跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈺涵
研究生(外文):Yu-Han Huang
論文名稱:外側蒼白球到視丘下核的抑制性突觸傳導之神經調控
論文名稱(外文):Modulation of the inhibitory synaptic transmission from external globus pallidus to subthalamic nucleus
指導教授:郭鍾金
口試委員:湯志永楊雅晴
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:視丘下核外側蒼白球
外文關鍵詞:subthalamic nucleusglobus pallidus externa
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在大腦深層,基底核由許多不同的核區所組成,主要功能為人體自主運動的控制,並且在認知、行為、情感等方面上也扮演一重要的角色。若基底核發生病變,會導致人體運動以及認知上的障礙。視丘下核(subthalamic nucleus)是帕金森氏症腦部深層電刺激治療的主要刺激部位。其中,由外側蒼白球(globus pallidus externa)到視丘下核為抑制性的GABA神經傳導。此外,傳入視丘下核的神經傳導物質有glutamate、GABA、acetylcholine、dopamine以及serotonin。本研究的目的為探討這些神經傳導物質,是否會對於外側蒼白球到視丘下核的抑制性訊息傳導路徑產生不同的影響。因此實驗利用小鼠的腦切片,在視丘下核做whole-cell voltage clamp,記錄來自外側蒼白球誘發的抑制性後突觸電流。初步研究發現在視丘下核記錄到的抑制性後突觸電流為paired-pulse depression。此外,cholinergic agonist (carbachol)對此抑制性GABA電流的paired-pulse ratio (PPR)無顯著性的影響,但記錄到的電流均變小,對此GABA的突觸強度有抑制效果。而在dopaminergic agonist方面,記錄到電流的PPR均沒有顯著差異,但對其突觸強度的影響則有所不同,D1 agonist (A68930)對其有些微增強的作用、D2 agonist (sumauirole maleate)對其有抑制的作用,以及對D1與D2 receptor均可活化的非選擇性dopamine agonist (apamorphine)有較顯著的抑制作用。serotonin agonist (5-carboxamidotryptamin maleate)則對抑制性GABA電流的PPR以及突觸強度均沒有顯著的影響。

誌謝…………………………………………………………………………………….i
中文摘要………………………………………………………………………..…... ii
英文摘要………………………………………………………………………….....iii
第一章 導論………………………………………………………………….….…1
1.1 基底核
1.2 視丘下核的電生理性質
1.3 視丘下核的神經連結
1.4 視丘下核上的受體(receptor)
1.5 不同神經傳導物質在視丘下核的作用
1.6 視丘下核在生理以及疾病治療上扮演的角色
第二章 材料與方法…………………………………………………………..….13
2.1 腦切片的製備
2.2 玻璃電極的製備
2.3 壓片器的製備
2.4 細胞電生理紀錄以及電刺激
2.5 藥品
2.6 數據取得及分析
第三章 結果………………………………………………………………...…….17
3.1 GPe-STN GABAergic突觸電流
3.2 Carbachol對GPe-STN GABAergic eIPSC有抑制的作用
3.3 Muscarinic receptor與carbachol抑制GPe-STN突觸強度的作用有關
3.4 Nicotinic receptor與carbachol抑制GPe-STN突觸強度的作用沒有顯著的
相關
3.5 Carbachol對於GPe-STN spontaneous IPSCs frequency沒有顯著的影響
3.6 5-carboxamidotryptamine maleate (5-CT)對於GPe-STN synapses沒有顯著
的作用
3.7 Apomorphine對GPe-STN突觸電流有抑制的作用
3.8 D1 receptor的活化對GPe-STN突觸強度有稍微增強的作用
3.9 D2 receptor與dopamine抑制GPe-STN突觸強度的作用有關
第四章 討論………………………………………………………...……………22
4.1 Acetylcholine的調控功能
4.2 Serotonin的調控功能
4.3 Dopamine的調控功能
參考文獻………………………………………………………………...……...…...47


Albin, R., Young, A.B. &; Penney, J.B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci., 12, 366±375.

Ammari R, Bioulac B, Garcia L, Hammond C (2011) The subthalamic nucleus becomes a generator of bursts in the dopamine-depleted state. Its high frequency stimulation dramatically weakens transmission to the globus pallidus. Front Syst Neurosci., 5:43.

Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci.;20(21):7871-9.

Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, et al. (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron; 42:653–663.

