(3.235.108.188) 您好!臺灣時間:2021/03/03 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江以歆
研究生(外文):Yii-Shin Kiang
論文名稱:陽明山國家公園地表花粉與植被類型之關係
論文名稱(外文):The relationship between surface pollen and vegetation typesin Yangmingshan National Park
指導教授:陳淑華陳淑華引用關係
口試委員:黃增泉謝長富劉平妹蘇夢淮
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:表土花粉植被類型集群分析法降趨對應分析陽明山國家公園
外文關鍵詞:surface pollenvegetation typecluster analysisdetrended correspondence analysisYangmingshan National Park
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  植物的花粉和孢子可於沉積物中長期保存,因而成為推測古代植被環境乃至氣候環境的重要化石證據。但在研究化石花粉之前,須先研究土壤表層中的花粉與現生植被之關係,以便合理解釋化石花粉與古代植被環境之間的關聯。
  本研究利用集群分析法處理陽明山國家公園內50個地點的表土花粉樣本,由組成的花粉種類區分不同的植被類型,並比較相同地點的花粉種類和植被種類之異同。經過分析,發現50個樣本可以清楚區分為草原型植被和森林型植被兩大類群。草原型植被以禾本科植物為主,森林型植被則有人造之柳杉林與較天然的植被。未能明確歸入上述植被類型者,多為草原與森林交界處之過渡地帶。此結果與前人利用植被調查資料進行之植被分類結果大致吻合,表示雖然園區內植被呈鑲嵌式分布,但表土花粉大致上仍能反映出所對應的植被類型。我們亦將花粉資料與地理因子資料進行降趨對應分析(Detrended correspondence analysis, DCA),結果顯示,在海拔高度、坡度、坡向這些地理因子中,海拔高度是影響花粉分布差異的最重要因子。

  Pollen and spores can be important fossil evidence of ancient vegetation and paleoclimate, because these tiny grains can be preserved in sediments for a very long time. To understand the relationship between fossil pollen and ancient vegetation, we have to study their modern analog, the pollen in surface soil and the modern vegetation.
  Fifty surface pollen samples from Yangmingshan National Park are analyzed using the cluster analysis method in this study. They are grouped into different vegetation types according to their components of the pollen sum. The differences between pollen taxa and vegetation taxa are also discussed. The fifty samples can be grouped into two categories, grassland and forest. The grassland is dominant by Poaceae. The forest includes Cryptomeria plantation and some natural vegetation. Other samples not belong to grassland or forest are collected from the transition zone. The present results agree with the reported vegetation classifications which were obtained by vegetation investigation. This indicates that although the vegetation types in the park have a mosaic pattern, the surface pollen can still reflect the vegetation types. The pollen data and some geographic factors are also analyzed by the method of detrended correspondence analysis (DCA). The results reveal that among altitude, aspect and slope, the altitude is the most important factor affecting pollen distribution.

摘要 (ii)
Abstract (iii)
壹、緒論 (1)
 一、相關研究概況 (2)
 二、本研究緣起 (3)
貳、材料與方法 (6)
 一、前置作業 (6)
 二、採樣方法 (6)
 三、樣本處理與分析 (6)
  (一) 樣本處理 (6)
  (二) 孢粉鑑定與計數 (7)
  (三) 採樣點地理資訊 (8)
  (四) 資料統計分析法 (8)
參、結果 (10)
 一、花粉圖譜與集群分析結果 (10)
 二、多變量分析結果 (14)
 三、距離與花粉量之關係──以琉球松為例 (16)
 四、表土花粉組成與植被組成之比較 (17)
肆、討論 (21)
 一、花粉圖譜、重要花粉類群與集群分析結果 (21)
 二、三種集群分析法之優劣 (28)
 三、地理環境因子對花粉組成的影響 (30)
 四、採樣尺度對資料的影響 (31)
伍、結論 (33)
參考文獻 (58)
附錄A、各表土樣本花粉類群比例資料 (65)
附錄B、選取17個表土花粉樣本與對應的18個植被調查樣區(陳等,2010)之類群對照 (73)
附錄C、表土花粉光學顯微照片 (92)

王義仲,2003。陽明山國家公園之長期生態研究─植被變遷與演替調查。陽明山國家公園管理處。
