(3.235.11.178) 您好!臺灣時間:2021/03/05 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥均
研究生(外文):Yen-Chun Lin
論文名稱:發展電晶體元件量子輸運非平衡態數值模擬及應用
論文名稱(外文):The Development and Application of Non-Equilibrium Quantum Transport Modeling for Transistors
指導教授:吳育任
指導教授(外文):Yuh-Renn Wu
口試委員:吳志毅彭隆瀚黃建璋賴韋志
口試委員(外文):Chi-Hi WuLung-Han PengChien-Chang HuangWei-Chih Lai
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:91
中文關鍵詞:量子輸運電晶體元件數值模擬及應用
外文關鍵詞:Quantum TransportTransistorsModeling and Application
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇主要在探討量子傳輸效應,藉由反覆疊代帕森和薛丁格方程
式求得穩態解。隨著半導體科技演進至奈米等級,求解帕森和飄移
擴散方程式的古典粒子傳輸模型變得不再精準,因為忽略了量子波
的概念。在程式開發中,利用有限差分法建立矩陣來發展計算簡化
的薛丁格方程式,並考慮載子散射機制所造成的影響。其中,非平
衡態格林函數和邊界條件的設定都被引用至薛丁格方程式。這個研
究的的主要特點是成功地引入載子散射機制到薛丁格方程,造成能
量在不同的能階釋放能量到更低能階的效果,並反覆疊代達穩態。
最後是波森和薛丁格方程式兩者反覆疊代計算求得載子濃度、電流
密度與元件位能。本文模擬分析許多元件結構像是穿隧結構、穿隧
共振元件、穿隧場效電晶體元件以及n-i-n結構。

This thesis studies the quantum transport effect by solving the Poisson and Schrodinger equation self-consistently. As we know, as the semiconductor scaling technology enters the nanoscale world, the classical carrier transport model by solving Poisson and drift-diffusion equation model becomes less valid, due to the ignorance of quantum wave pictures. To develop the program for modeling the nanostructure, the finite difference method with the simpli ed Schrodinger equation and considering the scattering effect is used for developing the program. Next, the nonequilibrium green function method is used for boundary condition and they are applied to solve the Schrodinger equation. The key feature of this study is successfully adding the scattering mechanism into the Schrodinger solver for energy relaxation in different energies and solve self-consistently. The last step is the Poisson equation and the Schrodinger Hamiltonian are self-consistently iterated to get the carrier density, current density, and potential of the
device. Several device structures are examined, including the tunneling structures, resonant tunneling devices, tunneling eld effect transistors, and n-i-n structures.

口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transport Models . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The evolution of the scale of electronic devices . 3
1.2.2 Classical transport model . . . . . . . . . . . . 5
1.2.3 Sub-micrometer scale device modeling . . . . . 5
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . 8
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Poisson Equation . . . . . . . . . . . . . . . . . . . . . 9
2.3 Finite Difference Method . . . . . . . . . . . . . . . . . 13
2.4 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 16
2.5 Con ned States . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Open boundary value problem for continous wave . . . 18
2.7 Physic and Derivation of Carrier Transport . . . . . . . 22
2.7.1 The introduction of the Schrodinger equation by
including the scattering mechanism . . . . . . . 24
2.7.2 The Derivation of the Divergence J . . . . . . . 25
2.7.3 The Derivation of the Scattering Rate . . . . . 26
2.7.4 The Scattering Rate and the Divergence J . . . 32
2.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . 34
3 Device Simulation . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Flat Band . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Tunneling Device . . . . . . . . . . . . . . . . . . . . . 38
3.3 Resonant Tunneling Device - RTD . . . . . . . . . . . . 41
3.4 Tunneling Field Effect Transistors - TFET . . . . . . . 48
3.5 n-i-n Structure - Scattering Mechanism . . . . . . . . . 59
3.5.1 Schrodinger and Phonon Scattering Iteration . . 60
3.5.2 Total Carrier Density and Poisson Solver Iteration 68
3.5.3 Iteration of whole Quantum Transport Program 72
3.5.4 Different bias of n-i-n structures . . . . . . . . . 75
4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 82
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 84
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

[1] I. Ferain, C. A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal oxide semiconductor field-effect transistors," Nature, vol. 479, no. 7373, pp. 310~316, 2011.

[2] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," Electron Devices, IEEE Transactions on, vol. 47, no. 12, pp. 2320~2325,2000.

[3] K. Stokbro, First-principles modeling of molecular single electron transistors," The Journal of Physical Chemistry C,vol. 114, no. 48, pp. 20461~20465, 2010.

[4] J. DiLorenzo, R. Dingle, M. Feuer, A. Gossard, R. Hendel, J. C. M. Hwang, A. Kastalsky, V. Keramidas, R. Kiehl, and P. O''Connor, Material and device considerations for selectively doped heterojunction transistors," in 1982 International electron device meeting, vol. 28, pp. 578~581, 1982.

[5] M. Lee, S. Chang, T.-H. Wu, and W.-N. Tseng, Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect," Electron Device Letters, IEEE, vol. 32, no. 10, pp. 1355~1357, 2011.

[6] G. Moore, Cramming more components onto integrated cir-
cuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82~85, 1998.

[7] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.S. P. Wong, Device scaling limits of Si MOSFETs and their
application dependencies," Proceedings of the IEEE, vol. 89, no. 3,pp. 259~288, 2001.

