|
1.Weinberg, D.S., Colorectal Cancer Screening. Annals of Internal Medicine, 2008. 148(3): p. ITC2-1. 2.Bethesda, M., SEER Cancer Statistics Factsheets: Colon and Rectum Cancer. National Cancer Institute. http://seer.cancer.gov/statfacts/html/colorect.html. 3.Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30. 4.Ludwig, J.A. and J.N. Weinstein, Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Nat Rev Cancer, 2005. 5(11): p. 845-856. 5.Newton, K.F., W. Newman, and J. Hill, Review of biomarkers in colorectal cancer. Colorectal Disease, 2012. 14(1): p. 3-17. 6.Wei, S.-C., et al., Preoperative Serum Placenta Growth Factor Level Is a Prognostic Biomarker in Colorectal Cancer. Diseases of the Colon &; Rectum, 2009. 52(9). 7.Ellington, A.A., et al., Antibody-based protein multiplex platforms: technical and operational challenges. Clinical chemistry, 2010. 56(2): p. 186-193. 8.Kingsmore, S.F., Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov, 2006. 5(4): p. 310-321. 9.MacBeath, G. and S.L. Schreiber, Printing Proteins as Microarrays for High-Throughput Function Determination. Science, 2000. 289(5485): p. 1760-1763. 10.Lynch, M., et al., Functional protein nanoarrays for biomarker profiling. PROTEOMICS, 2004. 4(6): p. 1695-1702. 11.Piner, R.D., et al., "Dip-Pen" Nanolithography. Science, 1999. 283(5402): p. 661-663. 12.Lee, K.-B., et al., Protein Nanoarrays Generated By Dip-Pen Nanolithography. Science, 2002. 295(5560): p. 1702-1705. 13.Endo, T., et al., Multiple Label-Free Detection of Antigen&;#8722;Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core&;#8722;Shell Structured Nanoparticle Layer Nanochip. Analytical Chemistry, 2006. 78(18): p. 6465-6475. 14.Lee, K.-B., et al., The Use of Nanoarrays for Highly Sensitive and Selective Detection of Human Immunodeficiency Virus Type 1 in Plasma. Nano Letters, 2004. 4(10): p. 1869-1872. 15.Axelrod, D., Total internal reflection fluorescence microscopy. Methods in cell biology, 1989. 30: p. 245-270. 16.Islam, M.S., et al., High sensitive detection of C-reactive protein by total internal reflection fluorescence microscopy on rapidly making nanoarray protein chip. Talanta, 2010. 81(4-5): p. 1402-1408. 17.Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902. 18: p. 269. 18.Kretschmann, E., Radiative decay of nonradiative surface plasmons excited by light. Z. Naturf., 1968. 23A: p. 2135-2136. 19.Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik A Hadrons and Nuclei, 1968. 216(4): p. 398-410. 20.Homola, J., Electromagnetic Theory of Surface Plasmons, in Surface Plasmon Resonance Based Sensors, J. Homola, Editor. 2006, Springer Berlin Heidelberg. p. 3-44. 21.Rothenhausler, B. and W. Knoll, Surface–plasmon microscopy. Nature, 1988. 332(6165): p. 615-617. 22.Leroy, L., E. Maillart, and T. Livache, Biological Applications of Surface Plasmon Resonance Imaging, in Optical Nano- and Microsystems for Bioanalytics, W. Fritzsche and J. Popp, Editors. 2012, Springer Berlin Heidelberg. p. 211-226. 23.Ladd, J., et al., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry, 2009. 393(4): p. 1157-1163. 24.Scarano, S., et al., Surface plasmon resonance imaging (SPRi)-based sensing: a new approach in signal sampling and management. Biosensors &; bioelectronics, 2010. 26(4): p. 1380-1385. 25.Chen, J., et al., Post-experimental denoising and background subtraction of surface plasmon resonance images for better quantification. Chemometrics and Intelligent Laboratory Systems, 2012. 114(0): p. 56-63. 26.Yu, X., D. Xu, and Q. Cheng, Label-free detection methods for protein microarrays. PROTEOMICS, 2006. 6(20): p. 5493-5503. 27.Huang, B., F. Yu, and R.N. Zare, Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective. Analytical Chemistry, 2007. 79(7): p. 2979-2983. 28.Su, Y.-D., et al., Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy. Optics Express, 2010. 18(19): p. 20125-20135. 