王義仲,2005。竹子湖地區自然與人文資源細部調查。陽明山國家公園管理處。
王震哲,2001。陽明山國家公園磺嘴山生態保護區植物相調查。陽明山國家公園管理處。
李政益,2010。恆春半島東源谷地晚第四紀之植被與氣候變化。國立台灣大學理學院地質科學所博士論文。
李瑞宗,1991。陽明山國家公園植物及人文文獻之蒐集整理─植物篇。陽明山國家公園管理處。
李瑞宗,1992。丹山草欲燃:陽明山國家公園步道植群。陽明山國家公園管理處。
汪良奇,2011。以湖泊沉積物內花粉與矽藻重建台灣東部晚全新世氣候與環境變遷。國立台灣大學生命科學院生態學與演化生物學研究所博士論文。
竺可楨,1972。中國近五千年來氣候變遷的初步研究。考古學報1: 21。
林曜松、陳擎霞,1989。向天山及火口湖生態系之調查研究。內政部營建署陽明山國家公園管理處。
邱文良,2009。陽明山國家公園全區植物多樣性調查-百拉卡公路以南,陽金公路以西地區。陽明山國家公園管理處委託研究報告。
許立達,2008。陽明山國家公園植被變遷研究。陽明山國家公園管理處。
陳仲玉,1987。陽明山國家公園人文史蹟調查。內政部營建署陽明山國家公園管理處。
陳俊宏,2010。陽明山國家公園陽金公路以東地區資源調查期末報告。陽明山國家公園管理處委託研究報告。
陳肇夏,2004。陽明山國家公園地形‧地質景觀:火山奇跡。內政部營建署陽明山國家公園管理處。
黃增泉、鄭元春、吳俊宗、陳尊賢、謝長富、葉開溫、楊國禎、湯惟新,1989。陽明綠意─陽明山國家公園植物相。內政部營建署陽明山國家公園管理處。
黃增泉、謝長富、楊國禎、湯惟新,1983。陽明山國家公園植物生態景觀資源。內政部營建署委託研究報告。
劉昭民,1981。西洋氣象學史。中國文化大學出版部。內政部營建署陽明山國家公園管理處。
謝長富、黃增泉、楊國禎、謝宗欣,1990。陽明山國家公園稀有植物族群生態調查。
Bartlein, P. J., Prentice, I. C. and Webb III, T., 1986. Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13: 35-57.
Bartlein, P. J. and Webb III, T., 1985. Mean July temperature at 6000 yr B. P. in eastern North America: regression equations for estimates from fossil pollen data. Syllogeus 55: 301-342.
Bartlein, P. J. and Whitlock, C., 1993. Paleoclimatic interpretation of the Elk Lake pollen record. In: Bradbury, J. P. and W. E. Dean (Eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States, The Geological Society of America, Special Paper 276, Boulder, CO, pp. 275-295.
Bonnefille, R. and Chalie, F., 2000. Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global and Planetary Change 26: 25-50.
Canellas-Bolta, N., Rull, V., Vigo, J. and Mercade, A., 2009. Modern pollen-vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). The Holocene 19: 1185-1200.
Cheddadi R., Lamb, H. F., Guit, J. and van der Kaars, S., 1998. Holocene climatic change in Morocco: a quantitative reconstruction from pollen data. Climate Dynamics 14: 883-890.
Cheddadi, R., Yu, G., Harrison, S. P. and Prentice, I. C., 1997. The climate of Europe 6000 years ago. Climate Dynamics 13: 1-9.
Chen, S.-H. and Huang, S.-Y., 2000. Aeropalynological study of Yangmingshan National Park, Taiwan. Taiwania 45: 281-295.
Chen, S.-H., Wu, J.-T., Yang, T.-N., Chuang, P.-P., Huang, S.-Y. and Wang, Y.-S., 2009. Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. Journal of paleolimnology 41: 315-327.
Connor, S. E., Thomas, I., Kvavadze, E. V., Arabuli, G. J., Avakov, G. S. and Sagona, A., 2004. A survey of modern pollen and vegetation along an altitudinal transect in southern Georgia, Caucasus region. Review of Palaeobotany and Palynology 129: 229-250.
Cook, E. J. and van der Kaars, S., 2006. Development and testing of transfer functions for generating quantitative climatic estimates from Australian pollen data. Journal of Quaternary Science 21: 723-733.
Correa-Metrio, A., Bush, M. B., Perez, L., Schwalb, A. and Cabrera, K. R., 2011. Pollen distribution along climatic and biogeographic gradients in northern Central America. The Holocene 21: 681-692.
