(3.220.231.235) 您好!臺灣時間:2021/03/07 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何亮融
研究生(外文):Andy Ho
論文名稱:由基因親緣分解解析人類微型核醣核酸調控網路
論文名稱(外文):Dissecting the Human MicroRNA Regulatory Networks via Phylogenetic Decomposition
指導教授:阮雪芬阮雪芬引用關係
指導教授(外文):Hsueh-Fen Juan
口試委員:黃宣誠蔡懷寬陳倩瑜
口試委員(外文):Hsuan-Cheng HuangHuai-Kuang TsaiChien-Yu Chen
口試日期:2014-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:51
中文關鍵詞:蛋白質交互作用網路微型核醣核酸微型核醣核酸調控網路基因親緣分解粒線體
外文關鍵詞:protein-protein interaction networkmiRNAmiRNA regulatory networkphylogenetic decompositionmitochondria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為有效描述分子生物系統中巨量的相互作用資訊,網路模型是普遍被使用的抽象化工具之一。常見的蛋白質間的交互作用和微型核醣核酸與基因間的調控關係均可透過網路模型的建立,並藉由數學上的拓樸概念與圖形理論進行分析,讓我們能以更宏觀與系統的角度理解生物系統的運作。然而,目前典型的網路分析受限於拓樸空間上的二維結構,致無法加入時間與空間層面的觀察與分析。本研究試圖提出新的分析框架,將固有的方法進行擴展,以應用於微型核醣核酸調控網路的整合分析。本研究藉由分析人類基因體與其他物種的同源基因,將演化年齡參數結合於每個蛋白質與微型核醣核酸,並以此引入時序維度對網路模型進行分解。除了整體網路分析,本研究也挑出粒線體相關調控網路作為小尺度個案研究。在微型核醣核酸調控網路的分析中,我們發現古老的基因會被較多種類的微型核醣核酸調控,而年輕的微型核醣核酸則能調控較多的基因。此外,由調控偏好可以發現微型核醣核酸會傾向調控年齡相近的基因。我們也發現年輕微型核醣核酸更喜愛調控蛋白質網路中樞紐位置的基因。而在粒線體相關的網路分析中,微型核醣核酸的調控偏好與整體網路中偏好調控年齡相近基因的結果大致相同。由功能性分析則可以發現人類粒線體功能大多由最古老的基因參與,僅有細胞凋亡相關功能會由較年輕的基因扮演重要角色。結合上述,不同年齡的基因與微型核醣核酸在網路中的確會扮演不同的角色,而利用此年齡分類策略,確實能增進對網路拓樸特性的了解。

Owing to the clear fact that most biological characteristics arise from complex interactions between numerous constituents, more and more researche works apply the network model to generate the information of these complicated relationships such as protein interactions and miRNA regulations. Providing a framework for better understanding the cell machinery, network analysis can successfully reveal an insight to the functional organization in a system biology point of view. However, limited to its two-dimensional structure, typical network analysis may results in the lack of observation from temporal level. In this study, we adopted a phylogenetic strategy to divide human genes and miRNAs into age groups and thus decompose the miRNA regulatory network from an evolutionary perspective to answer if miRNAs of different ages would play different roles in the networks. We also extracted the mitochondria-related networks as a case study. For human miRNA regulatory network, we first found that ancient genes were regulated by more types of miRNAs. In contrast, young miRNAs could target more types of genes. Second, the regulatory preference between miRNA and genes indicated that miRNAs tended to regulate genes of similar age. The analysis also showed that genes targeted by young miRNAs were more likely to be hub in PPI networks. For mitochondria-related network, the regulatory preference pattern was roughly the same as the pattern in global miRNA regulatory network. Most of the functions in human mitochondria were contributed by proteins in G1 (eukaryote-conserved) and G2 (metazoan-conserved). Only the functions associated with cell death were occupied by proteins in G3 (vertebrate-conserved). Based on all the findings, it is clear that the proposed phylogenetic strategy, which utilized an additional age dimension for decomposition, had successfully enhanced the understanding of the topological organization of networks.

