跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳勝峰
研究生(外文):Sheng-Feng Chen
論文名稱:石墨烯鎖模摻鉻釔鋁石榴石晶體光纖雷射
論文名稱(外文):Graphene Mode-Locked Cr4+:YAG Crystal Fiber Laser
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
口試委員:李連忠黃鼎偉
口試委員(外文):Lain-Jong LiDing-Wei Huang
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:石墨烯飽和吸收體摻鉻釔鋁石晶體光纖被動鎖模雷射
外文關鍵詞:graphenesaturable absorberCr4+:YAGcrystal fiberpassive mode-locked laser
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學同調斷層掃描術擁有非侵入式、即時與高空間解析度之優點,頻寬愈寬,中心波長愈短,有越高的縱向解析度。Cr4+:YAG可產生波長為1.3 μm至1.6 μm的能量增益,其中心波長附近有一水吸收波段,作為OCT系統掃描時,可偵測人體皮膚中含水量分佈,對醫學應用有著極大的潛力。石墨烯由於其特殊的光電特性,近年來成為被動鎖模雷射中常見的飽和吸收體,涵蓋範圍從可見光至近紅外光波段,本論文將石墨烯與Cr4+:YAG晶體光纖搭配,有潛力製作超寬頻鎖模雷射,未來加入調頻元件,有機會成為掃頻式OCT鎖模雷射光源,能得到更強的光干涉訊號與更多的生物影像資訊。本實驗室使用雷射加熱基座長晶法成功生長出Cr4+:YAG DCF (雙纖衣晶體光纖),其良好的散熱特性能承受較高的激發光源功率,並維持一定之增益。利用半球型外部共振腔架構以1064 nm單模二極體雷射幫浦下,量測連續輸出雷射斜線效率達8.98%,雷射閾值僅有38.1 mW。
我們使用的石墨烯為中研院原分所李連忠博士實驗室所生長。我們利用電子槍介電質蒸鍍技術製作1000 ~1600 nm之寬頻抗反射基板,由李博士實驗室將單層石墨烯轉移其上,作為穿透式石墨烯鎖模元件。我們在半球型外部共振腔插入自製石墨烯鎖模元件,距離晶纖輸出端約1 mm處,連續輸出雷射斜線效率為3.42%,閾值為156 mW。移動石墨烯距離光纖輸出端小於100 μm,連續雷射斜線效率為10.5%,閾值為158 mW。這是因為貼近石墨烯與晶體光纖輸出端距離,能大幅增加石墨烯上的功率密度,使石墨烯的吸收被飽和而降低損耗。雖未觀察到鎖模輸出,但藉由此實驗我們仍證實了石墨烯的飽和現象,沒有達到鎖模輸出的原因推測是石墨烯在強光照射下產生氧化。藉由MATLAB模擬連續輸出雷射,擬合雷射功率與殘餘幫浦功率,得到石墨烯光學參數,其飽和吸收損耗為1.88%,不可飽和吸收損耗為0.38%。我們也模擬了鎖模雷射,假設可避免石墨烯氧化,發現在幫浦功率500 mW且石墨烯上之模態直徑小於20μm時,可達成鎖模。貼近石墨烯與晶體光纖輸出端,基本模態直徑為12 μm之高斯光束,模擬得到連續雷射閾值為153 mW,增加幫浦功率大於250 mW時,將可產生鎖模現象。


Optical coherence tomography (OCT) plays an important role in medical applications due to its high longitudinal resolution and noninvasive detection. Higher longitudinal resolution can be obtained with wider bandwidth or shorter center wavelength. The Cr4+:YAG crystal has a broadband emission from 1.3μm to 1.6 μm with a water absorption band located near 1.4 μm. While applied in an OCT system, it can be used to detect the water distribution in human tissues and has great potential in medical applications.
In recent years, graphene becomes a popular saturable absorber having broadband optical saturable absorption from visible to near infrared due to its unique zero-gap property. This study combines monolayer graphene with Cr4+:YAG crystal fiber in order to demonstrate an ultra-broadband mode-locked laser. In the future, we have chance to insert tuning optical element to develop mode-locked swept-source OCT. Such OCT system can get stronger interfering signal power, and thus get more information from bio-images.
