(3.235.108.188) 您好!臺灣時間:2021/03/07 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張于庭
研究生(外文):Yu-Ting Chang
論文名稱:血管周邊細胞增生分化為肌肉纖維母細胞導致纖維化腎臟的紅血球生成素產生不足
論文名稱(外文):Transdifferentiation of Pericytes into Myofibroblasts is Responsible for the Inadequate EPO Production in Fibrotic Kidneys
指導教授:林水龍林水龍引用關係
口試委員:姜文智吳明修
口試日期:2014-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:92
中文關鍵詞:紅血球生成素慢性腎臟病過度甲基化肌肉纖維母細胞腎性貧血
外文關鍵詞:chronic kidney diseaseerythropoietinhypermethylationmyofibroblastrenal anemia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
幾乎所有的慢性腎臟病患都會產生貧血的現象。當健康的成人處於貧血的情況,血清中的紅血球生成素濃度會增加100到1000多倍以刺激造血;然而慢性腎衰竭病人血中的紅血球生成素卻不足以矯正貧血現象。我們在先前的研究證實,在腎臟纖維化的過程中,肌肉纖維母細胞主要的前驅細胞是血管周邊細胞。正常腎臟中的血管周邊細胞與血管內皮細胞共同擁有一基底膜,並具有合成基底膜、維持血管內皮細胞完整,與穩定血管的功能。利用Col1a1-GFPTg報導小鼠,我們發現血管周邊細胞與前人研究中所描述在腎臟中製造紅血球生成素的細胞具有類似的特徵,並表現許多與之相同的標幟蛋白。而在給予放血或缺氧刺激之後,血管周邊細胞能表現紅血球生成素。同時,我們也發現將血管周邊細胞的Hif2a剔除,會導致腎臟中的紅血球生成素表現降低。利用單側輸尿管結紮的動物疾病模式,我們發現在放血刺激前與刺激後,纖維化的腎臟比起對側控制組腎臟,其紅血球生成素表現有下降的趨勢。除此之外,當纖維化腎臟中的肌纖維母細胞受到放血刺激時,其製造的紅血球生成素,比起對側控制組腎臟當中的血管周邊細胞所製造的紅血球生成素,明顯較低。為了釐清紅血球生成素在血管周邊細胞轉分化為肌肉纖維母細胞時,其紅血球生成素表現降低的機制,我們分析了紅血球生成素基因的去氧核醣核酸甲基化修飾情形。我們確認了肌肉纖維母細胞的紅血球生成素基因,其啟動子與五端非轉譯區發生去氧核醣核酸過度甲基化的現象。我們也發現當給予5’-Azactiding以去除甲基化修飾後,腎臟中紅血球生成素的基因表現提升。因此我們的實驗結果支持:血管周邊細胞是腎臟臟中製造紅血球生成素的細胞;以及當血管周邊細胞轉分化為肌肉纖維母細胞,其紅血球生成素基因的啟動子與五端非轉譯區的過度甲基化,會導致在慢性腎臟病時,腎臟的紅血球生成素製造不足。

Anemia is present in almost all of the chronic kidney disease (CKD) patients. Serum erythropoietin (EPO) concentrations in healthy adults increase 100- to 1000-fold under anemia conditions to stimulate erythropoiesis, whereas EPO in CKD patients fail to response adequately to correct the anemia. Our previous studies shown that pericytes are the major progenitors of myofibroblasts during renal fibrosis. Using Col1a1-GFPTg reporter mice, we found that pericytes displayed similar characteristics and markers to renal EPO-producing cells (REPCs) described in literature, and produced EPO after phlebotomy or hypoxic stimulation. Also, we found that knockout of hypoxia-inducible factor 2 in pericytes led to decreased Epo expression in kidney. In animal model of unilateral ureteral obstruction (UUO), Epo expression was decreased in fibrotic UUO kidneys before and after phlebotomy when compared with contra-lateral kidneys (CLK). Besides, EPO induction in response to phlebotomy was inferior in UUO kidney myofibroblasts than that in CLK pericytes. To get an insight into the mechanisms responsible for the decreased Epo expression during pericyte-myofibroblast transition, we analyzed the DNA methylation modification of Epo gene. Hypermethylation of Epo promoter and 5’-UTR was confirmed in myofibroblasts. Demethylation by administration of 5’-azacytidine led to increased Epo expression in fibrotic kidneys. Hence our data support pericytes are the REPC and hypermethylation of Epo promoter and 5’-UTR during pericyte-myofibroblast transition is responsible for the inadequate EPO production in CKD.

