跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/16 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張建喆
研究生(外文):Chien-Che Chang
論文名稱:zapD對奇異變形桿菌生物膜合成能力的影響及其機制探討
論文名稱(外文):The investigation of zapD in Proteus mirabilis:Emphasizing biofilm formation and its mechanisms
指導教授:廖淑貞廖淑貞引用關係
指導教授(外文):Shwu-Jen Liaw
口試委員:鄧麗珍邱浩傑楊翠青
口試委員(外文):Li-Jen TengHao-Jie ChiuTsuey-Ching Yang
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:生物膜纖毛二系元調控
外文關鍵詞:biofilmfimbriaetwo component system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奇異變形桿菌(Proteus mirabilis)為格蘭氏陰性腸內菌,在健康人體腸道屬於正常菌叢,但在長期使用導尿管病患身上,會造成伺機性感染,嚴重甚至可能導致腎臟病、肺炎等併發症,目前研究發現P. mirabilis在導尿管形成生物膜後具有顯著的感染能力,造成導尿管病患嚴重感染,然而生物膜合成的機制至今還是不清楚。本篇利用transposon mutagenesis的方式建構zapD突變株,實驗結果發現zapD突變株生物膜合成能力大幅下降,探究其可能原因,我們發現zapD突變株的cpxAR基因表現量有顯著的降低,先前實驗室的研究發現,cpxAR的突變株,會影響細菌MR/P fimbriae的表現,進而導致生物膜合成能力下降,所以,我們觀察zapD突變株 MR/P fimbriae的蛋白表現量,我們也發現zapD突變株其MR/P fimbriae蛋白表現量有明顯的下降;此外,我們也觀察zapD上游的zapA基因,我們發現細菌的potease活性下降且zapA基因的表現明顯的降低,我們利用reporter assay及EMSA發現,zapA基因會直接受到Cpx pathway的調控;另外,我們探討其他毒力因子發現zapD突變株的細胞,FlaA蛋白表現量也有明顯的上升。總結而論,我們發現zapD突變會影響P. mirabilis生物膜合成能力,其機制是因為zapD突變導致cpxAR基因表現下降,影響MR/P fimbriae蛋白的表現使生物膜合成能力降低,同時,Cpx pathway會直接調控zapD的上游基因zapA的表現。

Proteus mirabilis, a facultative Gram-negative bacterium, is a common cause of catheter-associated urinary tract infections. Recently studies have showed that P. mirabilis can form biofilm on catheter leading to blockage of catheter and cause severe infections. There has been a report that mannose-resistant proteus like (MR/P) fimbriae contributes P. mirabilisbiofilm formation. However, the genes and its mechanisms in P. mirabilisbiofilm formation remain unclear. In previous study, we have showed that mrp operon was regulated by Cpx pathway. In this study, we constructedzapD- mutant by transposon mutagenesis. Data from biofilm formation test demonstrated that, in the absence of zapD, P. mirabilisbiofilm formation dramatically decreased. Further, we also found thatthe expression of MR/P fimbriae and cpxAR gene expression significantly decreased in zapD mutant. Besides, we revealed that zapA, an upstream gene of zapD, was directly regulated by CpxR by use of reporter assay and EMSA. In sum, this study shows that zapD plays an important role in P. mirabilisbiofilm formation involving in Cpx pathway which can impair mrp operon expression. Moreover, we also show that zapD has an influence on its upstream gene, zapA, which contains CpxR-binding site on its promoter and directly regulated by Cpx pathway.&;#8195;

誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
第二章 實驗材料與方法 11
第一節 實驗材料 11
第二節 跳躍子卡匣突變方法 (transposon mutagenesis) 13
第三節 分析表現型及毒力因子 14
第三章 實驗結果 48
第一節 利用跳躍子突變方法篩選基因並鑑定 48
第二節 zapD 基因毒力因子表現之分析 49
第三節 分析zapD可能影響的路徑 50
第四節 相關phenotype及zapBCD的調控探討 53
第五節 zapD突變株的補回(complementation)試驗 (圖三) 55
第四章 結論與討論 56
第一節 結論 56
第二節 zapD生物膜合成及機制 56
第三節Cpx pathway與生物膜的合成 58
