|
1.Mobley, H.L.T., Virulence of the two primary uropathogens. ASM News, 2000. 66: p. 403-410. 2.Hooton, T.M., et al., Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis, 2010. 50(5): p. 625-63. 3.Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 4.Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 5.Mobley, H.L., M.D. Island, and R.P. Hausinger, Molecular biology of microbial ureases. Microbiol Rev, 1995. 59(3): p. 451-80. 6.Griffith, D.P., D.M. Musher, and C. Itin, Urease. The primary cause of infection-induced urinary stones. Invest Urol, 1976. 13(5): p. 346-50. 7.Li, X., et al., Visualization of Proteus mirabili within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun, 2002. 70(1): p. 389-94. 8.Li, X., D.E. Johnson, and H.L. Mobley, Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun, 1999. 67(6): p. 2822-33. 9.Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1994. 62(8): p. 3363-71. 10.Silverblatt, F.J. and I. Ofek, Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis, 1978. 138(5): p. 664-7. 11.Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 12.Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58. 13.Swihart, K.G. and R.A. Welch, Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun, 1990. 58(6): p. 1861-9. 14.Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 15.Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33. 16.McDougald, D., et al., Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol, 2012. 10(1): p. 39-50. 17.McLean RJ, L.J., Korber DR, Caldwell DE., Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. J Urol, 1991. 146: p. 1138-42. 18.Steven M. Jones, J.Y., Yaoping Hu, Howard Ceri &; Robert Martinuzzi, Structure ofProteusmirabilis bio¢lms grown in arti¢cial urine and standard laboratorymedia. FEMS Microbiol, 2007. 268: p. 16-21. 19.Sabbuba NA, S.D., Mahenthiralingam E, Painter DJ, Parkin J, Feneley RC., Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J Urol, 2004. 171: p. 1925-8. 20.Stickler DJ, F.R., The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord, 2010. 48: p. 784-90. 21.Stickler DJ, M.S., Modulation of crystalline Proteus mirabilis biofilm development on urinary catheters. J Med Microbiol, 2006. 55: p. 489-94. 22.Angela M. Jansen, V.L., David E. Johnson and Harry L. T. Mobley, Mannose-Resistant Proteus-Like Fimbriae Are Produced by Most Proteus mirabilis Strains Infecting the Urinary Tract, Dictate the In Vivo Localization of Bacteria, and Contribute to Biofilm Formation. Infect. Immun. , 2004. 72(12): p. 7294-7305. 23.O’May GA, J.S., Longwell M, Stoodley P, Mobley HL, Shirtliff ME., The high-affinity phosphate transporter Pst in proteus mirabilis HI4320 and its importance in biofilm formation microbiology, 2009. 155: p. 1523-35. 24.Allison, C. and C. Hughes, Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog, 1991. 75(298 Pt 3-4): p. 403-22. 25.Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 26.Alavi, M. and R. Belas, Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol, 2001. 336: p. 29-40. 27.Fraser, G.M. and C. Hughes, Swarming motility. Curr Opin Microbiol, 1999. 2(6): p. 630-5. 28.Jin, T. and R.G. Murray, Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Can J Microbiol, 1988. 34(5): p. 588-93. 29.Allison, C., H.C. Lai, and C. Hughes, Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol, 1992. 6(12): p. 1583-91. 30.Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201. 31.Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36. 32.Hay, N.A., et al., A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol, 1997. 179(15): p. 4741-6. 33.Belas, R., Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol, 1994. 176(23): p. 7169-81. 34.Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends Microbiol, 2008. 16(10): p. 496-506. 35.Belas, R., M. Goldman, and K. Ashliman, Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol, 1995. 177(3): p. 823-8. 36.Plaut, A., Gilbert, J., Artenstein, M., and Capra, J., Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science, 1975. 190: p. 1103-1105. 37.Male, C., Immunoglobulin A1 protease production by Haemophilus in¯uenzae and Streptococcus pneumoniae. Infect Immun, 1979. 26: p. 254-261. 38.Kilian, M., Mestecky, J., and Schrohenloher, R., Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun, 1979. 26: p. 143-149. 39.Loomes, L., Senior, B., and Kerr, M., proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2 and IgG isotypes. Infect Immun, 1990. 58: p. 1979-1985. 