha, M. Kurachi, K. Matsushima, F. Moriyasu, R.S. Blumberg, et al., The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol, 2005. 17(8): p. 1023-34. 148.Sedhom, M.A., M. Pichery, J.R. Murdoch, B. Foligne, N. Ortega, S. Normand, et al., Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut, 2013. 62(12): p. 1714-23. 149.Vanhooren, V., R.E. Vandenbroucke, S. Dewaele, E. Van Hamme, J.J. Haigh, T. Hochepied, et al., Mice Overexpressing beta-1,4-Galactosyltransferase I Are Resistant to TNF-Induced Inflammation and DSS-Induced Colitis. PLoS One, 2013. 8(12): p. e79883. 150.Yoshimi, K., T. Hashimoto, Y. Niwa, K. Hata, T. Serikawa, T. Tanaka, et al., Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay. BMC Cancer, 2012. 12: p. 448. 151.Barrett, C.W., B. Fingleton, A. Williams, W. Ning, M.A. Fischer, M.K. Washington, et al., MTGR1 is required for tumorigenesis in the murine AOM/DSS colitis-associated carcinoma model. Cancer Res, 2011. 71(4): p. 1302-12. 152.Salcedo, R., A. Worschech, M. Cardone, Y. Jones, Z. Gyulai, R.M. Dai, et al., MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med, 2010. 207(8): p. 1625-36. 153.Saleiro, D., G. Murillo, R.V. Benya, M. Bissonnette, J. Hart, and R.G. Mehta, Estrogen receptor-beta protects against colitis-associated neoplasia in mice. Int J Cancer, 2012. 131(11): p. 2553-61. 154.Zheng, B., M.E. Morgan, H.J. van de Kant, J. Garssen, G. Folkerts, and A.D. Kraneveld, Transcriptional modulation of pattern recognition receptors in acute colitis in mice. Biochim Biophys Acta, 2013. 1832(12): p. 2162-72. 155.Melgar, S., A. Karlsson, and E. Michaelsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol, 2005. 288(6): p. G1328-38. 156.Zhou, L., J.E. Lopes, M.M. Chong, Ivanov, II, R. Min, G.D. Victora, et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008. 453(7192): p. 236-40. 157.Klotz, L., S. Burgdorf, I. Dani, K. Saijo, J. Flossdorf, S. Hucke, et al., The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med, 2009. 206(10): p. 2079-89. 158.Dubuquoy, L., E.A. Jansson, S. Deeb, S. Rakotobe, M. Karoui, J.F. Colombel, et al., Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology, 2003. 124(5): p. 1265-76. 159.Eun, C.S., D.S. Han, S.H. Lee, C.H. Paik, Y.W. Chung, J. Lee, et al., Attenuation of colonic inflammation by PPARgamma in intestinal epithelial cells: effect on Toll-like receptor pathway. Dig Dis Sci, 2006. 51(4): p. 693-7. 160.Vesely, M.D., M.H. Kershaw, R.D. Schreiber, and M.J. Smyth, Natural innate and adaptive immunity to cancer. Annu Rev Immunol, 2011. 29: p. 235-71. 161.Lundin, M., S. Nordling, J. Lundin, J. Isola, J.P. Wiksten, and C. Haglund, Epithelial syndecan-1 expression is associated with stage and grade in colorectal cancer. Oncology, 2005. 68(4-6): p. 306-13.
|