|
1.Miescher, J.F. Ueber die Beziehungen zwischen Meereshoehe und Beschaffenheit des Blutes. Korrespbl Schweiz Arz 23, 809-830 (1893). 2.Nangaku, M. &; Eckardt, K.U. Pathogenesis of renal anemia. Semin Nephrol 26, 261-268 (2006). 3.Carnot, P. &; Deflandre, C. Sur l'' activite’ he’mopoie’tique du se’rum au cours de la re’ge’ne’ration du sang. C R Acad Sci Paris 143, 384-386 (1906). 4.Fandrey, J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286, R977-988 (2004). 5.Bonsdorff, E. &; Jalavisto, E. A humoral mechanism in anoxic erythrocytosis. Acta Physiologica Scandinavica 16, 150-170 (1948). 6.Erslev, A. Humoral regulation of red cell production. Blood 8, 349-357 (1953). 7.Yasuda, Y., et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. Journal of Biological Chemistry 273, 25381-25387 (1988). 8.Grasso, G., Sfacteria, A., Cerami, A. &; Brines, M. Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go? The Neuroscientist 10, 93-98 (2004). 9.Leist, M., et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239-242 (2004). 10.Marti, H.H. Erythropoietin and the hypoxic brain. Journal of Experimental Biology 207, 3233-3242 (2004). 11.Miura, Y., Miura, O., Ihle, J.N. &; Aoki, N. Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. Journal of Biological Chemistry 269, 29962-22996 (1994). 12.Silva, M., et al. Erythropoietin can induce the expression of bcl-xlthrough stat5 in erythropoietin-dependent progenitor cell lines. Journal of Biological Chemistry 274, 22165-22169 (1999). 13.Jelkmann, W. Regulation of erythropoietin production. J Physiol 589, 1251-1258 (2011). 14.McDonald, J.D., Lin, F.K. &; Goldwasser, E.G. Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Molecular and cellular biology 6, 842-848 (1986). 15.Shoemaker, C.B. &; Mitsock, L.D. Murine erythropoietin gene: cloning, expression, and human gene homology. . Molecular and Cellular Biology 6, 849-858. (1986). 16.Chou, C.F., Tohari, S., Brenner, S. &; Venkatesh, B. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104, 1498-1503 (2004 ). 17.Galson, D.L., Tan, C.C., Ratcliffe, P.J. &; Bunn, H.F. Comparison of the human and mouse erythropoietin genes shows extensive homology in the flanking regions. Blood 82, 3321-3326 (1993). 18.Bachmann, S., Le Hir, M. &; Eckardt, K.U. Co-localization of erythropoietin mRNA and ecto-5''-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. . Journal of Histochemistry &; Cytochemistry, 41, 335-341 (1993). 19.Maxwell, P.H., et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney international 44, 1149-1149. (1993). 20.Pan, X., et al. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 6, e25839 (2011). 21.Jelkmann, W. Erythropoietin: structure, control of production, and function. . Physiol Rev 72, 449-489. (1992). 22.Koury, S.T., Koury, M.J., Bondurant, M.C., Caro, J. &; Graber, S.E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74, 645-651. (1989). 23.Obara, N., et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111, 5223-5232 (2008). 24.Schofield, C.J. &; Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5, 343-354 (2004). 25.Bruick, R.K. &; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340. (2001). 26.Epstein, A.C., et al. C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. . Cell 107, 43-54. (2001). 27.Ivan, M., et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. . Science, 292, 464-468. (2001). 28.Jaakkola, P., et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. . Science, 292, 468-472. (2001). 29.Mahon, P.C., Hirota, K. &; Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. . Genes &; development, 15, 2675-2686. (2001). 30.McNeill, L., et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the β-carbon of asparagine-803. Biochem. J 367, 571-575. (2002). 31.Wenger, R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. . The FASEB journal, 16, 1151-1162 (2002). 32.Semenza, G., Dureza, R., Traystman, M., Gearhart, J. &; Antonarakis, S. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Molecular and Cellular Biology 10, 930-938 (1990). 