口試委員會審定書 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures viii
List of Tables ix
Abbreviations x
Chapter 1 Introduction 1
1.1 Erythropoietin 1
1.1.1 The function of erythropoietin 1
1.1.2 The character of erythropoietin 1
1.1.3 The Regulation of erythropoietin 2
1.2 Renal Anemia 4
1.2.1 The causes and effects of renal anemia 5
1.2.2 Causes of inadequate erythropoietin production 6
1.2.3 Treatment of renal anemia 6
1.3 Pericyte in kidneys 7
1.3.1 Characteristics of pericytes 7
1.3.2 Pericytes and erythropoietin producing cells 8
1.4 Renal fibrosis 9
1.4.1 Chronic kidney disease and renal fibrosis 9
1.4.2 Pericytes transdifferentiate into myofibroblasts 10
1.4.3 Renal fibrosis and inadequate EPO production 11
1.5 DNA Methylation 11
1.5.1 Overview of DNA methylation 11
1.5.2 Mechanisms of DNA methylation 12
1.5.3 The relation between DNA Methylation, Epo gene and renal anemia 14
1.6 Purpose of Study 15
Chapter 2 Materials and Methods 17
2.1 Materials 17
2.1.1 Animals 17
2.1.2 Chemicals and Reagent 17
2.1.3 Buffer 23
2.1.4 Antibodies 25
2.1.5 Kits 27
2.1.6 Instruments 28
2.2 Methods 29
2.2.1 Animal model 29
2.2.2 Animal sample collection 30
2.2.3 Animal sample preparation 30
2.2.4 Immunofluorescence staining 31
2.2.5 Isolation of cells by fluorescence-activated cell sorting (FACS) 32
2.2.6 EPO inductions in isolated pericytes 34
2.2.7 ELISA for plasma EPO levels quantification 35
2.2.8 Kidney genomic DNA extraction 36
2.2.9 General PCR for confirming Hif2a knock out in kidney genomic DNA 36
2.2.10 Quantitative polymerase chain reaction (QPCR) 37
2.2.11 Methylation analysis 38
2.2.12 Statistical analyses 41
Chapter 3 Results 43
3.1 Pericytes are EPO-producing cells in kidneys. 43
3.2 EPO production was decreased during pericyte-myofibroblast transition. 44
3.3 Dnmt1 was up-regulated in myofibroblasts in fibrotic kidneys. 46
3.4 Epo gene is hypermethylated in fibrotic kidney myofibroblasts. 47
3.5 Administration of demethylating agent attenuated Epo methylation in fibrotic kidney myofibroblasts and increased EPO production in fibrotic kidney. 48
Chapter 4 Discussion 51
4.1 A more specific way to trace EPO producing cells is required. 51
4.2 Dnmt1 might be induced by TGFβ1 during pericyte-myofibroblast transition. 51
4.3 Epo expression was increased in fibrotic kidneys with 5’-Azacytidine treatment, but still minor compared to that of control kidneys. 52
4.4 5’-azacytidine did not specifically demethylate genes in pericytes and myofibroblasts in kidneys. 53
4.5 5’-Azacytidine as a treatment of renal anemia 55
4.6 Involvement of hypoxia-responsive element in inadequate EPO production during renal fibrosis 55
4.7 There might be models better than unilateral ureteral obstruction model for studying renal anemia in chronic kidney disease. 56
Chapter 5 Conclusion and Future prospect 58
Chapter 6 References 76
Appendix 91


1.Miescher, J.F. Ueber die Beziehungen zwischen Meereshoehe und Beschaffenheit des Blutes. Korrespbl Schweiz Arz 23, 809-830 (1893).