第四節Cpx pathway和zapA的調控 59
第五章 未來展望 60
第六章 圖 61
第七章 表 77
第八章 附錄 80
一P. mirabilis 80
二 virulence factors 81
三 P. mirabilis在固體培養基上的表面移行 (swarming) 週期 82
四 zapEABCD基因相似性比較圖 83
五E. coli中Cpx的調控 84
六 pUT-Tn5 85
七 pGEM-T Easy 86
八 ATP transporter 87
九 Virulence factors in biofilm formation 88
Reference 89
&;#8195;
圖目錄
圖一zapD突變株Kanamycin cassette插入突變處及PCR確認圖 61
圖二野生株與zapD突變株生長曲線之比較: 62
圖三分析野生株與、zapD突變株生物膜生成能力: 63
圖四分析野生株和突變株MR/P fimbriae的蛋白表現量 63
圖五野生株與zapD突變株泳動能力(swimming) 64
圖六zapD突變株與野生株在各個時間點的細胞長度比較: 67
圖七分析野生株與zapD突變株的FlaA蛋白表現量: 68
圖八分析野生株與zapD突變株protease activity: 68
圖九分析野生株與zapD突變株的cpxAR reporter assay: 69
圖十分析野生株與zapD突變株的zapA reporter assay: 69
圖十一分析野生株與cpxAR突變株的zapA reporter assay: 70
圖十二、CpxR protein與zapA promoter 的EMSA結果圖 71
圖十三zapA啟動子定序 72
圖十四分析野生株與zapD突變株SDS感受性 73
圖十五野生株與zapD突變株NTUB1細胞入侵能力 74
圖十六Urea對野生株與zapD突變株生物膜合成能力 74
圖十七PolymixinB對野生株與zapD突變株生物膜合成能力 75
圖十八分析野生株與cpxAR突變株zapBCD reporter assay 75
圖十九分析野生株與hfq突變株zapBCD reporter assay 76
圖二十分析野生株與qseEGF突變株zapBCD reporter assay 76

&;#8195;
表目錄
表一實驗中所使用的菌株及質體 77
表二實驗中所使用的引子 78
表三野生株和zapD突變株對各種抗生素的感受性(最小抑菌濃度;MIC): 79

1.Mobley, H.L.T., Virulence of the two primary uropathogens. ASM News, 2000. 66: p. 403-410.
2.Hooton, T.M., et al., Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis, 2010. 50(5): p. 625-63.
3.Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54.
4.Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40.
5.Mobley, H.L., M.D. Island, and R.P. Hausinger, Molecular biology of microbial ureases. Microbiol Rev, 1995. 59(3): p. 451-80.
6.Griffith, D.P., D.M. Musher, and C. Itin, Urease. The primary cause of infection-induced urinary stones. Invest Urol, 1976. 13(5): p. 346-50.
7.Li, X., et al., Visualization of Proteus mirabili within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun, 2002. 70(1): p. 389-94.
8.Li, X., D.E. Johnson, and H.L. Mobley, Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun, 1999. 67(6): p. 2822-33.
9.Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1994. 62(8): p. 3363-71.
10.Silverblatt, F.J. and I. Ofek, Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis, 1978. 138(5): p. 664-7.
11.Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33.
12.Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58.
13.Swihart, K.G. and R.A. Welch, Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun, 1990. 58(6): p. 1861-9.
14.Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42.
15.Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33.
16.McDougald, D., et al., Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol, 2012. 10(1): p. 39-50.
17.McLean RJ, L.J., Korber DR, Caldwell DE., Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. J Urol, 1991. 146: p. 1138-42.
18.Steven M. Jones, J.Y., Yaoping Hu, Howard Ceri &; Robert Martinuzzi, Structure ofProteusmirabilis bio¢lms grown in arti¢cial urine and standard laboratorymedia. FEMS Microbiol, 2007. 268: p. 16-21.
