跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉修志
研究生(外文):Hsiu-Chih Yeh
論文名稱:具有光子晶體結構之隱形斗篷
論文名稱(外文):Invisibility cloak with photonic crystals
指導教授:黃鼎偉
口試委員:黃建璋邱奕鵬
口試日期:2014-01-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:79
中文關鍵詞:光子晶體隱型斗篷有限元素法
外文關鍵詞:photonic crystalsinvisibility cloakFEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉換光學已被理論地證實可用來使物體隱形不被電磁場所偵測,但
是所計算出的隱形斗篷材料的結構參數是非均勻、非等向性甚至在邊
界處會出現極值。為了實現隱形斗篷,簡化的結構參數是必要的,然
而簡化參數意味著隱形效能的降低。針對二維圓柱形的隱形斗篷,在
過去文獻中已提出多種結構參數,這些參數的均勻性或等向性取決於
對空間的關係,這個關係決定了被實現的可行性。比較這些已提出的
結構參數,隱形效能和可被實現的可能性是很難兼顧的。
本篇論文設計出一個操作在可見光波段並同時兼顧隱形效能和
可被實現的可能性之隱形斗篷。藉由考慮在邊界處的阻抗匹配提出
一組簡單的簡化參數,並在隱形斗篷內部加上光子晶體結構來減少
能量穿透進入隱形的區域。在研究中,模擬使用套裝軟體COMSOL
MutiphysicsR 的有限元素法解馬克思威爾方程式,計算隱形斗篷在TE
波入射所產生的散射場分佈來評估隱形的效能。與文獻中已提出的結
構參數比較中,在近場及遠場條件下分別針對正向散射、反向散射以
及各個方向的散射做了一系列的比較與討論。模擬比較的結果指出我
們的設計在簡單的結構參數下可以達到很好的隱形效果,證實了在可
見光波段可以同時兼顧隱形效能和可被實現的可能性。


Transformation optics has shown taht the ability to cloak an object from
incident electromagnetic radiation is theoretically possible. However, the
constitutive parameters dictated by the theory are inhomogeneous, anisotropic,
and, in some instances, singular at various locations. In order for a cloak to
be practically realized, simplified parameter sets are required. However, the
simplified parameters result in a degradation in the cloaking function. Constitutive
parameters for simplified two-dimensional cylindrical cloaks have been
developed and are divided into two categories based on the spatial dependence
which represnets the feasibility of practical implementation. Comparing the
proposed simplified parameter in the literature, there is a tradeoff between the
performance and the possibility for implementation.
In this thesis, we design a simplified invisibility cloak operating in the
visible light spectrum giving consideration to both the performance and the
possibility for implementation. The design is a combinaiton of the simplified
parameter by considering impedance match and the photonic crystal structure.
During the course of this study, it was noted that all cloak simulations
are performed using finite element method (FEM) based numerical methods.
In the comparisons with the proposed parameter under the designed PC structure,
we compare forward scattering, backward scattering, and scattering in
all directions with far field and near field condition respectively. Simulation
results illustrate that our design takes into account both the performance and
the possibility for implementation in practical in the visible light spectrum.

誌謝i
中文摘要ii
Abstract iii
Contents iv
List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Invisibility Cloak Theory 8
2.1 Transformation Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Space Invariance Of Maxwell''s Equation . . . . . . . . . . . . . 11
2.1.2 Computation of Material Characteristic . . . . . . . . . . . . . . 11
2.1.3 Control of Electromagnetic Field . . . . . . . . . . . . . . . . . . 13
2.1.4 Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Transformation Between Cartesian and Polar Coordinates . . . . 16
2.2 Infinitely Long Cylindrical Electromagnetic Cloak . . . . . . . . . . . . 17
2.3 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Implementation of The Cloak . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Simplified Parameter 27
3.1 Simplified Constraint Equation . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Simplified Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Constraint Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Improved Simplified Parameter . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Designed Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Impedance Match . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Transmitted energy in the hidden region . . . . . . . . . . . . . . 44
3.6 Designed Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 Comparisons and Analysis 59
4.1 Forward Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Backward Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Scattering in all directions . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 Conclusions 70
References 72

[1] N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties
of partially resonant composites,” Phys. Rev. B, vol. 49, pp. 8479–8482, Mar
1994.