2.Nangaku, M. &; Eckardt, K.U. Pathogenesis of renal anemia. Semin Nephrol 26, 261-268 (2006).
3.Carnot, P. &; Deflandre, C. Sur l'' activite’ he’mopoie’tique du se’rum au cours de la re’ge’ne’ration du sang. C R Acad Sci Paris 143, 384-386 (1906).
4.Fandrey, J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286, R977-988 (2004).
5.Bonsdorff, E. &; Jalavisto, E. A humoral mechanism in anoxic erythrocytosis. Acta Physiologica Scandinavica 16, 150-170 (1948).
6.Erslev, A. Humoral regulation of red cell production. Blood 8, 349-357 (1953).
7.Yasuda, Y., et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. Journal of Biological Chemistry 273, 25381-25387 (1988).
8.Grasso, G., Sfacteria, A., Cerami, A. &; Brines, M. Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go? The Neuroscientist 10, 93-98 (2004).
9.Leist, M., et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239-242 (2004).
10.Marti, H.H. Erythropoietin and the hypoxic brain. Journal of Experimental Biology 207, 3233-3242 (2004).
11.Miura, Y., Miura, O., Ihle, J.N. &; Aoki, N. Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. Journal of Biological Chemistry 269, 29962-22996 (1994).
12.Silva, M., et al. Erythropoietin can induce the expression of bcl-xlthrough stat5 in erythropoietin-dependent progenitor cell lines. Journal of Biological Chemistry 274, 22165-22169 (1999).
13.Jelkmann, W. Regulation of erythropoietin production. J Physiol 589, 1251-1258 (2011).
14.McDonald, J.D., Lin, F.K. &; Goldwasser, E.G. Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Molecular and cellular biology 6, 842-848 (1986).
15.Shoemaker, C.B. &; Mitsock, L.D. Murine erythropoietin gene: cloning, expression, and human gene homology. . Molecular and Cellular Biology 6, 849-858. (1986).
16.Chou, C.F., Tohari, S., Brenner, S. &; Venkatesh, B. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104, 1498-1503 (2004 ).
17.Galson, D.L., Tan, C.C., Ratcliffe, P.J. &; Bunn, H.F. Comparison of the human and mouse erythropoietin genes shows extensive homology in the flanking regions. Blood 82, 3321-3326 (1993).
18.Bachmann, S., Le Hir, M. &; Eckardt, K.U. Co-localization of erythropoietin mRNA and ecto-5''-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. . Journal of Histochemistry &; Cytochemistry, 41, 335-341 (1993).
19.Maxwell, P.H., et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney international 44, 1149-1149. (1993).
20.Pan, X., et al. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 6, e25839 (2011).
21.Jelkmann, W. Erythropoietin: structure, control of production, and function. . Physiol Rev 72, 449-489. (1992).
22.Koury, S.T., Koury, M.J., Bondurant, M.C., Caro, J. &; Graber, S.E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74, 645-651. (1989).
23.Obara, N., et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111, 5223-5232 (2008).
24.Schofield, C.J. &; Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-354 (2004).
25.Bruick, R.K. &; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340. (2001).
26.Epstein, A.C., et al. C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. . Cell 107, 43-54. (2001).
27.Ivan, M., et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. . Science, 292, 464-468. (2001).
28.Jaakkola, P., et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. . Science, 292, 468-472. (2001).
29.Mahon, P.C., Hirota, K. &; Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. . Genes &; development, 15, 2675-2686. (2001).
30.McNeill, L., et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the β-carbon of asparagine-803. Biochem. J 367, 571-575. (2002).
31.Wenger, R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. . The FASEB journal, 16, 1151-1162 (2002).