19.Sabbuba NA, S.D., Mahenthiralingam E, Painter DJ, Parkin J, Feneley RC., Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J Urol, 2004. 171: p. 1925-8.
20.Stickler DJ, F.R., The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord, 2010. 48: p. 784-90.
21.Stickler DJ, M.S., Modulation of crystalline Proteus mirabilis biofilm development on urinary catheters. J Med Microbiol, 2006. 55: p. 489-94.
22.Angela M. Jansen, V.L., David E. Johnson and Harry L. T. Mobley, Mannose-Resistant Proteus-Like Fimbriae Are Produced by Most Proteus mirabilis Strains Infecting the Urinary Tract, Dictate the In Vivo Localization of Bacteria, and Contribute to Biofilm Formation. Infect. Immun. , 2004. 72(12): p. 7294-7305.
23.O’May GA, J.S., Longwell M, Stoodley P, Mobley HL, Shirtliff ME., The high-affinity phosphate transporter Pst in proteus mirabilis HI4320 and its importance in biofilm formation microbiology, 2009. 155: p. 1523-35.
24.Allison, C. and C. Hughes, Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog, 1991. 75(298 Pt 3-4): p. 403-22.
25.Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38.
26.Alavi, M. and R. Belas, Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol, 2001. 336: p. 29-40.
27.Fraser, G.M. and C. Hughes, Swarming motility. Curr Opin Microbiol, 1999. 2(6): p. 630-5.
28.Jin, T. and R.G. Murray, Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Can J Microbiol, 1988. 34(5): p. 588-93.
29.Allison, C., H.C. Lai, and C. Hughes, Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol, 1992. 6(12): p. 1583-91.
30.Fraser, G.M., et al., Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology, 2002. 148(Pt 7): p. 2191-201.
31.Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36.
32.Hay, N.A., et al., A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator. J Bacteriol, 1997. 179(15): p. 4741-6.
33.Belas, R., Expression of multiple flagellin-encoding genes of Proteus mirabilis. J Bacteriol, 1994. 176(23): p. 7169-81.
34.Verstraeten, N., et al., Living on a surface: swarming and biofilm formation. Trends Microbiol, 2008. 16(10): p. 496-506.
35.Belas, R., M. Goldman, and K. Ashliman, Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol, 1995. 177(3): p. 823-8.
36.Plaut, A., Gilbert, J., Artenstein, M., and Capra, J., Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science, 1975. 190: p. 1103-1105.
37.Male, C., Immunoglobulin A1 protease production by Haemophilus in¯uenzae and Streptococcus pneumoniae. Infect Immun, 1979. 26: p. 254-261.
38.Kilian, M., Mestecky, J., and Schrohenloher, R., Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun, 1979. 26: p. 143-149.
39.Loomes, L., Senior, B., and Kerr, M., proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2 and IgG isotypes. Infect Immun, 1990. 58: p. 1979-1985.
40.Loomes, L., Kerr, M., and Senior, B., The cleavag of immunoglobulin G in vitro and in vivo by a proteinase secreted by the urinary tract pathogen Proteus mirabilis. J Med Microbiol, 1993. 39: p. 225-232.
41.Robert Belas, J.M., and Rooge Suvanasuthi, Proteus mirabilis ZapA Metalloprotease Degrades a Broad Spectrum of Substrates, Including Antimicrobial Peptides. Infect Immun, 2004. 72: p. 5159-5167.
42.Wassif, C., Cheek, D., and Belas, R., Molecular analysis of a metalloprotease from Proteus mirabilis. J Bacteriol, 1995. 177: p. 5790-5798.
43.Finnie, C., Zorreguieta, A., Hartley, N., and Downie, J., Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via type I exporter and have a novel heptapeptide repeated motif. J Bacteriol, 1998. 180: p. 1691-1699.
44.I. BARRY HOLLAND, L.S., JOANNE YOUNG, Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Molecular Membrane Biology, 2005. 22(1-2): p. 29-39.