Baufreton J, Garret M, Rivera A, de la Calle A, Gonon F, Dufy B, Bioulac B, Taupignon A. (2003) D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci.;23(3):816-25.

Baufreton J, Atherton JF, Surmeier DJ, Bevan MD. (2005)Enhancement of excitatory synaptic integration by GABAergic inhibition in the subthalamic nucleus. J Neurosci.;25(37):8505-17.

Baufreton J, Bevan MD. (2008) D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J Physiol.;586(8):2121-42.

Baufreton J, Zhu ZT, Garret M, Bioulac B, Johnson SW, Taupignon AI. (2005) Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J; 19:1771–1777.

Benabid, A.L., Koudsie, A., Benazzouz, A., Piallat, B., Krack, P., Limousin-Dowsey, P., Lebas, J.F. &; Pollak, P. (2001) Deep brain stimulation for Parkinson’s disease. Adv. Neurol., 86, 405–412.

Bergman H, Wichmann T, Karmon B, Delong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520.

Bernacer J, Prensa L, Gimenez-Amaya JM. (2007) Cholinergic interneurons are differentially distributed in the human striatum.PLoS One.;2(11):e1174.

Bevan MD, Bolam JP. (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci.;15(11):7105-20.

Bevan MD, Magill PJ, Hallworth NE, Bolam JP, Wilson CJ (2002) Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. J Neurophysiol 87: 1348-1362.

Bevan MD, Wilson CJ, Bolam JP, Magill PJ. (2000)Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. J Neurophysiol.;83(5):3169-72.

Beurrier C, Congar P, Bioulac B, Hammond C. (1999)Subthalamic Nucleus Neurons Switch from Single-Spike Activity to Burst-Firing Mode. J Neurosci.;19(2):599-609.

Blitz DM, Foster KA, Regehr WG. (2004) Short-term synaptic plasticity: a comparison of two synapses. Nat Rev Neurosci.;5(8):630-40.

Bohnen NI, Albin RL. (2011) The cholinergic system and Parkinson disease. Behav Brain Res.;221(2):564-73.

Bolam JP, Hanley JJ, Booth PA, Bevan MD. (2000) Synaptic organisation of the basal ganglia. Journal of Anatomy.; 196:527–542.

Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990). "Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat". Brain Res. 513 (1): 43–59.

Chang EH, Kotak VC, Sanes DH. (2003) Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J Neurophysiol.; 90(3):1479-88.
Charles R. Gerfen and J. Paul Bolam. (2010) The Neuroanatomical Organization of the Basal Ganglia. Handbook of Behavioral Neuroscience , vol. 20, pp. 3-28,

Clarke NP, Bolam JP. (1998) Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat. J Comp Neurol. Aug 3;397(3):403-20.

Cooper AJ, Stanford IM. (2001) Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology; 41:62–71.

Cragg S.J.; Baufreton J.; Xue Y.; Bolam J.P.; &; Bevan M.D. (2004). "Synaptic release of dopamine in the subthalamic nucleus". European Journal of Neuroscience 20 (7): 1788–1802.

Dalei Wang, Xiaoli Liu and Decai Qiao. (2012) Modulatory effect of subthalamic nucleus on the development of fatigue during exhausting exercise: An in vivo electrophysiological and microdialysis study in rats. Journal of Sports Science and Medicine 11, 286-293

Davie CA (2008). "A review of Parkinson''s disease". Br. Med. Bull. 86 (1): 109–27.

Dehorter N, Guigoni C, Lopez C, Hirsch J, Eusebio A, Ben-Ari Y, Hammond C. (2009) Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons. J Neurosci.;29(24):7776-87.

Delong MR and Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20-24.

Ding S, Li L, Zhou FM. (2013) Presynaptic serotonergic gating of the subthalamonigral glutamatergic projection. J Neurosci. Mar 13;33(11):4875-85.

Dittman, J.S., Regehr, W.G., (1996) Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J. Neurosci. 16, 1623–1633

Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ (2003) Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 60:601–605

Enrico Marani, Tjitske Heida, Egbert A. J. F. Lakke, Kamen G. Usunoff. (2008) The Subthalamic Nucleus Part I: Development, Cytology, Topography and Connections.

Feger J, Hammond C, Rouzaire-Dubois B. (1979) Pharmacological properties of acetylcholine-induced excitation of subthalamic nucleus neurones. Br J Pharmacol.; 65(3):511-5.