33.Semenza, G.L., Nejfelt, M.K., Chi, S.M. &; Antonarakis, S.E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3''to the human erythropoietin gene. Proceedings of the National Academy of Sciences 88, 5680-5684 (1991). 34.Madan, A., Lin, C. &; Curtin, P.T. Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. . Blood 85, 2735-2741. (1995). 35.KO, J., Curtin, P.T. &; Madan, A. Regulation of human erythropoietin gene induction by upstream flanking sequences in transgenic mice. . British journal of haematology 103, 960-968. (1998). 36.Semenza, G.L. &; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. . Molecular and cellular biology 12, 5447 (1992). 37.Wang, G.L. &; Semenza, G.L. Purification and characterization of hypoxia-inducible factor 1. . Journal of Biological Chemistry, 270, 1230-1237. (1995). 38.Warnecke, C., et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. . The FASEB journal 18, 1462-1464 (2004). 39.Gruber, M., et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A 104, 2301-2306 (2007). 40.Kapitsinou, P.P., et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039-3048 (2010). 41.Paliege, A., et al. Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int 77, 312-318 (2010). 42.Astor, B.C., Muntner, P., Levin, A., Eustace, J.A. &; Coresh, J. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Archives of internal medicine 162, 162(112), 1401-1408. (2002). 43.McClellan, W., et al. The prevalence of anemia in patients with chronic kidney disease. Current Medical Research and OpinionR 20, 1501-1510 (2004). 44.Nurko, S. Anemia in chronic kidney disease: causes, diagnosis, treatment. Cleveland Clinic journal of medicine 73, 289-297 (2006). 45.Erslev, A., Caro, J., Miller, O. &; Silver, R. Plasma erythropoietin in health and disease. Annals of Clinical &; Laboratory Science 10, 250-257 (1980). 46.Raine, A. Hypertension, blood viscosity, and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. The Lancet 331, 97-100 (1988). 47.Erslev, A.J. &; Besarab, A. Erythropoietin in the pathogenesis and treatment of the anemia of chronic renal failure. Kidney international 51, 622-630 (1997). 48.Levin, A., Singer, J., Thompson, C.R., Ross, H. &; Lewis, M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. American Journal of Kidney Diseases 27, 347-354 (1996). 49.Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Journal of the American Society of Nephrology 17, 17-25 (2006). 50.Mimura, I. &; Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nature Reviews Nephrology 6, 667-678 (2010). 51.Nangaku, M., Rosenberger, C., Heyman, S.N. &; Eckardt, K.U. Regulation of hypoxia&;#8208;inducible factor in kidney disease. Clinical and Experimental Pharmacology and Physiology 40, 148-157 (2013). 52.Maxwell, P.H., Ferguson, D.J., Nicholls, L.G., Johnson, M.H. &; Ratcliffe, P.J. The interstitial response to renal injury: fibroblast-like cells show phenotypic changes and have reduced potential for erythropoietin gene expression. Kidney international 52, 715-724 (1997). 53.Brookhart, M.A., et al. The effect of altitude on dosing and response to erythropoietin in ESRD. J Am Soc Nephrol 19, 1389-1395 (2008). 54.Bernhardt, W.M., et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 21, 2151-2156 (2010). 55.Jacobs, K., et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. (1985). 56.Lin, F.-K., et al. Cloning and expression of the human erythropoietin gene. Proceedings of the National Academy of Sciences 82, 7580-7584 (1985). 57.Eschbach, J.W., Egrie, J.C., Downing, M.R., Browne, J.K. &; Adamson, J.W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. New England Journal of Medicine 316, 73-78 (1987). 58.Besarab, A., et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. New England Journal of Medicine 339, 584-590 (1998). 59.Singh, A.K., et al. Correction of anemia with epoetin alfa in chronic kidney disease. New England Journal of Medicine 355, 2085-2098 (2006). 60.Sato, Y. &; Yanagita, M. Renal anemia: from incurable to curable. American Journal of Physiology-Renal Physiology 305, F1239-F1248 (2013). 61.Humphreys, B.D., et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176, 85-97 (2010). 