45.Amy L. Davidson, E.D., Cedric Orelle, Jue Chen, Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems. Microbiol Mol Biol Rev. , 2008 june. 72(2): p. 317–364.
46.Roset MS, C.A., Ugalde RA, Inon de Iannino N., Molecular cloning and characterization of cgt, the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence. Infect Immun, 2004. 72: p. 2263~2271.
47.Breedveld MW, M.K., Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev, 1994. 58: p. 145-161.
48.U. Baumann, S.W., K.M. Flaherty, D.B. McKay, Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: A two-domain protein with a calcium binding parallel beta roll motif. EMBO Journal, 1993. 12: p. 3357-3364.
49.Walker, J., Saraste, M., Runswick, M., and Gay, N., Distantly related sequences in the alpha and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J, 1982.
50.Moller, W., and Amons, R., Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett, 1985. 186.
51.Saraste, M., Sibbald, P., and Wittinghofer, A., The P-loop: a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci, 1990. 15.
52.Koonin, E., A super family of ATPases with diverse functions containing either classical or deviant ATP-binding
motif. J Mol Biol, 1993. 229: p. 1165-1174.
53.Jones, P.M., O’Mara, M.L., George, A.M., ABC transporters: a riddle wrapped in a mystery inside an enigma. TIBS, 2009. 34: p. 520-531.
54.Davidson, A.L., Dassa, E., Orelle, C., Chen, J., Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol.Rev., 2008. 72: p. 317-364.
55.Oswald, C., Holland, I.B., Schmitt, L., The motor domains of ABCtransporters/what can structures tell us? Naunyn Schmiedebergs Arch.Pharmacol., 2006. 372: p. 385-399.
56.Jardetzky, O., Simple allosteric model for membrane pumps. Nature, 1966. 211: p. 969-970.
57.Delepelaire, P., Type I secretion in gram-negative bacteria. Biochim.Biophys. Acta, 2004. 1694: p. 149-161.
58.Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., Yamaguchi, A., Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature, 2011. 480: p. 565-569.
59.Shirtliff, S.M.J.a.M.E., Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2:5: p. 1-6.
60.Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol, 2009. 191(4): p. 1248-57.
61.L. M. LOOMES, B.W.S., AND M. A. KERR, Proteinases of Proteus spp.: Purification, Properties, and Detection in Urine of Infected Patients. INFECTION AND IMMUNITY, 1992. 60(6): p. 2267-2273.
62.Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, , Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43: p. 1069-71.
63.Wang MC, C.H., Tsai YL, Liu MC, Liaw SJ, The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis. PLoS One, 2014. 15.
64.Sebastien Crepin, S.H., Marie-Eve Charbonneau, Michael Mourez,Josee Harel, and Charles M. Dozois, Decreased Expression of Type 1 Fimbriae by a pst Mutant of Uropathogenic Escherichia coli Reduces Urinary Tract Infection. Infection and Immunity, 2012. 80: p. 2802-2815.
65.MOBLEY, F.K.B.A.H.L.T., Proteus mirabilis MR/P Fimbrial Operon: Genetic Organization, Nucleotide Sequence, and Conditions for Expression.JOURNAL OF BACTERIOLOGY, 1994. 176: p. 3412-3419.
66.Riffat Naseem, K.T.W., I. Barry Holland, Anthony K. Campbell1, ATP Regulates Calcium Efflux and Growth in E. coli. Journal of Molecular Biology, 2009. 391(1): p. 42-56.
67.Corinne Dorel &;#8727;, P.L., Agnes Rodrigue, The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling bio&;#64257;lm communities? Research in Microbiology, 2006. 157: p. 306-314.
68.Raivio TL1, P.D., Silhavy TJ., The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol. , 2005
181: p. 5263-72.
69.Danielle L. Hung, T.L.R., 1 C.Hal Jones,2 Thomas J. Silhavy,3 and Scott J. Hultgren, Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J. , 2001. 20: p. 1508-1518.
70.Jubelin G1, V.A., Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C., CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol., 2005. 187: p. 2038-49.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top