29.Wang, W., et al., Mapping Single-Cell–Substrate Interactions by Surface Plasmon Resonance Microscopy. Langmuir, 2012. 28(37): p. 13373-13379. 30.Halpern, A.R., et al., Single-Nanoparticle Near-Infrared Surface Plasmon Resonance Microscopy for Real-Time Measurements of DNA Hybridization Adsorption. ACS Nano, 2013. 8(1): p. 1022-1030. 31.Wang, S., et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proceedings of the National Academy of Sciences, 2010. 107(37): p. 16028-16032. 32.Watanabe, K., et al., Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites. Biomedical Optics Express, 2012. 3(2): p. 354-359. 33.Kano, H. and W. Knoll, A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe. Optics Communications, 2000. 182(1–3): p. 11-15. 34.Watanabe, K., N. Horiguchi, and H. Kano, Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination. Applied Optics, 2007. 46(22): p. 4985-4990. 35.Zhan, Q., Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters, 2006. 31(11): p. 1726-1728. 36.Berguiga, L., et al., Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. Optics Express, 2011. 19(7): p. 6571-6586. 37.He, R.-Y., et al., Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy. Optics Express, 2010. 18(4): p. 3649-3659. 38.Moh, K.J., et al., Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Optics Express, 2008. 16(25): p. 20734-20741. 39.Watanabe, K., et al., Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers. Biomedical Optics Express, 2012. 3(9): p. 2012-2020. 40.Watanabe, K., et al., High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy. Applied Optics, 2010. 49(5): p. 887-891. 41.Sung, C.-H., et al. Dual-channel radially-polarized surface plasmon microscopy for simultaneous detection of fluorescence and linear scattering of nanospheres. 2010. 42.Berguiga, L., et al. High resolution surface plasmon imaging of nanoparticles. 2010. 43.Roland, T., et al., Scanning surface plasmon imaging of nanoparticles. Physical Review B, 2010. 81(23): p. 235419. 44.魏世忠, et al., 沾筆式奈米蝕刻術應用於區域電漿共振陣列結構之製造. 光學工程, 2012(118): p. 13-19. 45.Terakado, G., et al., High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons. Applied Optics, 2013. 52(14): p. 3324-3328. 46.Lindquist, N.C., et al., Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab on a Chip, 2009. 9(3): p. 382-387. 47.Shumaker-Parry, J.S. and C.T. Campbell, Quantitative Methods for Spatially Resolved Adsorption/Desorption Measurements in Real Time by Surface Plasmon Resonance Microscopy. Analytical Chemistry, 2004. 76(4): p. 907-917. 48.Wu, L., et al., Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 2010. 18(14): p. 14395-14400. 49.Silin, V., H. Weetall, and D.J. vanderah, SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs). Journal of Colloid and Interface Science, 1997. 185(1): p. 94-103. 50.Flavel, B.S., J.G. Shapter, and J.S. Quinton. Nanosphere lithography using thermal evaporation of gold. 2006. 51.Frederix, F., et al., Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. Journal of biochemical and biophysical methods, 2004. 58(1): p. 67-74. 52.Briand, E., et al., Building of an immunosensor: how can the composition and structure of the thiol attachment layer affect the immunosensor efficiency? Biosensors &; bioelectronics, 2006. 22(3): p. 440-448. 53.Lee, J.M., et al., Direct Immobilization of Protein G Variants with Various Numbers of Cysteine Residues on a Gold Surface. Analytical Chemistry, 2007. 79(7): p. 2680-2687. 54.Lin, C.-W., et al., AN ELLIPSOMETRIC STUDY ON THE DENSITY AND FUNCTIONALITY OF ANTIBODY LAYERS IMMOBILIZED BY A RANDOMLY COVALENT METHOD AND A PROTEIN A-ORIENTED METHOD. Biomedical Engineering: Applications, Basis and Communications, 2009. 21(05): p. 303-310. 55.Chang, C.-C., et al., Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified goldnanoparticles. Biosensors and Bioelectronics, 2013. 42(0): p. 119-123.
|