口試委員會審定書 ……………………………………………………………………i
致謝 …………………………………………………………………………………….ii
摘要 ……………………………………………………………………………………iii
ABSTRACT ………………………………………………………………………….iv
CONTENTS ……………………………………………………………………………vi
LIST OF FIGURES …………………………………………………………………….ix
LIST OF TABLES ……………………………………………………………………xi
Chapter 1 Introduction ……………………………………………………………1
1.1 Network models ……………………………………………………………...1
1.2 Protein-protein Interaction (PPI) network …………………………………... 2
1.3 MicroRNA regulatory network ………………………………………………4
1.4 Mitochondria …………………………………………………………………5
1.5 Dissecting the human protein-protein interaction network via phylogenetic decomposition ………………………………………………………………...6
1.5.1 Overview of Phylo-decomposition of human PPI network …………..6
1.5.2 Age-dependent core-periphery structure and network centralities …...6
1.5.3 Ubiquitous yet combinatorial scale-free and hierarchy network
properties ……………………………………………………………..8
1.5.4 Age homophily in PPI network ………………………………………9
1.5.5 Age-dependent functional landscape ………………………………..10
1.6 Specific aims ………………………………………………………………..11
Chapter 2 Materials and Methods ………………………………………………13
2.1 Phylogenetic decomposition of networks …………………………………...13
2.1.1 Phylogenetic decomposition of human genome …………………….13
2.1.2 Construction of PPI network ………………………………………..14
2.1.3 Phylogenetic decomposition of human miRNAs …………………...16
2.1.4 Construction of bipartite miRNA regulatory network ………………16
2.2 Analysis of networks ………………………………………………………17
2.2.1 Interaction density and standard score ……………………………...17
2.2.2 Gene essentiality ……………………………………………………18
2.2.3 Normalization for distribution of network features across groups ….19
2.2.4 Generation of housekeeping genes ………………………………….19
2.2.5 Regulatory density and standard score ……………………………...20
2.2.6 Standard score of features for miRNA target genes ………………...21
2.2.7 Extraction of mitochondria-related networks ……………………..21
2.2.8 Age profile of mitochondrial pathway ……………………………...22
Chapter 3 Results and Discussion ……….……….……….……….…………….23
3.1 miRNA regulatory network ………..………..………..………..……………23
3.1.1 Age-dependent spectrum of miRNA regulatory network …………..23
3.1.2 Age homophily in miRNA regulatory network ………..……………24
3.1.3 Correlation between miRNA and their targets in PPI network ……..25
3.2 Mitochondria-related networks …..………..………..………..……………..26
3.2.1 Age homophily in mitochondria-related miRNA regulatory
network ……………………………………………………………...26
3.2.2 Age-dependent functional enrichment in mitochondria …………….26
Chapter 4 Conclusions …………………………………………………………...28
Figures ………………………………………………………………………………...29
Tables ………………………………………………………………………………….44
REFERENCES ……………………………………………………………………….45


1.Barabasi, A.L. and Z.N. Oltvai, Network biology: understanding the cell''s functional organization. Nat Rev Genet, 2004. 5(2): p. 101-13.
2.Hakes, L., et al., Protein-protein interaction networks and biology--what''s the connection? Nat Biotechnol, 2008. 26(1): p. 69-72.
3.Stelzl, U., et al., A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005. 122(6): p. 957-68.
4.Agarwal, S., et al., Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. PLoS Comput Biol, 2010. 6(6): p. e1000817.
5.Yeang, C.H. and D. Haussler, Detecting coevolution in and among protein domains. PLoS Comput Biol, 2007. 3(11): p. e211.
6.Kim, W.K. and E.M. Marcotte, Age-dependent evolution of the yeast protein interaction network suggests a limited role of gene duplication and divergence. PLoS Comput Biol, 2008. 4(11): p. e1000232.
7.Zhao, Y. and S.D. Mooney, Functional organization and its implication in evolution of the human protein-protein interaction network. BMC Genomics, 2012. 13: p. 150.
8.Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
9.Kusenda, B., et al., MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2006. 150(2): p. 205-15.