In our Lab., we have successfully fabricated Cr4+:YAG double-clad crystal fibers (DCF) with the co-drawing laser-heated pedestal growth method. Due to its good heat dissipation properties, Cr4+:YAG can endure high pump power and maintain its gross gain without prominent degradation. Hemispherical external-cavity laser was demonstrated by pumping by a 500 mW 1064-nm diode laser and the lasing threshold was 38 mW and the slope efficiency was 8.98%.
The graphene we used was prepared by Dr. Lain-Jong Li’s Lab. of the Institute of Atomic and Molecular Sciences, Academia Sinica. A broadband AR coating substrate from 1000 to 1600 nm was fabricated by using dielectric E-gun deposition method. The monolayer graphene was transferred by Dr. Li’s Lab. on the substrate to form a transmitting graphene saturable absorber (GSA). Inserting the home-made GSA with 1-mm distance to Cr:4+:YAG output end in hemispherical external-cavity laser, the slope efficiency was 3.4% and the lasing threshold was 156 mW. Moving GSA close to Cr4+:YAG output end with less than 100-μm distance, the slope efficiency was 10.5% and the lasing threshold was 158 mW. This was due to the stronger saturation of the absorption of the GSA when it was placed closer to the DCF end face. No mode-locked output was observed, which could be due to the oxidation of the GSA under strong pump power.
We use MATLAB to simulate CW laser by fitting laser power and residual pump power. The results shows saturable loss of graphene is 1.88%, and non-saturable loss of graphene is 0.38%. We also simulated mode-locked laser by assuming using a perfect GSA without oxidation. In the simulation, mode-locked laser output was obtained with 500-mW pump power when the mode diameter on graphene was less than 20 μm. If graphene moved close enough to Cr4+:YAG output end, we can get the smallest fundamental mode diameter of 12 μm. The simulation shows a CW laser threshold of 153 mW, and a mode-locked laser threshold of 250 mW.


誌謝 I
摘要 II
ABSTRACT III
圖目錄 VII
表目錄 XI
第一章 緒論與研究動機 1
第二章 鎖模雷射理論分析 3
2-1 鎖模雷射理論 3
2-2 石墨烯飽和吸收體理論模型 7
2-3 摻鉻釔鋁石榴石鎖模光纖雷射理論模型 11
2-4 摻鐿玻璃光纖雷射理論模型 19
第三章 晶體光纖鎖模雷射元件之製備 22
3-1 晶體光纖之生長與系統架構 22
3-2 晶體光纖之特性與元件製備 25
3-3 摻鉻釔鋁石榴石晶體光纖端面鍍膜分析 32
3-4 石墨烯之製備與檢測 37
第四章 光纖鎖模雷射量測與分析 43
4-1 摻鐿玻璃光纖雷射量測與分析 43
4-2 摻鉻釔鋁石榴石晶體光纖雷射量測與分析 55
4-3 摻鉻釔鋁石榴石晶體光纖雷射模擬 74
第五章 結論與未來展望 89
參考文獻 90


[1]C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol., vol. 43, p. 2465, 1998.
[2]Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, and J. Kobayashi, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett., vol. 48, pp. 201–202, 2012.
[3]Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater., vol 19, pp. 3077–3083, 2009.
[4]I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D-I Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express, vol. 5, pp. 032701-1–032701-3, 2012.
[5]W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett., vol. 36, pp. 4089–4091, 2011.
[6]M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett., vol. 38, pp. 341–343, 2013.
[7]H. A. Haus, “Theory of mode locking with a slow saturable absorber,” J. Quant. Electron., vol. 11, pp. 736–746, 1975.
[8]H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys., vol. 46, pp. 3049–3058, 1975.
[9]F. X. Kartner, “Few-Cycle Laser Pulse Generation and Its Applications,” Topics in Applied Physics, vol. 95, 2004.
[10]彭錦龍, 安惠榮, “飛秒鎖模雷射在光頻計量的應用,” 物理雙月刊, 廿三卷六期, 2004.
[11]K. H. Fong and K. Kikuchi, C. S. Goh and S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett., vol. 32, p. 1, 2007.
[12]R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B, vol. 73, pp. 653–662, 2001.