62.Armulik, A., Abramsson, A. &; Betsholtz, C. Endothelial/pericyte interactions. Circulation research 97, 512-523 (2005). 63.Kida, Y. &; Duffield, J.S. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 38, 467-473 (2011). 64.Lindahl, P., Johansson, B.R., Leveen, P. &; Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242-245 (1997). 65.Lin, S.-L., et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. The American journal of pathology 178, 911-923 (2011). 66.Lin, S.L., Kisseleva, T., Brenner, D.A. &; Duffield, J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173, 1617-1627 (2008). 67.Rojas, A., Chang, F.-C., Lin, S.-L. &; Duffield, J.S. The role played by perivascular cells in kidney interstitial injury. Clinical nephrology 77, 400-408 (2012). 68.Asada, N., et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. The Journal of clinical investigation 121, 3981-3990 (2011). 69.Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney international 69, 213-217 (2006). 70.Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7, 684-696 (2011). 71.Chang, F.C., Chou, Y.H., Chen, Y.T. &; Lin, S.L. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc 111, 589-598 (2012). 72.Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. The Journal of pathology 200, 500-503 (2003). 73.Hinz, B. Formation and function of the myofibroblast during tissue repair. Journal of Investigative Dermatology 127, 526-537 (2007). 74.Meran, S. &; Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92, 158-167 (2011). 75.Bucala, R. Circulating fibrocytes: cellular basis for NSF. Journal of the American College of Radiology 5, 36-39 (2008). 76.Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M. &; Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. Journal of the American Society of Nephrology 19, 2282-2287 (2008). 77.Kriz, W., Kaissling, B. &; Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? The Journal of clinical investigation 121, 468-474 (2011). 78.Iwano, M., et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. Journal of Clinical Investigation 110, 341-350 (2002). 79.Kalluri, R. &; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112, 1776-1784 (2003). 80.Zeisberg, M. &; Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. Journal of Molecular Medicine 82, 175-181 (2004). 81.Zhu, C. &; Mertens, P.R. Epithelial-mesenchymal transition to be or not to be? Is the answer yes and no at the same time? Int Urol Nephrol 42, 843-846 (2010). 82.Egger, G., Liang, G., Aparicio, A. &; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004). 83.Portela, A. &; Esteller, M. Epigenetic modifications and human disease. Nature biotechnology 28, 1057-1068 (2010). 84.Cooney, C.A., Dave, A.A. &; Wolff, G.L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. The Journal of nutrition 132, 2393S-2400S (2002). 85.Robertson, K.D. DNA methylation and human disease. Nature Reviews Genetics 6, 597-610 (2005). 86.Krishnan, V. &; Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894-902 (2008). 87.Dwivedi, R.S., Herman, J.G., McCaffrey, T.A. &; Raj, D.S. Beyond genetics: epigenetic code in chronic kidney disease. Kidney international 79, 23-32 (2010). 88.Barres, R. &; Zierath, J.R. DNA methylation in metabolic disorders. The American journal of clinical nutrition 93, 897S-900S (2011). 89.Razin, A. &; Riggs, A.D. DNA methylation and gene function. Science 210, 604-610 (1980). 90.Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484-492 (2012). 91.Gardiner-Garden, M. &; Frommer, M. CpG islands in vertebrate genomes. Journal of molecular biology 196, 261-282 (1987). 92.Illingworth, R.S. &; Bird, A.P. CpG islands--''a rough guide''. FEBS Lett 583, 1713-1720 (2009). 93.Ndlovu, M.N., Denis, H. &; Fuks, F. Exposing the DNA methylome iceberg. Trends Biochem Sci 36, 381-387 (2011). 94.Herman, J.G. &; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine 349, 2042-2054 (2003). 95.Baylin, S.B. DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology 2, S4-S11 (2005). 96.Deaton, A.M. &; Bird, A. CpG islands and the regulation of transcription. Genes Dev 25, 1010-1022 (2011). 