40.Loomes, L., Kerr, M., and Senior, B., The cleavag of immunoglobulin G in vitro and in vivo by a proteinase secreted by the urinary tract pathogen Proteus mirabilis. J Med Microbiol, 1993. 39: p. 225-232. 41.Robert Belas, J.M., and Rooge Suvanasuthi, Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides. Infect Immun, 2004. 72: p. 5159-5167. 42.Wassif, C., Cheek, D., and Belas, R., Molecular analysis of a metalloprotease from Proteus mirabilis. J Bacteriol, 1995. 177: p. 5790-5798. 43.Finnie, C., Zorreguieta, A., Hartley, N., and Downie, J., Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via type I exporter and have a novel heptapeptide repeated motif. J Bacteriol, 1998. 180: p. 1691-1699. 44.I. BARRY HOLLAND, L.S., JOANNE YOUNG, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Molecular Membrane Biology, 2005. 22(1-2): p. 29-39. 45.Amy L. Davidson, E.D., Cedric Orelle, Jue Chen, Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol Mol Biol Rev. , 2008 june. 72(2): p. 317–364. 46.Roset MS, C.A., Ugalde RA, Inon de Iannino N., Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence. Infect Immun, 2004. 72: p. 2263~2271. 47.Breedveld MW, M.K., Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev, 1994. 58: p. 145-161. 48.U. Baumann, S.W., K.M. Flaherty, D.B. McKay, Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: A two-domain protein with a calcium binding parallel beta roll motif. EMBO Journal, 1993. 12: p. 3357-3364. 49.Walker, J., Saraste, M., Runswick, M., and Gay, N., Distantly related sequences in the alpha and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J, 1982. 50.Moller, W., and Amons, R., Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett, 1985. 186. 51.Saraste, M., Sibbald, P., and Wittinghofer, A., The P-loop: a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci, 1990. 15. 52.Koonin, E., A super family of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol, 1993. 229: p. 1165-1174. 53.Jones, P.M., O’Mara, M.L., George, A.M., ABC transporters: a riddle wrapped in a mystery inside an enigma. TIBS, 2009. 34: p. 520-531. 54.Davidson, A.L., Dassa, E., Orelle, C., Chen, J., Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol.Rev., 2008. 72: p. 317-364. 55.Oswald, C., Holland, I.B., Schmitt, L., The motor domains of ABCtransporters/what can structures tell us? Naunyn Schmiedebergs Arch.Pharmacol., 2006. 372: p. 385-399. 56.Jardetzky, O., Simple allosteric model for membrane pumps. Nature, 1966. 211: p. 969-970. 57.Delepelaire, P., Type I secretion in gram-negative bacteria. Biochim.Biophys. Acta, 2004. 1694: p. 149-161. 58.Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., Yamaguchi, A., Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature, 2011. 480: p. 565-569. 59.Shirtliff, S.M.J.a.M.E., Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2:5: p. 1-6. 60.Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol, 2009. 191(4): p. 1248-57. 61.L. M. LOOMES, B.W.S., AND M. A. KERR, Proteinases of Proteus spp.: Purification, Properties, and Detection in Urine of Infected Patients. INFECTION AND IMMUNITY, 1992. 60(6): p. 2267-2273. 62.Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, , Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43: p. 1069-71. 63.Wang MC, C.H., Tsai YL, Liu MC, Liaw SJ, The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis. PLoS One, 2014. 15. 64.Sebastien Crepin, S.H., Marie-Eve Charbonneau, Michael Mourez,Josee Harel, and Charles M. Dozois, Decreased Expression of Type 1 Fimbriae by a pst Mutant of Uropathogenic Escherichia coli Reduces Urinary Tract Infection. Infection and Immunity, 2012. 80: p. 2802-2815. 65.MOBLEY, F.K.B.A.H.L.T., Proteus mirabilis MR/P Fimbrial Operon: Genetic Organization, Nucleotide Sequence, and Conditions for Expression.JOURNAL OF BACTERIOLOGY, 1994. 176: p. 3412-3419. 66.Riffat Naseem, K.T.W., I. Barry Holland, Anthony K. Campbell1, ATP Regulates Calcium Efflux and Growth in E. coli. Journal of Molecular Biology, 2009. 391(1): p. 42-56. 67.Corinne Dorel &;#8727;, P.L., Agnes Rodrigue, The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling bio&;#64257;lm communities? Research in Microbiology, 2006. 157: p. 306-314. 68.Raivio TL1, P.D., Silhavy TJ., The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol. , 2005 181: p. 5263-72. 69.Danielle L. Hung, T.L.R., 1 C.Hal Jones,2 Thomas J. Silhavy,3 and Scott J. Hultgren, Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J. , 2001. 20: p. 1508-1518. 70.Jubelin G1, V.A., Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C., CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol., 2005. 187: p. 2038-49.
|