10.Henze, K. and W. Martin, Evolutionary biology: essence of mitochondria. Nature, 2003. 426(6963): p. 127-8.
11.Oberst, A., C. Bender, and D.R. Green, Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ, 2008. 15(7): p. 1139-46.
12.Brighton, C.T. and R.M. Hunt, Mitochondrial calcium and its role in calcification. Histochemical localization of calcium in electron micrographs of the epiphyseal growth plate with K-pyroantimonate. Clin Orthop Relat Res, 1974(100): p. 406-16.
13.Burger, G., M.W. Gray, and B. Franz Lang, Mitochondrial genomes: anything goes. Trends in Genetics, 2003. 19(12): p. 709-716.
14.El-Mahdy Othman, O., Mitochondrial DNA as a Marker for Genetic Diversity and Evolution. Advances in Genetic Engineering &; Biotechnology, 2012. 01(01).
15.Chen, C.-Y., Ho, A., Huang, H.-Y., Juan, H.-F. and Huang, H.-C., Dissecting Human Protein-Protein Interaction Network via Phylogenetic Decomposition, in 14th International Conference on Systems Biology (ICSB2013). 2013: Copenhagen, Denmark. p. Abstract#165.
16.Luo, F., et al., Core and periphery structures in protein interaction networks. BMC Bioinformatics, 2009. 10 Suppl 4: p. S8.
17.Krivitsky, P.N., et al., Representing Degree Distributions, Clustering, and Homophily in Social Networks With Latent Cluster Random Effects Models. Soc Networks, 2009. 31(3): p. 204-213.
18.McPherson, M., L. Smith-Lovin, and J.M. Cook, Birds of a feather: Homophily in social networks. Annual Review of Sociology, 2001. 27: p. 415-444.
19.Jeong, H., et al., Lethality and centrality in protein networks. Nature, 2001. 411(6833): p. 41-2.
20.George, R.D., et al., Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res, 2011. 21(10): p. 1686-94.
21.Palla, G., A.L. Barabasi, and T. Vicsek, Quantifying social group evolution. Nature, 2007. 446(7136): p. 664-7.
22.Wheeler, D.L., et al., Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 2008. 36(Database issue): p. D13-21.
23.Altenhoff, A.M. and C. Dessimoz, Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol, 2009. 5(1): p. e1000262.
24.Hedges, S.B., The origin and evolution of model organisms. Nat Rev Genet, 2002. 3(11): p. 838-49.
25.Zhang, Q.C., et al., PrePPI: a structure-informed database of protein-protein interactions. Nucleic Acids Res, 2013. 41(Database issue): p. D828-33.
26.Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504.
27.Assenov, Y., et al., Computing topological parameters of biological networks. Bioinformatics, 2008. 24(2): p. 282-4.
28.Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140-4.
29.Koh, J.L., et al., COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines. Nucleic Acids Res, 2012. 40(Database issue): p. D957-63.
30.Luo, B., et al., Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A, 2008. 105(51): p. 20380-5.
31.Eppig, J.T., et al., The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res, 2012. 40(Database issue): p. D881-6.
32.Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
33.Binns, D., et al., QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics, 2009. 25(22): p. 3045-6.
34.Huang da, W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13.
35.Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
36.Merico, D., et al., Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One, 2010. 5(11): p. e13984.
37.Chiang, A.W.T., G.T.W. Shaw, and M.J. Hwang, Partitioning the Human Transcriptome Using HKera, a Novel Classifier of Housekeeping and Tissue-Specific Genes. Plos One, 2013. 8(12).
38.Chang, C.W., et al., Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis. PLoS One, 2011. 6(7): p. e22859.
39.Stark, A., et al., Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3''UTR evolution. Cell, 2005. 123(6): p. 1133-46.
40.Eisenberg, E. and E.Y. Levanon, Human housekeeping genes are compact. Trends Genet, 2003. 19(7): p. 362-5.
41.Hsu, C.W., H.F. Juan, and H.C. Huang, Characterization of microRNA-regulated protein-protein interaction network. Proteomics, 2008. 8(10): p. 1975-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