32.Semenza, G., Dureza, R., Traystman, M., Gearhart, J. &; Antonarakis, S. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Molecular and Cellular Biology 10, 930-938 (1990).
33.Semenza, G.L., Nejfelt, M.K., Chi, S.M. &; Antonarakis, S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3''to the human erythropoietin gene. Proceedings of the National Academy of Sciences 88, 5680-5684 (1991).
34.Madan, A., Lin, C. &; Curtin, P.T. Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. . Blood 85, 2735-2741. (1995).
35.KO, J., Curtin, P.T. &; Madan, A. Regulation of human erythropoietin gene induction by upstream flanking sequences in transgenic mice. . British journal of haematology 103, 960-968. (1998).
36.Semenza, G.L. &; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. . Molecular and cellular biology 12, 5447 (1992).
37.Wang, G.L. &; Semenza, G.L. Purification and characterization of hypoxia-inducible factor 1. . Journal of Biological Chemistry, 270, 1230-1237. (1995).
38.Warnecke, C., et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. . The FASEB journal 18, 1462-1464 (2004).
39.Gruber, M., et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A 104, 2301-2306 (2007).
40.Kapitsinou, P.P., et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039-3048 (2010).
41.Paliege, A., et al. Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int 77, 312-318 (2010).
42.Astor, B.C., Muntner, P., Levin, A., Eustace, J.A. &; Coresh, J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Archives of internal medicine 162, 162(112), 1401-1408. (2002).
43.McClellan, W., et al. The prevalence of anemia in patients with chronic kidney disease. Current Medical Research and OpinionR 20, 1501-1510 (2004).
44.Nurko, S. Anemia in chronic kidney disease: causes, diagnosis, treatment. Cleveland Clinic journal of medicine 73, 289-297 (2006).
45.Erslev, A., Caro, J., Miller, O. &; Silver, R. Plasma erythropoietin in health and disease. Annals of Clinical &; Laboratory Science 10, 250-257 (1980).
46.Raine, A. Hypertension, blood viscosity, and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. The Lancet 331, 97-100 (1988).
47.Erslev, A.J. &; Besarab, A. Erythropoietin in the pathogenesis and treatment of the anemia of chronic renal failure. Kidney international 51, 622-630 (1997).
48.Levin, A., Singer, J., Thompson, C.R., Ross, H. &; Lewis, M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. American Journal of Kidney Diseases 27, 347-354 (1996).
49.Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Journal of the American Society of Nephrology 17, 17-25 (2006).
50.Mimura, I. &; Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nature Reviews Nephrology 6, 667-678 (2010).
51.Nangaku, M., Rosenberger, C., Heyman, S.N. &; Eckardt, K.U. Regulation of hypoxia&;#8208;inducible factor in kidney disease. Clinical and Experimental Pharmacology and Physiology 40, 148-157 (2013).
52.Maxwell, P.H., Ferguson, D.J., Nicholls, L.G., Johnson, M.H. &; Ratcliffe, P.J. The interstitial response to renal injury: fibroblast-like cells show phenotypic changes and have reduced potential for erythropoietin gene expression. Kidney international 52, 715-724 (1997).
53.Brookhart, M.A., et al. The effect of altitude on dosing and response to erythropoietin in ESRD. J Am Soc Nephrol 19, 1389-1395 (2008).
54.Bernhardt, W.M., et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 21, 2151-2156 (2010).
55.Jacobs, K., et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. (1985).
56.Lin, F.-K., et al. Cloning and expression of the human erythropoietin gene. Proceedings of the National Academy of Sciences 82, 7580-7584 (1985).
57.Eschbach, J.W., Egrie, J.C., Downing, M.R., Browne, J.K. &; Adamson, J.W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. New England Journal of Medicine 316, 73-78 (1987).
58.Besarab, A., et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. New England Journal of Medicine 339, 584-590 (1998).
59.Singh, A.K., et al. Correction of anemia with epoetin alfa in chronic kidney disease. New England Journal of Medicine 355, 2085-2098 (2006).