Davis, M. B. and Goodlett, J. C., 1960. Comparison of the present vegetation with pollen-spectra in surface samples from Browington Pond, Vermont. Ecology 41: 346-357.
Environmental Systems Resource Institute (ESRI), 2012. ArcGIS 10.0.
Erdtman, G., 1969. Handbook of palynology. Munksgaard, Copenhagen.
Faegri, K., and Iversen, J., 1989, Textbook of Pollen Analysis. Amsterdam, Balkena.
Finsinger W., Heiri, O., Verushka, V., Tinner, W. and Lotter, A. F., 2007. Modern pollen assemblages as climate indicators in southern Europe. Global Ecology and Biogeography 16: 567-582.
Fries, M., 1967. Lennart von Post’s pollen diagram series of 1916. Review of Palaeobotany and Palynology 4: 9-13.
Grimm, E. C., 1992. TILIA and TILIA-GRAPH: Pollen spreadsheet and graphics programs. In Volume of abstracts 8th International Palynological Congress, Aix-en-Provence (p. 56).
Guiot, J., Pons, A., de Beaulieu, J.-L. and Reille, M., 1989. A 140,000-year continental climate reconstruction from two European pollen records. Nature, 338: 309-313.
Herzschuh, U., Birks, H. J. B., Mischke, S., Zhang, C. and Bohner, J., 2010. A modern pollen-climate calibration set based on lake sediments from the Tibetan plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. Journal of Biogeography 37: 752-766.
Huang, T.-C., 1972. Pollen Flora of Taiwan, National Taiwan University Botany Department Press.
Huang, T.-C. and Chen, H.-J., 1987. The pollen analysis of the Dream Lake, Taipei, Yang Ming Shan National Park. Journal of palynology 23: 213-216.
Huntley, B. and Prentice, I. C., 1988. July temperatures in Europe from pollen data, 6000 years before present. Science 241: 687-690.
Iversen, J., 1944. Viscum, Hedera and Ilex as climate indicators. Geologiska Foreningen i Stockholm Forhandlingar 66: 463-483.
Jolly, D., Prentice, I. C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchert, G., Burney, D., Cazet, J.-P., Cheddadi, R., Edorh, T., Elenga, H., Elmoutaki, S., Guiot, J., Laarif, F., Lamb, H., Lezine, A.-M., Maley, J., Mbenza, M., Peryn, O., Reille, M., Reynaud-Farrera, I., Riollet, G., Ritchie, J. C., Roche, E., Scott, L., Ssemmanda, I., Straka, H., Umer, M., van Campo, E., Vilimumbalo, S., Vincens, A. and Waller, M., 1998. Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. Journal of Biogeography 25: 1007-1027.
Kuo, C.-M. and Liew, P.-M., 2000. Vegetational history and climatic fluctuations based on pollen analysis of the Toushe peat bog, central Taiwan since the last glacial maximum. Journal of Geological Society of China 43: 379-392.
Li, Y., Xu, Q., Jiu, J., Yang, X. and Nakagawa, T., 2007. A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions. The Holocene 17: 897-905.
Liew, P.-M., and Huang, S.-Y., 1994. A 5000-year pollen record from Chitsai Lake, central Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 5: 411-419.
Liew, P.-M., Huang, S.-Y. and Kuo, C.-M., 2006a. Pollen stratigraphy, vegetation and environment of the last glacial and Holocene—A record from Toushe Basin, central Taiwan. Quaternary International 147: 16-33.
Liew, P.-M., Lee, C.-Y. and Kuo, C.-M., 2006b. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest construction of a subalpine pollen sequence, Taiwan. Earth and Planetary Science Letters 250: 596-605.
Lin, S.-F., Huang, T.-C., Liew, P.-M. and Chen, S.-H., 2007. A palynological study of environmental changes and their implication for prehistoric settlement in the Ilan Plain, northeastern Taiwan. Vegetation History and Archaeobotany 16: 127-138.
Lin, S.-F., Liew, P.-M. and Lai, T.-H., 2004. Late Holocene pollen sequence of the Ilan Plain, northeastern Taiwan, and its environmental and climatic implications. Journal of Terrestrial, Atmospheric and Oceanic Sciences 15: 221-238.