[2] G. W. Milton and N.-A. P. Nicorovici, “On the cloaking effects associated with
anomalous localized resonance,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, vol. 462, no. 2074, pp. 3027–3059, 2006.
[3] N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic
cloaking of two-dimensional polarizable discrete systems by anomalous resonance,”
Opt. Express, vol. 15, pp. 6314–6323, May 2007.
[4] A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial
coatings,” Phys. Rev. E, vol. 72, p. 016623, July 2005.
[5] M. Kerker, “Invisible bodies,” J. Opt. Soc. Am., vol. 65, pp. 376–379, Apr 1975.
[6] F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov,
“Tunneling mechanism of light transmission through metallic films,” Phys.
Rev. Lett., vol. 95, p. 067403, Aug 2005.
[7] D. A. B. Miller, “On perfect cloaking,” Opt. Express, vol. 14, pp. 12457–12466, Dec
2006.
[8] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,”
Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[9] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–
1780, 2006.
[10] U. Leonhardt, “Notes on conformal invisibility devices,” New Journal of Physics,
vol. 8, no. 7, p. 118, 2006.
[11] K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and
Characterization. Kluwer Academic Publishers, Boston, Massachusetts, 1996.
[12] Knott and E. F, Radar Cross Section Measurements. Scitech Publishing, Inc, Raleigh,
North Carolina, 2006.
[13] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes
and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett., vol. 99,
p. 183901, Oct 2007.
[14] A. Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems:
mechanism, robustness, and physical insights,” Opt. Express, vol. 15, pp. 3318–
3332, Mar 2007.
[15] M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry,
“Design of electromagnetic cloaks and concentrators using form-invariant coordinate
transformations of maxwell’s equations,” Photonics and Nanostructures - Fundamentals
and Applications, vol. 6, no. 1, pp. 87 – 95, 2008.
[16] S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, “Full-wave simulations of
electromagnetic cloaking structures,” Phys. Rev. E, vol. 74, p. 036621, Sep 2006.
[17] H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions
with a metamaterial cloak,” Phys. Rev. Lett., vol. 99, p. 063903, Aug 2007.
[18] Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but
sensitive to tiny perturbations,” Phys. Rev. Lett., vol. 99, p. 113903, Sep 2007.
[19] B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical
invisibility cloak to electromagnetic waves,” Phys. Rev. B, vol. 76, p. 121101,
Sep 2007.
[20] Q. Wu, K. Zhang, F. Meng, and L.-W. Li, “Analytical expression of the electromagnetic
field inside the cylindrical metamaterial cloak excited by plane wave,” in Antennas
and Propagation Society International Symposium, 2008. AP-S 2008. IEEE,
pp. 1–4, 2008.
[21] B. Ivsic, Z. Sipus, and J. Bartolic, “Bandwidth of invisible cloak realized with split
ring resonators,” in Microwave Techniques, 2008. COMITE 2008. 14th Conference
on, pp. 1–4, 2008.
[22] Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave
validation of the invisibility cloaks, concentrators, and field rotators created with a
general class of transformations,” Phys. Rev. B, vol. 77, p. 125127, Mar 2008.
[23] N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. Kivshar, “Ideal and nonideal
invisibility cloaks,” Opt. Express, vol. 16, pp. 21369–21374, Dec 2008.
[24] B. Vasi&;#263;, G. Isi&;#263;, R. c. v. Gaji&;#263;, and K. Hingerl, “Coordinate transformation based
design of confined metamaterial structures,” Phys. Rev. B, vol. 79, p. 085103, Feb
2009.
[25] T. G. P. Leonhardt, “General relativity in electrical engineering,” New Journal of
Physics, 2006.
[26] Zienkiewicz, O. Cecil, and R. L. Taylor, The finite element method, vol. 3. London:
McGraw-hill, 1977.