Feldberg W. (1945) Synthesis of acetylcholine by tissue of the central nervous system. J Physiol.;103(4):367–402.

Ferre S, O’Connor WT, Svenningsson P, Bjorklund L, Lindberg J, Tinner B, et al. (1996) Dopamine D1 receptor-mediated facilitation of GABAergic neurotransmission in the rat strioentopenduncular pathway and its modulation by adenosine A1 receptor-mediated mechanisms. Eur J Neurosci; 8:1545–1553.

Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151.

Flores G, Hernandez S, Rosales MG, Sierra A, Martines-Fong D, Flores-Hernandez J and Aceves J (1996) M3 muscarinic receptors mediate cholinergic excitation of the spontaneous activity of subthalamic neurons in the rat. Neurosci Lett 203:203-206.

Flores, G., Liang, J.J., Sierra, A., Martinez-Fong, D., Quirion, R., Aceves, J. &; Srivastava, L.K. (1999) Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography. Neuroscience, 91, 549-556.

Goldberg JA, Reynolds JN. (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience.; 198:27-43.

Guridi J, Obeso JA. (2001) The subthalamic nucleus, hemiballismus and Parkinson’s disease: reappraisal of a neurosurgical dogma. Brain;124:5–19.

Hallworth NE, Bevan MD. (2005) Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors. J Neurosci.; 25(27):6304-15.

Hassani OK, Feger J. (1999) Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-Fos study. Neuroscience.;92(2):533-43.

Hassani OK, Mouroux M, Feger J. (1996) Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience.;72(1):105-15.

Hauber W. (1998) Blockade of subthalamic dopamine D1 receptors elicits akinesia in rats. Neuroreport.;9(18):4115-8.

Heida T., Usunoff K.G., Marani E. (2007) Acetylcholine addition and electrical stimulation of dissociated neurons from an extended subthalamic area – A pilot study in the rat. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing. IFMBE Proceedings Volume 16 , pp 521-524

Heinz Steiner (Editor), Kuei Y. Tseng (Editor). (2010) Handbook of Basal Ganglia Structure and Function

Hernandez-Lopez S, Flores G, Rosales MG, Sierra A, Martinez-Fong D, Aceves J (1996) Muscarinic antagonists microinjected into the subthalamic nucleus decrease muscular rigidity in reserpinized rats. Neurosci Lett 213:157–160.

Himmelheber AM, Sarter M, Bruno JP. (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res Cogn Brain Res.;9(3):313-25.
Huupponen J, Molchanova SM, Lauri SE, Taira T. (2013) Ongoing Intrinsic Synchronous Activity is Required for the Functional Maturation of CA3-CA1 Glutamatergic Synapses. Cereb Cortex. Cereb Cortex.;23(11):2754-2764.

Kemp JM, Powell TP. (1970) The cortico–striate projection in the monkey. Brain.; 93:525–546.

Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y. (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson''s disease. Brain.;131(Pt 1):120-31.

Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308–319.

Kliem MA, Pare JF, Khan ZU, Wichmann T, Smith Y. (2010) Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci; 31:836–851.

Kreiss DS, Mastropietro CW, Rawji SS, Walters JR. (1997) The Response of Subthalamic Nucleus Neurons to Dopamine Receptor Stimulation in a Rodent Model of Parkinson’s Disease. The Journal of Neuroscience.

Kubota S, Rubin JE. (2011) NMDA-induced burst firing in a model subthalamic nucleus neuron. J Neurophysiol.;106(2):527-37.

Lavoie, B., Parent, A. (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. The Journal of Comparative Neurology 299, 1e16.

Lester DB, Rogers TD, Blaha CD (2010) Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:137–162.

Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134:359–374.

Nauta HJ, Cole M (1978). "Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat". J. Comp. Neurol. 180 (1): 1–16.

Navailles S, De Deurwaerdere P. (2012) Contribution of serotonergic transmission to the motor and cognitive effects of high-frequency stimulation of the subthalamic nucleus or levodopa in Parkinson''s disease. Mol Neurobiol.;45(1):173-85.

Ni Z, Gao D, Bouali-Benazzouz R, Benabid AL, Benazzouz A. (2001) Effect of microiontophoretic application of dopamine on subthalamic nucleus neuronal activity in normal rats and in rats with unilateral lesion of the nigrostriatal pathway. Eur J Neurosci.;14(2):373-81.