60.Sato, Y. &; Yanagita, M. Renal anemia: from incurable to curable. American Journal of Physiology-Renal Physiology 305, F1239-F1248 (2013).
61.Humphreys, B.D., et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176, 85-97 (2010).
62.Armulik, A., Abramsson, A. &; Betsholtz, C. Endothelial/pericyte interactions. Circulation research 97, 512-523 (2005).
63.Kida, Y. &; Duffield, J.S. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 38, 467-473 (2011).
64.Lindahl, P., Johansson, B.R., Leveen, P. &; Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242-245 (1997).
65.Lin, S.-L., et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. The American journal of pathology 178, 911-923 (2011).
66.Lin, S.L., Kisseleva, T., Brenner, D.A. &; Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173, 1617-1627 (2008).
67.Rojas, A., Chang, F.-C., Lin, S.-L. &; Duffield, J.S. The role played by perivascular cells in kidney interstitial injury. Clinical nephrology 77, 400-408 (2012).
68.Asada, N., et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. The Journal of clinical investigation 121, 3981-3990 (2011).
69.Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney international 69, 213-217 (2006).
70.Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7, 684-696 (2011).
71.Chang, F.C., Chou, Y.H., Chen, Y.T. &; Lin, S.L. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc 111, 589-598 (2012).
72.Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. The Journal of pathology 200, 500-503 (2003).
73.Hinz, B. Formation and function of the myofibroblast during tissue repair. Journal of Investigative Dermatology 127, 526-537 (2007).
74.Meran, S. &; Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92, 158-167 (2011).
75.Bucala, R. Circulating fibrocytes: cellular basis for NSF. Journal of the American College of Radiology 5, 36-39 (2008).
76.Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M. &; Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. Journal of the American Society of Nephrology 19, 2282-2287 (2008).
77.Kriz, W., Kaissling, B. &; Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? The Journal of clinical investigation 121, 468-474 (2011).
78.Iwano, M., et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. Journal of Clinical Investigation 110, 341-350 (2002).
79.Kalluri, R. &; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112, 1776-1784 (2003).
80.Zeisberg, M. &; Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. Journal of Molecular Medicine 82, 175-181 (2004).
81.Zhu, C. &; Mertens, P.R. Epithelial-mesenchymal transition to be or not to be? Is the answer yes and no at the same time? Int Urol Nephrol 42, 843-846 (2010).
82.Egger, G., Liang, G., Aparicio, A. &; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004).
83.Portela, A. &; Esteller, M. Epigenetic modifications and human disease. Nature biotechnology 28, 1057-1068 (2010).
84.Cooney, C.A., Dave, A.A. &; Wolff, G.L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. The Journal of nutrition 132, 2393S-2400S (2002).
85.Robertson, K.D. DNA methylation and human disease. Nature Reviews Genetics 6, 597-610 (2005).
86.Krishnan, V. &; Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894-902 (2008).
87.Dwivedi, R.S., Herman, J.G., McCaffrey, T.A. &; Raj, D.S. Beyond genetics: epigenetic code in chronic kidney disease. Kidney international 79, 23-32 (2010).
88.Barres, R. &; Zierath, J.R. DNA methylation in metabolic disorders. The American journal of clinical nutrition 93, 897S-900S (2011).
89.Razin, A. &; Riggs, A.D. DNA methylation and gene function. Science 210, 604-610 (1980).
90.Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484-492 (2012).
91.Gardiner-Garden, M. &; Frommer, M. CpG islands in vertebrate genomes. Journal of molecular biology 196, 261-282 (1987).
92.Illingworth, R.S. &; Bird, A.P. CpG islands--''a rough guide''. FEBS Lett 583, 1713-1720 (2009).
93.Ndlovu, M.N., Denis, H. &; Fuks, F. Exposing the DNA methylome iceberg. Trends Biochem Sci 36, 381-387 (2011).
94.Herman, J.G. &; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine 349, 2042-2054 (2003).
95.Baylin, S.B. DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology 2, S4-S11 (2005).