[27] Y. Zhao, C. Argyropoulos, and Y. Hao, “Dispersive finite-difference time-domain
simulation of electromagnetic cloaking devices,” in Antennas and Propagation Conference,
2008. LAPC 2008. Loughborough, pp. 429–432, 2008.
[28] P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive
material,” Applied Physics Letters, vol. 92, no. 3, pp. 031111–031111–3, 2008.
[29] N. A. Zharova, I. V. Shadrivov, and Y. S. Kivshar, “Inside-out electromagnetic
cloaking,” Opt. Express, vol. 16, pp. 4615–4620, Mar 2008.
[30] C. Blanchard, J. A. Porti, B.-I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, “Time
domain simulation of electromagneticcloaking structures with tlm method,” Opt. Express,
vol. 16, pp. 6461–6470, Apr 2008.
[31] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R.
Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science,
vol. 314, no. 5801, pp. 977–980, 2006.
[32] W. Hardy and L. Whitehead, “Split ring resonator for use in magnetic resonance,”
Review of Scientific Instruments, vol. 52, no. 2, pp. 213–216, 1981.
[33] W. Cai, U. Chettiar, A. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic
cloak with minimized scattering,” Applied Physics Letters, vol. 91, no. 11,
pp. 111105–111105–3, 2007.
[34] W. Cai, U. Chettiar, A. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,”
Applied Physics Letters, vol. 1, no. 11, pp. 224–227, 2007.
[35] Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure
ofhomogeneous isotropic materials,” Opt. Express, vol. 15, pp. 11133–11141, Sep
2007.
[36] B.-I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic
layers,” Phys. Rev. A, vol. 79, p. 023806, Feb 2009.
[37] S. Xi, H. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, “Route to low-scattering
cylindrical cloaks with finite permittivity and permeability,” Phys. Rev. B, vol. 79,
p. 155122, Apr 2009.
[38] Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak
with minimum layers of non-magnetic isotropic materials,” Journal of Physics D:
Applied Physics, vol. 44, no. 18, p. 185102, 2011.
[39] M. Ribeiro and C. Paiva, “Invisibility cloaks and the equivalence principle for
electromagnetics,” in Antennas and Propagation Society International Symposium,
2008. AP-S 2008. IEEE, pp. 1–4, 2008.
[40] D.-H. Kwon and D. Werner, “Two-dimensional eccentric elliptic electromagnetic
cloaks,” Applied Physics Letters, vol. 92, no. 1, pp. 013505–013505–3, 2008.
[41] W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, “Arbitrarily
elliptical–cylindrical invisible cloaking,” Journal of Physics D: Applied Physics,
vol. 41, no. 8, p. 085504, 2008.
[42] A. Diatta, A. Nicolet, S. Guenneau, and F. Zolla, “Tessellated and stellated invisibility,”
Opt. Express, vol. 17, pp. 13389–13394, Aug 2009.
[43] W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect
invisibility cloaks with arbitrary shape,” New Journal of Physics, vol. 10, no. 4,
p. 043040, 2008.
[44] M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material
parameters is inherently visible,” Phys. Rev. Lett., vol. 99, p. 233901, Dec 2007.
[45] G. Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, “Radiation and
scattering from imperfect cylindrical electromagnetic cloaks,” Opt. Express, vol. 16,
pp. 1413–1422, Feb 2008.
[46] L. Huang, D. Zhou, J. Wang, Z. Li, X. Chen, and W. Lu, “Generalized transformation
for nonmagnetic invisibility cloak with minimized scattering,” J. Opt. Soc. Am. B,
vol. 28, pp. 922–928, Apr 2011.
[47] P. Collins and J. McGuirk, “A novel methodology for deriving improved material
parameter sets for simplified cylindrical cloaks,” Journal of Optics A: Pure and Applied
Optics, vol. 11, no. 1, p. 015104, 2009.
[48] L.-W. Cai, “Optimizing imperfect cloaks to perfection,” The Journal of the Acoustical
Society of America, vol. 132, no. 4, pp. 2923–2931, 2012.