97.Jones, P.L., et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature genetics 19, 187-191 (1998). 98.Nan, X., et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389 (1998). 99.Klose, R.J. &; Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences 31, 89-97 (2006). 100.Pradhan, S., Bacolla, A., Wells, R.D. &; Roberts, R.J. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. Journal of Biological Chemistry 274, 33002-33010 (1999). 101.Hermann, A., Goyal, R. &; Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry 279, 48350-48359 (2004). 102.Okano, M., Bell, D.W., Haber, D.A. &; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999). 103.Gowher, H., et al. De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44, 9899-9904 (2005). 104.Jeltsch, A. On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme. Epigenetics 1, 63-66 (2006). 105.Fatemi, M., Hermann, A., Gowher, H. &; Jeltsch, A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. European Journal of Biochemistry 269, 4981-4984 (2002). 106.Rhee, I., et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003-1007 (2000). 107.Leu, Y.-W., et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer research 63, 6110-6115 (2003). 108.Jones, P.A. &; Liang, G. Rethinking how DNA methylation patterns are maintained. Nature Reviews Genetics 10, 805-811 (2009). 109.Yin, H. &; Blanchard, K.L. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. . Blood 95, 111-119. (2000). 110.Rossler, J., et al. Hypoxia-induced erythropoietin expression in human neuroblastoma requires a methylation free HIF-1 binding site. J Cell Biochem 93, 153-161 (2004). 111.Steinmann, K., Richter, A.M. &; Dammann, R.H. Epigenetic silencing of erythropoietin in human cancers. Genes Cancer 2, 65-73 (2011). 112.Sanders, Y.Y., et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. American journal of respiratory cell and molecular biology 39, 610-618 (2008). 113.Mann, J., et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death &; Differentiation 14, 275-285 (2006). 114.Bechtel, W., et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16, 544-550 (2010). 115.Desmouliere, A., Geinoz, A., Gabbiani, F. &; Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of cell biology 122, 103-111 (1993). 116.Branton, M.H. &; Kopp, J.B. TGF-β and fibrosis. Microbes and infection 1, 1349-1365 (1999). 117.Gressner, A.M., Weiskirchen, R., Breitkopf, K. &; Dooley, S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 7, d793-807 (2002). 118.Leask, A. &; Abraham, D.J. TGF-β signaling and the fibrotic response. The FASEB Journal 18, 816-827 (2004). 119.Koesters, R., et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. The American journal of pathology 177, 632-643 (2010). 120.Hagemann, S., Heil, O., Lyko, F. &; Brueckner, B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One 6, e17388 (2011). 121.Lee-Huang, S., et al. The human erythropoietin-encoding gene contains a CAAT box, TATA boxes and other transcriptional regulatory elements in its 5''flanking region. Gene 128, 227-236 (1993). 122.Imagawa, S., Yamamoto, M. &; Miura, Y. Negative regulation of the erythropoietin gene expression by the GATA transcription factors. Blood 89, 1430-1439 (1997). 123.La Ferla, K., Reimann, C., Jelkmann, W. &; Hellwig-Burgel, T. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-κB. The FASEB Journal 16, 1811-1813 (2002). 124.Di Ruscio, A., et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature (2013). 125.Ryan, H.E., Lo, J. &; Johnson, R.S. HIF&;#8208;1α is required for solid tumor formation and embryonic vascularization. The EMBO journal 17, 3005-3015 (1998). 126.Ryan, H.E., et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Research 60, 4010-4015 (2000). 127.Mabjeesh, N. &; Amir, S. Hypoxia-inducible factor (HIF) in human tumorigenesis. (2007). 128.Rankin, E. &; Giaccia, A. The role of hypoxia-inducible factors in tumorigenesis. Cell Death &; Differentiation 15, 678-685 (2008). 129.Storti, F., et al. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression. Haematologica 99, e45-e48 (2014).
|