Lou, J.-Y., Chen, C.-T. A. and Wann, J.-K., 1997. Paleoclimatological records of the Great Ghost Lake in Taiwan. Science in China Series D: Earth Sciences 40: 284-292.
Marchant, R., Berrio, J. C., Cleef, A., Duivenvoorden, J., Helmens, K., Hoogbienistra, H., Kuhry, P., Schreve-Brinkman, E., Van Geel, B., Van Reenen, G. and Van der Hammen, T., 2001. A reconstruction of Colombian biomes derived from modern pollen data along an altitudinal gradient. Review of Palaeobotany and Palynology 117: 79-92.
Markgraf, V., Webb, R. S., Anderson, K. H. and Anderson, L., 2002. Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181: 375-397.
McCune, B. and M. J. Mefford, 1999. Multivariate analysis on the PC-ORD system. MjM Software, Gleneden Beach, OR.
Morita, Y., Kimiya, C., Nasu, H. and Momohara, A., 2006. Pollen spectra of surface samples from mires in the Konsen District, eastern Hokkaido, Japan. Japanese Journal of Historical Botany 14: 45-60.
Nakamura, T., Takahara, H. and Ohno, K., 2012. Pollen-vegetation relationship of surface pollen assemblages and objective vegetation reconstruction in the Hakkoda Mountains, northeastern Japan. Quaternary International 254: 138-151.
Ortuno, T., Ledru, M.-P., Cheddadi, R., Kuentz, A., Favier, C. and Beck, S., 2011. Modern pollen rain, vegetation and climate in Bolivian ecoregions. Review of Palaeobotany and Palynology 165: 61-74.
Park, J., 2011. A modern pollen-temperature calibration data set from Korea and quantitative temperature reconstructions for the Holocene. The Holocene 21: 1125-1135.
Pielou, E. C., 1984. The interpretation of ecological data: a primer on classification and ordination, New York: Wiley.
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. and Cheddadi, R., 1996. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12: 185-194.
Rull, V., 2006. A high mountain pollen-altitude calibration set for palaeoclimatic use in the tropical Andes. The Holocene 16: 105-117.
Seppa, H., Birks, H. J. B., Odland, A., Poska, A. and Veski, S., 2004. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography 31: 251-267.
Shen, C., Liu, K.-B., Tang, L. and Overpeck, J. T., 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Review of Palaeobotany and Palynology 140: 61-77.
Tarasov, P. E., Webb III, T., Andreev, A. A., Afanas’eva, N. B., Berezina, N. A., Bezusko, L. G., Blyakharchuk, T. A., Bolikhovskaya, N. S., Cheddadi, R., Chernavskaya, M. M., Chernova, G. M., Dorofeyuk, N. I., Dirksen, V. G., Elina, G. A., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Harrison, S. P., Jolly, D., Khomutova, V. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., Prentice, I. C., Saarse, L., Sevastyanov, D. V., Volkova, V. S. and Zernitskaya, V. P., 1998. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25: 1029-1053.
ter Braak, C. J. F., 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours), partial least squares and weighted averaging partial least squares and classical approaches. Chemometrics and Intelligent Laboratory Systems 28: 165-180.
ter Braak, C. J. F. and Juggins, S., 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstruction environmental variables from species assemblages. Hydrobiologia 269: 485-502.
Webb, R. S., Anderson, K. H. and Webb III, T., 1993. Pollen response-surface estimates of late-Quaternary changes in the moisture balance of the northeastern United States. Quaternary Research 40: 213-227.
Webb III, T. and Bryson, R. A., 1972. Late- and postglacial climatic change in the northern midwest, USA: quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research 2: 70-115.
Weng, C., Bush, M. B. and Silman, M. R., 2004. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20: 113-124.
Whitehead, D. R., 1969, Modern vegetation and pollen rain in Bladen County, North Carolina. Ecology 50: 235-248.
Williams, J. W., Summers, R. L. and Webb III, T., 1998. Applying plant functional types to construct biome maps from eastern North American pollen data: comparisons with model results. Quaternary Science Reviews 17: 607-627.
Xu, Q.-H., Li, Y.-C., Tian, F., Cao, X.-Y. and Yang, X.-L., 2009. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Review of Palaeobotany and Palynology 153: 86-101.
Yu, G., Prentice, I. C., Harrison, S. P. and Sun, X., 1998. Pollen-based biome reconstructions for China at 0 and 6000 years. Journal of Biogeography 25: 1055-1069.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