[49] J. Zhang, Y. Luo, and N. A. Mortensen, “Minimizing the scattering of a nonmagnetic
cloak,” Applied Physics Letters, vol. 96, no. 11, 2010.
[50] L. Peng, L. Ran, and N. A. Mortensen, “The scattering of a cylindrical invisibility
cloak: reduced parameters and optimization,” Journal of Physics D: Applied Physics,
vol. 44, no. 13, p. 135101, 2011.
[51] McNamara, D. A. C. W. I. Pistorius, and J. A. G., Introduction to the Uniform Geometrical
Theory of Diffraction. Artech House, Norwood, Massachusetts, 1990.
[52] A. J. Ward and J. B. Pendry., “Refraction and geometry in maxwell’s equations,”
Journal of Modern Optics, vol. 43, pp. 773–793, 1996.
[53] J.A.Kong, Electromagnetic wave theory. EMW Publish, 2000.
[54] A. Grothendieck, Topological vector spaces. Gordon and Breach Science Publishers,
New York, 1973.
[55] E.J.Post, Formal structure of electrdtnamics. New York:Wiley, 1990.
[56] D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray
tracing in transformation media,” Opt. Express, vol. 14, pp. 9794–9804, Oct 2006.
[57] P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods.
World Scientific, 1990.
[58] M. T. E.F. Knott, J.F. Shaefer, Introduction to electrodynamics. Second edition,
SciTech Publishing, Inc, Raleigh, NC 27615, 2004.
[59] B. Cockburn and C.-W. Shu, “The runge–kutta discontinuous galerkin method for
conservation laws v: multidimensional systems,” Journal of Computational Physics,
vol. 141, no. 2, pp. 199–224, 1998.
[60] T. Belytschko, D. Organ, and Y. Krongauz, “A coupled finite element-element-free
galerkin method,” Computational Mechanics, vol. 17, no. 3, pp. 186–195, 1995.
[61] M. Yan, Z. Ruan, and M. Qiu, “Scattering characteristics of simplified cylindrical
invisibility cloaks,” Opt. Express, vol. 15, pp. 17772–17782, Dec 2007.
[62] J. S. McGuirk and P. J. Collins, “Controlling the transmitted field into a cylindrical
cloak’s hidden region,” Opt. Express, vol. 16, pp. 17560–17573, Oct 2008.
[63] K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic crystals. Wiley Online
Library, 2004.
[64] A. H. Aly, “Metallic and superconducting photonic crys-tal,” Journal of Superconductivity
and Novel Magnetism, vol. 21, no. 7, pp. 421–425, 2008.
[65] M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, “Transparent,
metallo-dielectric, one-dimensional, photonic band-gap structures,” Journal
of Applied Physics, vol. 83, no. 5, pp. 2377–2383, 1998.
[66] J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov,
Photonic Crystals: Towards Nanoscale Photonic Devices. SpringerVerlag Berlin
Heidelberg, New York, 2008.
[67] S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,”
Computing in Science &; Engineering, vol. 3, no. 6, pp. 38–47, 2001.
[68] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals:
molding the flow of light. Princeton university press, 2011.
[69] S. K. Awasthi and S. P. Ojha, “Wide-angle broadband plate polarizer with 1d photonic
crystal,” Progress In Electromagnetics Research, vol. 88, pp. 321–335, 2008.
[70] P. Drude, “Zur Elektronentheorie der Metalle,” Annalen der Physik, vol. 306,
pp. 566–613, 1900.
[71] W. Bade, “Drude-model calculation of dispersion forces. i. general theory,” The
Journal of Chemical Physics, vol. 27, p. 1280, 1957.
[72] D. J. Griffiths and R. College, Introduction to electrodynamics, vol. 3. prentice Hall
Upper Saddle River, NJ, 1999.
[73] Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based
transfer-matrix method,” Physical Review E, vol. 67, no. 4, p. 046607, 2003.
[74] van de Hulst H C, Light scattering by small particles. New York: Wiley, 1957.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top