96.Deaton, A.M. &; Bird, A. CpG islands and the regulation of transcription. Genes Dev 25, 1010-1022 (2011).
97.Jones, P.L., et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature genetics 19, 187-191 (1998).
98.Nan, X., et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389 (1998).
99.Klose, R.J. &; Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences 31, 89-97 (2006).
100.Pradhan, S., Bacolla, A., Wells, R.D. &; Roberts, R.J. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. Journal of Biological Chemistry 274, 33002-33010 (1999).
101.Hermann, A., Goyal, R. &; Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry 279, 48350-48359 (2004).
102.Okano, M., Bell, D.W., Haber, D.A. &; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999).
103.Gowher, H., et al. De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44, 9899-9904 (2005).
104.Jeltsch, A. On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 1, 63-66 (2006).
105.Fatemi, M., Hermann, A., Gowher, H. &; Jeltsch, A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. European Journal of Biochemistry 269, 4981-4984 (2002).
106.Rhee, I., et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003-1007 (2000).
107.Leu, Y.-W., et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer research 63, 6110-6115 (2003).
108.Jones, P.A. &; Liang, G. Rethinking how DNA methylation patterns are maintained. Nature Reviews Genetics 10, 805-811 (2009).
109.Yin, H. &; Blanchard, K.L. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. . Blood 95, 111-119. (2000).
110.Rossler, J., et al. Hypoxia-induced erythropoietin expression in human neuroblastoma requires a methylation free HIF-1 binding site. J Cell Biochem 93, 153-161 (2004).
111.Steinmann, K., Richter, A.M. &; Dammann, R.H. Epigenetic silencing of erythropoietin in human cancers. Genes Cancer 2, 65-73 (2011).
112.Sanders, Y.Y., et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. American journal of respiratory cell and molecular biology 39, 610-618 (2008).
113.Mann, J., et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death &; Differentiation 14, 275-285 (2006).
114.Bechtel, W., et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16, 544-550 (2010).
115.Desmouliere, A., Geinoz, A., Gabbiani, F. &; Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of cell biology 122, 103-111 (1993).
116.Branton, M.H. &; Kopp, J.B. TGF-β and fibrosis. Microbes and infection 1, 1349-1365 (1999).
117.Gressner, A.M., Weiskirchen, R., Breitkopf, K. &; Dooley, S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 7, d793-807 (2002).
118.Leask, A. &; Abraham, D.J. TGF-β signaling and the fibrotic response. The FASEB Journal 18, 816-827 (2004).
119.Koesters, R., et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. The American journal of pathology 177, 632-643 (2010).
120.Hagemann, S., Heil, O., Lyko, F. &; Brueckner, B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One 6, e17388 (2011).
121.Lee-Huang, S., et al. The human erythropoietin-encoding gene contains a CAAT box, TATA boxes and other transcriptional regulatory elements in its 5''flanking region. Gene 128, 227-236 (1993).
122.Imagawa, S., Yamamoto, M. &; Miura, Y. Negative regulation of the erythropoietin gene expression by the GATA transcription factors. Blood 89, 1430-1439 (1997).
123.La Ferla, K., Reimann, C., Jelkmann, W. &; Hellwig-Burgel, T. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-κB. The FASEB Journal 16, 1811-1813 (2002).
124.Di Ruscio, A., et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature (2013).
125.Ryan, H.E., Lo, J. &; Johnson, R.S. HIF&;#8208;1α is required for solid tumor formation and embryonic vascularization. The EMBO journal 17, 3005-3015 (1998).
126.Ryan, H.E., et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Research 60, 4010-4015 (2000).
127.Mabjeesh, N. &; Amir, S. Hypoxia-inducible factor (HIF) in human tumorigenesis. (2007).
128.Rankin, E. &; Giaccia, A. The role of hypoxia-inducible factors in tumorigenesis. Cell Death &; Differentiation 15, 678-685 (2008).
129.Storti, F., et al. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression. Haematologica 99, e45-e48 (2014).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