[8] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leak-
age current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits," Proceedings of the IEEE, vol. 91, no. 2, pp. 305~327, 2003.

[9] I. Ahmad, V. Kasisomayajula, M. Holtz, J. Berg, S. Kurtz, C. Tigges, A. Allerman, and A. Baca, Self-heating study of an AlGaN/GaN-based heterostructure eld-effect transistor using ultraviolet micro-raman scattering," Applied Physics Letters, vol. 86, no. 17, p. 173503, 2005.

[10] W. Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, Tunneling eld-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec," Electron Device Letters, IEEE, vol. 28, no. 8, pp. 743~745, 2007.

[11] J. A. del Alamo, Nanometre-scale electronics with III-V compound semiconductors," Nature, vol. 479, no. 7373, pp. 317~323, 2011.

[12] W. G. Pfann and J. H. Scaff, The p-germanium transistor," Proceedings of the IRE, vol. 38, no. 10, pp. 1151~1154, 1950.

[13] J.-S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D. K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates," Electron Device Letters, IEEE, vol. 30, no. 6, pp. 650~652, 2009.

[14] B. Radisavljevic, D. Krasnozhon, M. Whitwick, and A. Kis, MoS2-based devices and circuits," in Device Research Conference (DRC), 2012 70th Annual, pp. 179~180, 2012.

[15] M. P. Anantram, M. LUNDSTROM, and D. Nikonov, Modeling
of nanoscale devices," Proceedings of the IEEE, vol. 96, no. 9, p. 1511V1550, 2008.

[16] J. Singh, Electronic and Optielectronic Properties of Semiconductor Structure. Cambridge, 2007.

[17] H. Watanabe, K. Kawabata, and T. Ichikawa, A tight binding method study of optimized SiSO2 system," Electron Devices, IEEE Transactions on, vol. 57, no. 11, pp. 3084~3091, 2010.

[18] M. Szczap, N. Cavassilas, and F. Michelini, Thirty-band kp model for Si-based optoelectronics," in Computational Electronics (IWCE), 2010 14th International Workshop on, pp. 1~4, 2010.

[19] I. P. Batra, First principles tight binding method for investigating electronic properties of surfaces, interfaces, and bulk solids," Journal of Vacuum Science and Technology, vol. 16, no. 5, pp. 1359~1363, 1979.

[20] D. Z. Y. Ting, E. T. Yu, and T. C. McGill, Multiband treatment of quantum transport in interband tunnel devices," Phys. Rev. B, vol. 45, pp. 3583~3592, 1992.

[21] D.-Y. Ting, Multiband and multidimensional quantum transport," Microelectronics Journal, vol. 30, no. 10, pp. 985~1000, 1999.

[22] W. Chen, L. Register, and S. K. Banerjee, Scattering in a nanoscale MOSFET: a quantum transport analysis," in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, vol. 1, pp. 32~35 vol.2, 2003.

[23] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structure. Cambridge University Press, 2003.

[24] P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun, and G. Haddad, Digital circuit applications of resonant tunneling devices," Proceedings of the IEEE, vol. 86, no. 4, pp. 664~686, 1998.

[25] Z. Shao, W. Porod, and C. Lent, Transmission zero engineering in lateral double barrier resonant tunneling devices," Applied Physics Letters, vol. 68, no. 15, pp. 2120~2122, 1996.

[26] G. Keller, A. Tchegho, B. Munstermann, W. Prost, and
F. Tegude, Sensitive high frequency envelope detectors based on triple barrier resonant tunneling diodes," in Indium Phosphide and Related Materials (IPRM), 2012 International Conference on, pp. 36~39, 2012.

[27] H. Tsai, Y. Su, H.-H. Lin, R.-L.Wang, and T. L. Lee, P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature," Electron Device Letters, IEEE, vol. 15, no. 9, pp. 357~359, 1994.

[28] S.-D. Grigorescu, C. Iliescu, and B. Pantelimon, A sensor self-heating method for lead''s resistance compensation in two wires RTD''s measurements," in Precision Electromagnetic Measurements, 1994. Digest., 1994 Conference on, pp. 174~175, 1994.

[29] D. Zhou, Q. Weng, W. Wang, N. Li, B. Zhang, X. Chen, W. Lu, W. Wang, and H. Chen, The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots," in Numerical Simulation of Optoelectronic Devices (NUSOD), 2012 12th International Conference on, pp. 49~50, 2012.

[30] C. Turchetti and G. Masetti, Analysis of the depletion-mode MOSFET including diffusion and drift currents," Electron Devices, IEEE Transactions on, vol. 32, no. 4, pp. 773~782, 1985.

[31] N. Mojumder and K. Roy, Band-to-band tunneling ballistic nanowire FET: Circuit-compatible device modeling and design of ultra-low-power digital circuits and memories," Electron Devices, IEEE Transactions on, vol. 56, no. 10, pp. 2193~2201, 2009.

[32] T.-J. Chen and C.-L. Kuo, First principles study of the structural, electronic, and dielectric properties of amorphous HfO2," Journal of Applied Physics, vol. 110, no. 6, p. 064105, 2011.

[33] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. Mcintyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C.Weber, P. Yashar, K. Zawadzki, and K. Mistry, A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM
capacitors," in VLSI Technology (VLSIT), 2012 Symposium on,
pp. 131~132, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