Nicholson, S.L., Brotchie, J.M. (2002) 5-Hydroxytryptamine and Parkinson’s disease e opportunities for novel therapeutics to reduce the problem of levodopa therapy. European Journal of Neurology 9, 1e6.
Norcross, K. &; Spehlmann, R. (1978) A quantitative analysis of the excitatory and depressant effects of dopamine on the Rring of caudatal neurons: electrophysiological support for the existence of two distinct dopaminesensitive receptors. Brain Res., 156, 168-174.

Pisani A, Bonsi P, Centonze D, Gubellini P, Bernardi G, Calabresi P. (2003) Targeting striatal cholinergic interneurons in Parkinson''s disease: focus on metabotropic glutamate receptors. Neuropharmacology.;45(1):45-56.

Platt B, Riedel G. (2011) The cholinergic system, EEG and sleep. Behav Brain Res.;221(2):499-504.

Poschel B, Wroblewska B, Heinemann U, Manahan-Vaughan D. (2005) The metabotropic glutamate receptor mGluR3 is critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats. Cereb Cortex.;15(9):1414-23.

Rav-Acha M, Bergman H, Yarom Y. (2008) Pre- and postsynaptic serotoninergic excitation of globus pallidus neurons. J Neurophysiol.;100(2):1053-66.

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson''s disease. Nat Rev Neurosci. 11(11):760-72.

Rosales MG, Flores G, Hernandez S, Martinez-Fong D, Aceves J (1994) Activation of subthalamic neurons produces NMDA receptor-mediated dendritic dopamine release in substantia nigra pars reticulata: a microdialysis study in the rat. Brain Research 645:335–337.

Schulz PE, Cook EP, Johnston D. (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci.;14(9):5325-37.

Sharott A, Magill PJ, Harnack D, Kupsch A, MeissnerW, Brown P. (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci ; 21:1413–1422.

Shen KZ, Johnson SW (2000) Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol 525(2):331–341.

Shen KZ, Johnson SW (2001) Presynaptic GABAB receptors inhibit synaptic inputs to rat subthalamic neurons. Neuroscience 108: 431-436.

Shen KZ, Johnson SW. (2003) Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus. J Physiol.;553(Pt 2):489-96.

Shen KZ, Johnson SW. (2008) 5-Hydroxytryptamine inhibits synaptic transmission in rat subthalamic nucleus neurons in vitro. Neuroscience.;151(4):1029-33.

Shin RM, Masuda M, Miura M, Sano H, Shirasawa T, Song WJ, et al. (2003) Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. J Neurosci; 23:11662–11672.

Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL. (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology.; 49(8):1228-34.

Stanford IM, Lacey MG. (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci.;16(23):7566-73.

Stocco, Andrea; Lebiere, Christian; Anderson, John R. (2010). "Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia''s Role in Cognitive Coordination". Psychological Review 117 (2): 541–74.

Somogyi P, Bolam JP, Smith AD (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure. J Comp Neurol 195:567–584.

Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG. (2001) Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci; 21:6430–6439.

Vizi SE, Ronai A, Harsing L Jr, Knoll J (1977) Inhibitory effect of dopamine on acetylcholine release from caudate nucleus. Pol J Pharmacol Pharm 29: 201–211.
Walters JR, Hu D, Itoga CA, Parr-Brownlie LC, Bergstrom DA. (2007) Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. Neuroscience; 144:762–776.

Wang JH, Kelly PT. (1996) Regulation of synaptic facilitation by post synaptic Ca2+/CaM pathways in hippocampal CA1 neurons. J. Neurophysiol. 76: 276–286,

Weinberger M, Dostrovsky JO. (2011) A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. Neuroreport.;22(4):151-6.

Welberg L. (2007) Neurological disorders: Stimulating side effects. Nature Reviews Neuroscience.; 8, 913

West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304.

Xiang Z, Prince DA. (2003) Heterogeneous actions of serotonin on interneurons in rat visual cortex. J Neurophysiol.;89(3):1278-87.

Zhu Z, Bartol M, Shen K, Johnson SW. (2002) Excitatory effects of dopamine on subthalamic nucleus neurons: in vitro study of rats pretreated with 6- hydroxydopamine and levodopa. Brain Res; 945:31–40.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top