[13]F. X. Kartner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett., vol. 20,pp. 16–18, 1995.
[14]C. C. Lai, Y. S. Lin, K. Y. Huang, and S. L. Huang, “Study on the core/cladding interface in Cr: YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method,” J. Appl. Phys., vol. 108, pp. 054308-1–054308-6, 2010.
[15]C. Lai, K. Huang, H. Tsai, K. Hsu, S. Liu, C. Cheng, K. Ji, C. Ke, S. Lin, and S. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett.,vol. 34, pp. 2357–2359, 2009.
[16]范祐維, “短波長摻鐿光纖雷射及其倍頻之研究,” 國立臺灣大學碩士論文, 2010.
[17]X. Peng and L. Dong, “Temperature dependence of ytterbium-doped fiber amplifiers,” J. Opt. Soc. Amer. B, vol. 25, pp. 126–130, 2008.
[18]E. Snitzer, H. Po, R. P., Tumminelli, and F. Hakimi, “Optical fiber lasers and amplifiers,” U.S. patent 4,815,079, 1989.
[19]J. Czochralski, “Ein neues Verfahren zur Messung der Kristallisationsgeschwin-digkeit der Metalle,” Z. Phys. Chem., vol. 92, p. 219, 1992.
[20]G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin., vol. 102, pp. 417–425, 2003.
[21]J. Haggerty and W. Menashi, “Production of oxide fibers by a floating zone fiber drawing technique,” NASA, Contract No. NAS 3-13479, 1971.
[22]W. Jia, H. Yuan, L. Lu, H. Liu, and W. M. Yen, “Crystal growth and characterization of Eu2+, Dy3+: SrAl2O4 and Eu2+, Nd3+: CaAl2O4 by the LHPG method,” J. Cryst. Growth, vol. 200, pp. 179–184, 1999.
[23]R. Guo, A. Bhalla, and L. Cross, “Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique,” J. Appl. Phys., vol. 75, pp. 4704–4708, 1994.
[24]K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express, vol. 16, pp. 12264–12271, 2008.
[25]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+: YAG crystal fiber amplifier,” Opt. Lett., vol. 30, pp. 129–131, 2005.
[26]K. Y. Huang, K. Y. Hsu, and S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” J. Lightwave Technol., vol. 26, pp. 1632–1639, 2008.
[27]C. C. Lai, Y. S. Lin, K. Y. Huang, and S. L. Huang, “Study on the core/cladding interface in Cr: YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method,” J. Appl. Phys., vol. 108, pp. 054308-1–054308-6, 2010.
[28]廖奕涵, “單模寬頻光源晶體光纖之製備與量測,” 國立臺灣大學碩士論文, 2010.
[29]梁堰竣, “摻鉻釔鋁石榴石晶體光纖主動元件之研製,” 國立臺灣大學碩士論文, 2013.
[30]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett, vol. 97, p. 187401, 2006.
[31]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, p. 1308, 2008.
[32]Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res., vol. 4, pp. 297–307, 2011.
[33]A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Amer. B, vol. 12, pp. 930–937, 1995.
[34]N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region of 1.34–1.6 μm,” Bull. Acad. Sci. USSR , vol. 54, pp. 54–60, 1990
[35]A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” J. Quantum Electron., vol. 35, pp. 1548–1553, 1999.
[36]J. C. Diettrich, I. T. McKinnie, and D. M. Warrington, “The influence of active ion concentration and crystal parameters on pulsed Cr:YAG laser performance,” Opt. Commun., vol. 167, pp. 133–140, 1999.
[37]許光裕, “玻璃包覆之晶體光纖寬頻光源,” 國立臺灣大學博士論文,2011.
[38]Y. Yamada, K. Murota, R. Fujita, J. Kim, A. Watanabe, M. Nakamura, S. Sato, K. Hata, P. Ercius, J. Ciston, C. Y. Song, K. Kim, W. Regan, W. Gannett, and A. Zettl, Subnanometer vacancy defects introduced on graphene by oxygen, J. Am. Chem., vol. 136, pp. 2232&;#8722;2235, 2014.
[39]X. Li, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, X. Cheng, and Q. J. Wang, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” J. Quantum Electron., vol. 20, p.1101107, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top