|
[1] I. Ferain, C. A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal oxide semiconductor field-effect transistors," Nature, vol. 479, no. 7373, pp. 310~316, 2011.
[2] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," Electron Devices, IEEE Transactions on, vol. 47, no. 12, pp. 2320~2325,2000.
[3] K. Stokbro, First-principles modeling of molecular single electron transistors," The Journal of Physical Chemistry C,vol. 114, no. 48, pp. 20461~20465, 2010.
[4] J. DiLorenzo, R. Dingle, M. Feuer, A. Gossard, R. Hendel, J. C. M. Hwang, A. Kastalsky, V. Keramidas, R. Kiehl, and P. O''Connor, Material and device considerations for selectively doped heterojunction transistors," in 1982 International electron device meeting, vol. 28, pp. 578~581, 1982.
[5] M. Lee, S. Chang, T.-H. Wu, and W.-N. Tseng, Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect," Electron Device Letters, IEEE, vol. 32, no. 10, pp. 1355~1357, 2011.
[6] G. Moore, Cramming more components onto integrated cir- cuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82~85, 1998.
[7] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.S. P. Wong, Device scaling limits of Si MOSFETs and their application dependencies," Proceedings of the IEEE, vol. 89, no. 3,pp. 259~288, 2001.
[8] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leak- age current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits," Proceedings of the IEEE, vol. 91, no. 2, pp. 305~327, 2003.
[9] I. Ahmad, V. Kasisomayajula, M. Holtz, J. Berg, S. Kurtz, C. Tigges, A. Allerman, and A. Baca, Self-heating study of an AlGaN/GaN-based heterostructure eld-effect transistor using ultraviolet micro-raman scattering," Applied Physics Letters, vol. 86, no. 17, p. 173503, 2005.
[10] W. Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, Tunneling eld-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec," Electron Device Letters, IEEE, vol. 28, no. 8, pp. 743~745, 2007.
[11] J. A. del Alamo, Nanometre-scale electronics with III-V compound semiconductors," Nature, vol. 479, no. 7373, pp. 317~323, 2011.
[12] W. G. Pfann and J. H. Scaff, The p-germanium transistor," Proceedings of the IRE, vol. 38, no. 10, pp. 1151~1154, 1950.
[13] J.-S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D. K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates," Electron Device Letters, IEEE, vol. 30, no. 6, pp. 650~652, 2009.
[14] B. Radisavljevic, D. Krasnozhon, M. Whitwick, and A. Kis, MoS2-based devices and circuits," in Device Research Conference (DRC), 2012 70th Annual, pp. 179~180, 2012.
[15] M. P. Anantram, M. LUNDSTROM, and D. Nikonov, Modeling of nanoscale devices," Proceedings of the IEEE, vol. 96, no. 9, p. 1511V1550, 2008.
[16] J. Singh, Electronic and Optielectronic Properties of Semiconductor Structure. Cambridge, 2007.
[17] H. Watanabe, K. Kawabata, and T. Ichikawa, A tight binding method study of optimized SiSO2 system," Electron Devices, IEEE Transactions on, vol. 57, no. 11, pp. 3084~3091, 2010.
[18] M. Szczap, N. Cavassilas, and F. Michelini, Thirty-band kp model for Si-based optoelectronics," in Computational Electronics (IWCE), 2010 14th International Workshop on, pp. 1~4, 2010.
[19] I. P. Batra, First principles tight binding method for investigating electronic properties of surfaces, interfaces, and bulk solids," Journal of Vacuum Science and Technology, vol. 16, no. 5, pp. 1359~1363, 1979.
[20] D. Z. Y. Ting, E. T. Yu, and T. C. McGill, Multiband treatment of quantum transport in interband tunnel devices," Phys. Rev. B, vol. 45, pp. 3583~3592, 1992.
[21] D.-Y. Ting, Multiband and multidimensional quantum transport," Microelectronics Journal, vol. 30, no. 10, pp. 985~1000, 1999.
[22] W. Chen, L. Register, and S. K. Banerjee, Scattering in a nanoscale MOSFET: a quantum transport analysis," in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, vol. 1, pp. 32~35 vol.2, 2003.
[23] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structure. Cambridge University Press, 2003.
[24] P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun, and G. Haddad, Digital circuit applications of resonant tunneling devices," Proceedings of the IEEE, vol. 86, no. 4, pp. 664~686, 1998.
[25] Z. Shao, W. Porod, and C. Lent, Transmission zero engineering in lateral double barrier resonant tunneling devices," Applied Physics Letters, vol. 68, no. 15, pp. 2120~2122, 1996.
[26] G. Keller, A. Tchegho, B. Munstermann, W. Prost, and F. Tegude, Sensitive high frequency envelope detectors based on triple barrier resonant tunneling diodes," in Indium Phosphide and Related Materials (IPRM), 2012 International Conference on, pp. 36~39, 2012.
[27] H. Tsai, Y. Su, H.-H. Lin, R.-L.Wang, and T. L. Lee, P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature," Electron Device Letters, IEEE, vol. 15, no. 9, pp. 357~359, 1994.
[28] S.-D. Grigorescu, C. Iliescu, and B. Pantelimon, A sensor self-heating method for lead''s resistance compensation in two wires RTD''s measurements," in Precision Electromagnetic Measurements, 1994. Digest., 1994 Conference on, pp. 174~175, 1994.
[29] D. Zhou, Q. Weng, W. Wang, N. Li, B. Zhang, X. Chen, W. Lu, W. Wang, and H. Chen, The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots," in Numerical Simulation of Optoelectronic Devices (NUSOD), 2012 12th International Conference on, pp. 49~50, 2012.
[30] C. Turchetti and G. Masetti, Analysis of the depletion-mode MOSFET including diffusion and drift currents," Electron Devices, IEEE Transactions on, vol. 32, no. 4, pp. 773~782, 1985.
[31] N. Mojumder and K. Roy, Band-to-band tunneling ballistic nanowire FET: Circuit-compatible device modeling and design of ultra-low-power digital circuits and memories," Electron Devices, IEEE Transactions on, vol. 56, no. 10, pp. 2193~2201, 2009.
[32] T.-J. Chen and C.-L. Kuo, First principles study of the structural, electronic, and dielectric properties of amorphous HfO2," Journal of Applied Physics, vol. 110, no. 6, p. 064105, 2011.
[33] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. Mcintyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C.Weber, P. Yashar, K. Zawadzki, and K. Mistry, A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," in VLSI Technology (VLSIT), 2012 Symposium on, pp. 131~132, 2012.
|